
Software Transparent Dynamic Binary Translation for
Coarse-Grain Reconfigurable Architectures

Matthew A. Watkins
Lafayette College

Easton, PA

Tony Nowatzki
Univ. of Wisconsin-Madison

Madison, WI

Anthony Carno
Virginia Tech

Blacksburg, VA

ABSTRACT
The end of Dennard Scaling has forced architects to focus
on designing for execution efficiency. Course-grained recon-
figurable architectures (CGRAs) are a class of architectures
that provide a configurable grouping of functional units that
aim to bridge the gap between the power and performance
of custom hardware and the flexibility of software. Despite
their potential benefit, CGRAs face a major adoption chal-
lenge as they do not execute a standard instruction stream.

Dynamic translation for CGRAs has the potential to solve
this problem, but faces non-trivial challenges. Existing at-
tempts either do not achieve the full power and performance
potential CGRAs offer or suffer from excessive translation
time. In this work we propose DORA, a Dynamic Optimizer
for Reconfigurable Architectures, which achieves substan-
tial (2X) power and performance improvements while hav-
ing low hardware and insertion overhead and benefiting the
current execution. In addition to traditional optimizations,
DORA leverages dynamic register information to perform
optimizations not available to compilers and achieves per-
formance similar to or better than CGRA-targeted compiled
code.

1. INTRODUCTION
The end of Dennard Scaling has led to serious power con-

straints in today’s microprocessors. The main focus for ar-
chitects is now execution efficiency, achieving higher perfor-
mance for the same power or the same performance with less
power. Coarse-grained reconfigurable architectures (CGRAs)
provide parallelism through a configurable grouping of func-
tional units [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and strive to approach
the power and performance of custom hardware while main-
taining the flexibility of software. This flexibility makes
them potentially more attractive than existing options like
SIMD units whose rigidity limits their scope and benefit.

A major challenge of CGRAs is that they require modi-
fication of the software. Most previous CGRA work relies
either on the programmer or compiler to perform this mod-
ification [3, 11, 12, 13]. Both options have multiple disad-
vantages, including i) requiring access to the source code
and recompilation (which can still miss regions like library
code), ii) requiring recompilation/redesign anytime the ar-
ray architecture is changed, as is likely to happen with fu-

ture generations, iii) requiring multiple versions of the code
to support multiple architectures, and iv) potentially long
adoption times from when capabilities are first released un-
til when mainstream programs adopt them. CGRAs further
lack a formalized abstraction to expose their architecture to
the ISA.

Dynamic binary translation (DBT) translates and optimizes
a program while it is executing. DBT has the potential to
overcome all of the aforementioned mentioned issues, allow-
ing CGRAs to be entirely transparent to software and pro-
vide immediate benefits to all programs. Further, DBT can
use runtime information to perform optimizations not pos-
sible at compile time and revert to a previous version when
an optimization yields no benefit. In certain environments,
such as mobile SoCs, an exposed hardware/software solu-
tion, which introduces practical challenges such as software
design and long-term support, can be a very difficult sell,
essentially necessitating a software-transparent solution for
business reasons.

An ideal CGRA DBT system would have three key el-
ements. First, the targeted CGRA could provide power and
performance benefits significant enough to warrant the added
complexities. Second, system performance would match, or
exceed, the performance achieved by offline compilation so
as not to leave potential benefits unrealized. Finally, the
system would perform optimization and mapping quickly
enough to have minimal power overhead and achieve near
optimal performance benefit for the current execution of even
relatively short computation. To our knowledge, no exist-
ing work provides all three of these features. The majority
of existing CGRA DBT proposals target 1-D feed-forward
arrays and provide relatively modest average performance
benefits of 9-42% [14, 15, 16, 17] compared to the 2-10X
benefits reported for some CGRAs [18, 19, 20]. Further, as
discussed in Section 6.4, compiler generated SIMD code al-
ready achieves 30% improvements, greatly diminishing the
appeal of these existing DBT works as current technology
already provides similar benefits and forgoes the added com-
plexity. Other works that dynamically target reconfigurable
architectures, which are discussed in detail in Section 7, sim-
ilarly face shortcomings in one or more of the aforemen-
tioned areas.

This work proposes DORA (a Dynamic Optimizer for
(Coarse-Grained) Reconfigurable Architectures), the first

978-1-4673-9211-2/16/$31.00 c©2016 IEEE
138



system that simultaneously achieves all three of the above
elements. DORA improves performance and reduces energy
consumption by 2X, matches or exceeds the performance of
a sophisticated offline compiler, and performs optimization
and mapping quickly enough to achieve near optimal benefit
for even relatively short runs. We identify two key insights
that make this possible. First, achieving significant perfor-
mance and power benefits with manageable translation over-
heads requires the right balance in array architecture. We
find that sparsely connected 2-D CGRAs are a sweet spot
in the design space.1 These CGRAs have been shown to
provide 2-10X better power-performance than a traditional
CPU [18, 19, 20], and while they have non-trivial challenges
in placement and routing and desired optimization passes,
we show these issues can be overcome. Our second insight
is that the restricted scope of CGRA-targeted DBT allows
it to have lower power and area overhead than general DBT
and employ optimized versions of standard optimizations.
Existing DBT and CGRA compilation work provides a good
starting point and DORA incorporates new facets relative to
each to create an effective CGRA DBT system. As a whole,
this work makes the following contributions:

• It presents the first dynamic translation system for
CGRAs that simultaneously achieves substantial en-
ergy and power benefits, matches the performance of
offline compilation, and benefits the current execution,

• It develops approaches to existing optimizations that
efficiently target a CGRA,

• It demonstrates how dynamic information can be cap-
tured and leveraged to improve the created translation,

• It describes an effective, low-overhead placement al-
gorithm for 2-D CGRAs, and

• It quantitatively compares using an existing core and
an ultra-low power microcontroller to perform the op-
timization and finds that the low power core is compet-
itive and even advantageous to using an existing core.

2. CGRA REVIEW
Coarse Grain Reconfigurable Architectures are a broad

class of architectures that aim to use a configurable data-
path to achieve the performance of custom hardware with
the flexibility to target many types of computations. They
incorporate multiple functional units within a configurable
interconnection network. By creating customized datapaths
and eschewing power-hungry pipeline structures, they can
achieve notable performance and energy efficiency gains.

CGRAs differ in their organization, computational capa-
bilities and system integration. Some examples include cust-
omizable-instruction accelerators like CCA [15], CHARM [9],
a composable accelerator for domain specific computations,
and LIBRA [20], a configurable SIMD accelerator.

Fine grained reconfigurable architectures like FPGAs have
similar benefits, but allow modifications at the bit level. This
presents further optimization potential, as simpler datapaths
can be utilized for computations requiring fewer bits. This
comes at the cost of many more potential configurations,
which can require more sophisticated compilation algorithms

1Compared to the 1-D feed-forward CGRAs [21, 15, 16, 22] or
fine-grained RAs [23] targeted by existing work.

 

OOO Core

Config 
Cache

Region-
Identifier

Execute 
PipeICache

Region
Cache

Retire

Low-Power Coprocessor
for Performing Dynamic Translation

BPred CGRA

RF

Figure 1: Overview of DORA transparent integration. Shaded
blocks indicate new elements. (RF: Register File)

time

Main Proc
Coproc

Main Proc
Scalar Execution

DORA

1st instance of head
Hot region identified  Sent to coproc

Optimization complete

Optimization
Opt. Region Exec
Scalar Exec

Region
Injection

Region
Identification

Figure 2: Timeline of DORA optimization process.

that generally run for prohibitively long durations. Also, it is
usually extremely difficult or impossible to determine if bit-
width modifications are permissible from the program binary
alone. For these reasons, fine-grained architectures are less
attractive targets for dynamic translation.

3. SOFTWARE-TRANSPARENT CGRA IN-
TEGRATION

Traditionally, either new programming models and lan-
guages or specialized compilers with static analysis to iden-
tify candidate regions have been required to create CGRA-
specific code. Dynamic translation has the potential to em-
ploy CGRAs without modifying the original application. To
be viable, such a system should be integrated non-intrusively
with the rest of the processor, should not degrade the perfor-
mance of the rest of the system, and, ideally, should provide
CGRA execution efficiency on par with static compilation.

Our approach (DORA), shown in Figure 1, has three main
elements, similar to those in other HW DBT systems. The
first, region identification, monitors retiring instructions to
construct candidate regions and selects the most opportune
for translation and optimization. Selected regions are sent
to the second element, which translates the region for exe-
cution on the CGRA hardware. This produces configuration
information for the array and, if appropriate, modified soft-
ware for the supporting processor. This element also mon-
itors register values for select instructions to facilitate opti-
mizations based on runtime information. The third element,
region injection, stores the generated software in a special
region cache. Future invocations of the region execute from
this cache. Figure 2 shows an abstract timeline of the region

22

139



  0.85

  0.9

  0.95

  1

  1.05

  1.1

  1.15

ff
t

km
ea

ns

lb
m

m
m

ne
ed

le

nn
w

sp
m

v

st
en

ci
l

tp
ac

f

m
ea

n

R
el

at
iv

e 
E

D
Low Power
Conv−Ideal
Conv−Realistic

Figure 3: Whole program energy×delay for different transla-
tion processors relative to the low power microcontroller.

identification, optimization, and injection phases and how
this compares to traditional scalar execution.

While there are multiple potential options to perform re-
gion translation, we focus on using a processor, either an ex-
isting core or a small, low-power processor integrated with
the standard processor, as this minimizes design effort and
facilitates future algorithm changes. The choice of using a
dedicated versus existing processor is not obvious and, to our
knowledge, has not been quantitatively compared. While an
existing core leverages existing hardware and can provide
better performance, a small microcontroller can be much
lower power and have easy access to internal information
on the main core. To guide our decision, we evaluated the
energy-delay of running our translation algorithm (discussed
in Section 4) on both our base out-of-order core and a very
low power in-order core (details in Section 5). For running
on the base core we considered two cases: 1) an ideal case
where the translation thread runs concurrently with the main
thread and there is no interference or communication over-
head and 2) a case where only one of the two threads is run-
ning and there is minimal context switch overhead. Figure 3
shows the relative energy×delay of the three options. While
the base core is better by 0.5% in an ideal case, the low-
power microcontroller is a better trade-off when real con-
straints are considered (by more than 1% in this particular
case). Further, a dedicated core can have direct access to
the main processor, allowing easier access to runtime infor-
mation. While adding a coprocessor does increase design
and verification complexity, the overhead should be small
as very low power processors, like the ARM M0 or Xtensa
LX3, exist to leverage. Based on this analysis we use a small
coprocessor to perform the translation.

The remainder of this section describes region identifica-
tion and injection and how it could be integrated with var-
ious CGRAs. Section 4 then describes the translation and
optimization process to target a particular CGRA.

3.1 Candidate Region Identification
Similar to other hardware DBT work, DORA monitors re-

tiring instructions to find candidate regions for optimization.
Given our target, we seek regions that are amenable to effi-
cient CGRA execution. Specifically, the hardware attempts
to find traces with high degrees of computation, especially
tight loops, to leverage the CGRA’s computation resources.

We employ a variant of the next-executing tail (NET) [24]
algorithm to identify candidate regions. NET works to iden-

Region PCRetire PC

Trace Head
Counters

Retired 
Inst Trace Buffer

To Coprocessor 

Trace Ready

Controller

Count
Record 
Trace

Figure 4: Region Identifier.

tify hot code segments by monitoring instructions which are
the target of backwards branches (which often identify loop-
ing code). NET counts each time a potential trace head is
executed. When a particular counter exceeds a threshold it
records all retired instructions until a stop condition occurs.
Stop conditions include an instruction that is a backwards
branch, start of another trace, or exceeds the trace capacity.

Figure 4 shows the region identification hardware. The
controller monitors the retiring instruction stream for back-
wards branches. On finding a backwards branch, the region
head counter table is queried and updated, either inserting
the new head if absent or updating its count. While multiple
options are available for the table, we found that a simple
32-entry direct-mapped cache addressed by the instruction
PC works well in practice for our workloads, identifying all
hot regions.

Candidate regions can vary widely in terms of their size.
Since larger regions execute more instructions per instance,
and therefore impact performance more, they can be con-
sidered to become “hot” more quickly. To account for this,
the counter for larger regions is incremented more for each
instance. When inserting a new head, the number of instruc-
tions executed until a stop condition is counted and a log
approximation of the count (based on the most significant
bit) is stored. This instruction count proxy is used on each
subsequent occurrence to increment the counter.

When a counter exceeds a threshold, the trace buffer is
signaled to record all retiring instructions until a stop condi-
tion occurs. While the trace is being created, the controller
monitors the inserted instructions to ascertain if the trace is
a good candidate for CGRA optimization. In particular, it
tracks the number and types of computation and the amount
and direction of control flow instructions. Regions that in-
clude computation instructions that exceeds a set threshold,
or contain a tight loop (one that loops back to itself) with any
computation and no internal control flow, are flagged for op-
timization.

3.2 Optimizing Regions
Once a trace is ready, an interrupt is sent to the copro-

cessor. The coprocessor uses an AXI interface [25] to read
the contents of the trace buffer into local memory. Once
the read is complete, the region identifier resumes collecting
new traces. Section 4 describes the optimization process.

3.3 Optimized Region Injection
To make the optimized code available to the main pro-

cessor a simple region cache is added to instruction fetch.
The coprocessor uses an AXI interface to place the generated
processor code into the region cache and the new configura-

33

140



Architecture Targeted Accelerator DORA Application

CCA [15]
Feed-forward
configurable functional
unit

Identify high compute to memory ratio basic blocks. Create CCA configu-
ration for computation instructions and place code with invocation of CCA
in region cache.

CHARM [9]
Shared heterogeneous Ac-
celerator Building Blocks
(ABBs)

Identify instructions that can be accelerated by ABBs. DORA coproces-
sor takes the place of accelerator block coordinator and coordinates use of
shared ABBs. Selected instructions are replaced with utilization of ABB.

Libra [20] &
DySER [18]

Configurable CGRA with
Vectorization

Identify looping traces (and non-looping for DySER) with non-trivial com-
putation. Perform optimizations and place in configuration cache. (No re-
gion cache needed for Libra as accelerator takes control in optimized code.)

Table 1: Application of DORA to different architectures.

PC

Region Head 
Table

Region Cache

To Core 
Pipeline

Use 
Region Cache

From 
Coprocessor

Hit

Hit

Instructions

Figure 5: Region cache organization.

tion into the CGRA’s configuration cache. The coprocessor
directly manages both structures to ensure they stay in sync
and all information for a given optimized region is available.
If a region or configuration must be evicted due to lack of
space, the coprocessor evicts the associated entries in the
other structure as well. The region cache uses a simple 1-bit
clock algorithm to aid the coprocessor in selecting a region
to evict. Evicted entries could be stored in a lower mem-
ory level, but this could complicate the desired architectural
transparency and is beyond the scope of this work.

The region cache, shown in Figure 5, contains two main
pieces. A Region Head Table contains the PC of the first in-
struction of all optimized regions. The main Region Cache
(a blocked array) contains the instructions for the optimized
regions. Using a separate cache as opposed to part of the
existing cache allows the coprocessor to have direct control
of the contents. It has the side benefit of lower energy con-
sumption when executing from the smaller cache.

To correctly direct execution, the region cache monitors
the PC. When the current PC hits in the Head Table a flag is
set to execute instructions out of the region cache. Execution
continues from the region cache until a miss or direct jump
occurs, at which point instruction fetch is directed back to
the main instruction cache.

Like other DBT work, DORA must handle exceptional
cases. A single bit of state is added for the register indicating
the processor is executing from the region cache. On a pre-
cise exception which switches back into the same core, like
a page fault, this bit will tell the processor which cache to
resume from. To precisely debug arithmetic exceptions, like
divide by zero, a processor debug mode can disable DORA.
If in an optimized region, imprecise interrupts, like a timer
interrupt, will wait until a branch and transfer to a special
cleanup region to appropriately set the next PC. For simplic-
ity, pages with DORA optimized regions are marked read-

only. The fault handler will return to the original version of
the code in the case of self-modifying code.

3.4 Transparently Integrating Various CGRAs
To show how this architecture could target different CGRAs,

we show how DORA would be used to target CCA [15],
CHARM [9], Libra [20], and DySER [18]. Table 1 details
the nature of each accelerator and how DORA could target
each architecture. CCA proposed their own dynamic trans-
lation option. They utilized the more hardware-intensive re-
PLay framework [26]. DORA can target CCA with much
less overhead.

4. DYNAMIC TRANSLATION
Once a candidate region of code has been identified, it

must be transformed to employ the CGRA. For our targeted
architecture, this includes creating both configuration infor-
mation for the CGRA hardware and software to interface
with the array. The simplest approach, which is what has
been employed in previous CGRA DBT attempts [14, 15],
is to process each instruction in sequence and map any can-
didate instructions to the next available functional unit in the
fabric. Especially for larger, more complex CGRAs, how-
ever, this can leave much of the available benefit unrealized.

DORA employs a series of optimizations both before and
after actually mapping the computation to the CGRA to trans-
form the original region into something that best utilizes the
available computation resources. The relevant optimizations
depend on the target architecture. We evaluated a number
of potential optimizations from different sources. In the end
we focused on those used by the custom compiler for our
target architecture, DySER [11] (see Section 4.1), and those
that leverage dynamic register content for specific instruc-
tions. When DORA targets a different architecture, different
optimizations may be optimal. For example, many CGRAs
benefit from modulo scheduling [27, 28]. DySER, however,
does not require this optimization as it gets an implicit form
of modulo scheduling due to its integration with an out-of-
order core and its support for pipelined execution.

Table 2 lists the optimizations performed by DORA and
classifies the optimizations that are also used in the DySER
compiler [11]. A number of optimizations achieve similar
results (marked with an ‘s’) in both DORA and the com-
piler, although the underlying implementation is different
due to the different initial sources. Others, in particular the
CGRA mapping, have similar goals, but the approach used
by DORA is different and simpler due to the need to perform

44

141



Optimization Comp.
Trans.
Time
Dec.

Loop Unrolling s 64%

Loop Store Forwarding s 0%

Loop Deepening s 5%

Ld/St Vectorization s 9%

Accumulator Extraction s -4%

Dead Code Elimination e 0%

Op Fusion e 0%

Runtime Constant Insertion n 0%

Dynamic Loop Transformation n 0%

CGRA Placement a N/A

Table 2: Transformations performed by DORA, a classification
if the compiler performs a similar (s), existing (e) or more ad-
vanced (a) version or does not (n) perform the transformation,
and the average DORA translation time decrease when the op-
timization is removed.

the optimizations quickly. The compiler achieves a few op-
timizations with existing passes that DORA must perform
explicitly. Other optimizations only DORA can achieve as
they utilize runtime information. While many of the opti-
mizations have been applied by DBT systems targeting other
architectures, we are the first, to our knowledge, to rework
them for CGRA-targeted DBT.

When selecting and implementing these optimizations we
had to determine that they could feasibly be performed in a
dynamic setting. This is a trade-off between additional trans-
lation time versus the performance benefit. The execution
overhead of an optimization is influenced both by how long
it takes to perform the optimization and how the optimiza-
tion impacts the time consuming array mapping pass (Sec-
tion 4.5). For many optimizations, the cost of performing the
optimization is offset by decreased array mapping time. The
last column of Table 2 shows the average decrease in trans-
lation time from removing the given optimization. In isola-
tion, loop unrolling is by far the most expensive optimiza-
tion. This is because it not only takes time to perform, but
it often drastically increases the amount of computation to
be mapped to the array. For some optimizations, such as ac-
cumulator extraction and store forwarding, the optimization
actually decreases overall execution time as the decrease in
mapping time more than offsets the optimization overhead.

Many optimizations synergistically impact performance
when performed together. This is especially true for loop un-
rolling, loop deepening, and vectorization. For example, in
STENCIL, loop unrolling or vectorization in isolation only
provide 17% and 14% speedup, respectively. When com-
bined the speedup increases to 62%. Adding loop deepening
increases the speedup to 160%. These synergistic interac-
tions make it difficult to isolate the benefit of individual op-
timizations as the full benefit is only realized when coupled
with other optimizations.

While DORA faces many challenges not faced by compil-
ers, it eliminates one of the major shortcomings of existing
CGRA compilers. Existing compilers require either the pro-
grammer or offline profiling to identify regions to map to the
array. DORA, in essence, profiles the application based on
actual inputs and automatically adapts to changes in inputs.

Dynamic Specialized 
Execution Resources

D
yS

ER
 O

U
TPU

T IN
TER

FA
C
E

D
yS

ER
 IN

PU
T IN

TER
FA

C
E

Switches

Functional Unit

Register
 File

 

Vector Port
Mapping

Wide
Memory
Interface

ICache

DCache

Fetch Decode Execute

DySER Architecture

Memory Writeback

Decode
Execution

 pipeline

FU FU

FUFU

FU

S S S

S

SSS

S

S

S

Switches

Functional Unit

Register
 File

 

Vector Port
Mapping

Wide
Memory
Interface

ICache

DCache

Fetch Decode Execute

Figure 6: Overview of DySER architecture.

4.1 Target CGRA Review
To evaluate DORA we target a specific CGRA, DySER [18].

DySER is part of a subclass of CGRAs that integrate the
array as a customizable function unit within the processor.
DySER employs a sparsely connected 2-D array of semi-
fixed function units with a configurable circuit-switched in-
terconnect. As mentioned previously, we specifically tar-
get a 2-D array as we find it balances the possible perfor-
mance and power benefits with achievable mapping com-
plexity. Figure 6 shows an overview of DySER. A region
optimized for DySER consists of two parts. The first is the
bit stream that configures the DySER fabric. The second is
a section of standard code, termed the load slice in DySER
parlance, which sends data to and receives data from DySER
either via registers or memory and handles the control flow
and any computation not performed by the fabric. The load
slice is the supporting software stored in the region cache
described in Section 3.3. DySER’s flexible I/O interface al-
lows different portions of a wide data chunk to feed different
ports or multiple pieces of data to feed a single data port in
sequence (or a combination of both). DySER can also em-
bed constants in the array.

4.2 KMeans Example
To facilitate better understanding of the translation pro-

cess, we will walk through an example from KMEANS as
different elements of the process are described. Figure 7(a)
shows the original source code of the identified hot region.

4.3 Pre-Mapping Processing
When the coprocessor receives an interrupt indicating a

new trace is available, it reads the contents of the trace buffer
into local memory. In many cases, the trace is a single loop-
ing basic block. In cases where the trace contains multi-
ple basic blocks, the translator extracts the most promising
block based on the number of computation instructions. The
rest of the translation process is performed on the selected
basic block. Future work will look at the possibility of if-
conversion [29] or speculation to create larger superblocks.

The instructions are analyzed to determine dependency in-
formation and make a first pass at selecting instructions for
CGRA optimization. Load, store, control flow, compare,
and address generating instructions are all excluded from
placement in the array. Address generating instructions are
identified by back-propagation from the address registers of
memory operations. Details on the handling of compare in-

55

142



begin:
movss (%rcx,%rax,4),%xmm0
subss (%r8,%rax,4),%xmm0  * 
add    $0x1,%rax           *
cmp %eax,%ebx
mulss %xmm0,%xmm0         *
addss %xmm0,%xmm1         *
jg begin

(a)
begin:

movss (%rcx,%rax,4),%xmm0
movss (%r8,%rax,4), %tmp
subss %tmp,%xmm0          * 
mulss %xmm0,%xmm0         *
addss %xmm0,%xmm1         *
movss 1(%rcx,%rax,4),%xmm0
movss 1(%r8,%rax,4), %tmp
subss %tmp,%xmm0          * 
add    $0x2,%rax
mov %ebx, %tmp
sub    %eax, %tmp
cmp $2, %tmp
mulss %xmm0,%xmm0         *
addss %xmm0,%xmm1         *
jge begin

(b)
begin:

movss (%rcx,%rax,4),%xmm0
movss (%r8,%rax,4), %tmp
subss %tmp,%xmm0          * 
mulss %xmm0,%xmm0         *
movss %xmm0,%atmp         *
...
mulss %xmm0,%xmm0         *
addss %xmm0,%atmp         *
addss %atmp,%xmm1
jge begin

(c)

- × +

- ×
I2

I4

I6 I8

O2

O4begin:
dmovss (%rcx,%rax,4),I2
dmovss (%r8,%rax,4), I4
dmovss 1(%rcx,%rax,4),I6
dmovss 1(%r8,%rax,4), I8
add     $0x2,%rax
mov %ebx, %tmp
sub     %eax, %tmp
cmp $2, %tmp
drecv O1, %xmm0
drecv O2, %atmp
addss %atmp,%xmm1
jge begin

(d)

begin:
dmovss (%rcx,%rax,4),I2
dmovss (%r8,%rax,4), I4
dmovss 1(%rcx,%rax,4),I6
dmovss 1(%r8,%rax,4), I8
drecv O1, %xmm0
drecv O2, %atmp
addss %atmp,%xmm1    
dmovss 2(%rcx,%rax,4),I2
dmovss 2(%r8,%rax,4), I4
dmovss 3(%rcx,%rax,4),I6
dmovss 3(%r8,%rax,4), I8
add     $0x4,%rax
...

(e)

(f)

He
ad

er
He

ad
er

Lo
ad

 S
lic

e
Lo

ad
 S

lic
e

Fo
ot

er
Fo

ot
er

movq %rdx, -8(%rsp)
movq %xmm2, -16(%rsp)
mov %ebx,%edx
sub    %eax,%edx
cmp $4,%edx
jl cleanup

begin:
dmovps (%rcx,%rax,4),W0
dmovps (%r8,%rax,4), W1
drecv O1, %xmm0
drecv O2, %xmm2
addss %xmm2,%xmm1    
add    $0x4,%rax
mov %ebx, %edx
sub    %eax, %edx
cmp $4, %edx
drecv O1, %xmm0
drecv O2, %xmm2
addss %xmm2,%xmm1
jge begin
cmp %eax,%ebx
jle end

cleanup:
movss (%rcx,%rax,4),%xmm0
subss (%r8,%rax,4),%xmm0
add    $1,%rax
cmp %eax,%ebx
mulss %xmm0,%xmm0
addss %xmm0,%xmm1
jg cleanup

end:
movq -8(%rsp),%rdx
movq -16(%rsp),%xmm2
j      exit

Figure 7: Example progression of dynamic translation on KMEANS loop. The original source code (a), the unrolled loop (b),
accumulator conversion (c), generated scheduling and load slice (d), result of loop deepening (e), and final code region (f).

structions are discussed in Section 4.5. Complex mem-op
instructions are broken apart into two separate instructions
to facilitate inclusion of the operation portion in the array.
The *’s in Figure 7(a) indicate the instructions initially iden-
tified for mapping. After this initial analysis, a number of
transformations are potentially performed on the region to
improve the benefit it receives from the reconfigurable array.

Induction Register Identification and Exclusion.
An induction variable (or register) is one that is only up-

dated by a fixed amount each loop iteration. They are typi-
cally used to monitor loop progress and to sequence through
memory locations and are best executed outside the CGRA.
Induction variable identification looks for instructions that
are only updated by constant amounts and are only used by
memory and control flow instructions. The mapping flag of
identified instructions is cleared. In the example, this dese-
lects the add $0x1, %rax instruction.

Loop Unrolling.
Many identified regions are loops with computation that

does not fully utilize the computation ability of DySER. Loop
unrolling aims to increase the amount of computation per-
formed in a single pass. The amount to unroll the loop is

based on the instruction types in the region and the avail-
able computation resources in the array. In our example, the
original region contains two mappable FP add/subtract op-
erations and one FP multiply. If our example array contains
four FP add and four FP multiply units, the region could be
unrolled once, resulting in two total iterations.

If unrolling is possible, the loop instructions are appropri-
ately cloned and updated. The result of these transforma-
tions is shown in Figure 7(b). In many cases it cannot be
determined from the instructions how many times the loop
will iterate. To ensure correctness, the loop comparison must
be modified to make sure there are at least as many iterations
remaining as times the loop is unrolled. Figure 7(b) shows
the modified comparison in italics. To handle any remain-
ing iterations, the original version of the loop is added to a
clean-up section discussed further in Section 4.6.

Accumulator Identification.
Accumulation is a common operation that introduces a

register dependency that prevents pipelining iterations in the
array. The solution is to have the array output the sum of
just the internal values and add this to the overall sum in
software. DORA identifies accumulator registers by look-
ing for registers that are both the source and destination of

66

143



add instructions and are not used by any other instructions.
Identified instructions are transformed to accumulate into a
temporary register and an unmapped instruction is inserted
to add the temporary result to the accumulator register. In
our example, register %xmm1 is identified as an accumula-
tor. The result of the accumulator transformation is shown
in Figure 7(c).

Store Forwarding.
Some loops store a value that is loaded in subsequent iter-

ations. When unrolled, this leads to a dependency where the
stored value is first output from and later loaded back into the
array, degrading performance. Store forwarding identifies
store-load pairs where the address calculation for both op-
erations is the same, the address registers have not changed,
and there are no intervening stores. In these circumstances
the load is converted to a use of the stored register value.
This results in implicit data forwarding within the array.

4.4 Runtime Register Monitoring
By monitoring the register values of certain instructions

DORA is able to perform dynamic optimizations unavail-
able to the compiler. DORA monitors the value of regis-
ters for particular instructions to identify runtime constant
registers and direct the applied optimizations, in particular
the amount of loop unrolling and deepening. To select rele-
vant registers to monitor, the initial pre-mapping pass iden-
tifies computation instructions with registers that are read
but never written within the region and registers involved in
loop comparisons. Monitoring hardware is setup to observe
the register values for these instructions while the rest of
the pre-mapping optimizations are performed. This allows
the register monitoring to overlap with other useful work so
as not to delay the optimization process. The pre-mapping
stage is long enough (100,000s of cycles) to obtain a good
sample, but short enough to add negligible energy overhead
for the register monitoring.

Monitoring Hardware.
The monitoring hardware monitors a register value for a

particular instruction and identifies when the value differs
from the previous execution. To achieve this, a small set of
registers in the decode stage hold the instruction PC and reg-
ister of interest. When an matching instruction is decoded, a
flag is set to monitor the read register. When the identified
register is read, the value is compared to the last value of the
register for that instruction. If the value is different, an in-
terrupt is sent to the coprocessor to read the new value. The
register can alternatively be set to raise an interrupt when
the value is less than the currently stored value. The latter is
useful when inspecting loop comparisons based on memory
addresses. In our implementation, we support monitoring up
to six different instructions simultaneously. Each instruction
monitor requires 66 bits (64 for the PC, one to select which
of the two register values to monitor, and a valid bit) plus
a comparator in decode and a 32-bit register, a comparator,
and logic to generate a coprocessor interrupt in register read.
No additional register ports are required as register informa-
tion is already available in each relevant stage.

Dynamic Register Optimizations.
One use of register monitoring is to detect runtime con-

stants. If the value of a locally read-only register remains
constant for many iterations it often remains constant for the
entire run. An identified register constant can be embed-
ded in the CGRA mapping, obviating the register read and
routing through the array, which saves power and potentially
improves performance. To be safe, a check is added to the
loop header to confirm that the register matches the expected
constant in later iterations.

The second use is to monitor the number of dynamic it-
erations of a register bound loop to guide the amount of un-
rolling. If a non-trivial number of iterations have a small
bound, as happens in FFT, unrolling can actually prevent
many iterations from utilizing the optimized region. If the
monitoring finds iteration limits that suggest that more than a
threshold number of iterations will execute the unoptimized
code if unrolled, then the code is reverted to the pre-unrolled
state and the remaining pre-loop optimizations are reapplied.
This allows a deepened version of the loop (Section 4.6) to
be used in the main body and a partially optimized version
using the same configuration to be used in the cleanup code,
providing benefit to all iteration bounds.

In all cases, register monitoring is ended as soon as possi-
ble to save energy. For constant identification, for example,
the monitoring is disabled if a register is seen to have more
than a single value. In our example, registers eax and ebx
of the compare are monitored. The ebx value ends up being
constant and large enough that loop unrolling is kept.

4.5 Dynamic Mapping
Once the computation has been transformed into a form

most suitable for DySER, the computation must be sched-
uled on the array. Scheduling for spatial architectures is
typically NP-complete. CGRA compilers generally utilize
integer linear programming, satisfiability modulo theory, or
some architecture-specific polynomial-time approximation.
The former two are too time consuming for our dynamic en-
vironment so we use a version of the latter.

We develop a greedy algorithm that sequences through
the transformed candidate instructions in program order. For
each instruction, it selects a function unit closest to the mid
point between the input values to the operation and then at-
tempts to find a viable routing from the source locations of
the inputs to the function unit. It continues trying nearby
function units until either a successful placement is found or
all potential function units have been explored. Scheduling
stops if a) an appropriate function unit is not available, b)
data cannot be routed to any available function unit, or c) the
end of the code region is reached. In either of the first two
cases, any remaining instructions originally slated to execute
on the array are marked to instead be executed as standard
instructions in the load slice.

When a needed source value is not present in the form-
ing DySER configuration, an instruction is added to the load
slice to send the data to the array. Similarly, instructions are
added to receive data from the array when computation is
complete.

Routing is often one of the most expensive operations for
reconfigurable arrays. In order to limit execution time, our

77

144



algorithm only explores routing options within a bounding
box between the source and destination. While this could
mean that routing fails even though a legitimate option ex-
ists, in practice we find this is rarely the case.

Once the scheduling is complete, the generated function
unit configuration and routing paths have a direct translation
to the array configuration bits. Both the generated load slice
and DySER array mapping for our example are shown in
Figure 7(d).

ISA Specifics.
X86 control flow and conditional instructions execute

based on the EFLAGS register set by compare instructions.
Since DySER does not have a flags register, DORA tracks
the sources used by the most recent compare instruction.
Conditional operations, like cmovl (conditional move on
less than), scheduled to the fabric use these stored sources
to appropriately schedule the instruction.

4.6 Post-Mapping Optimizations
After array scheduling is complete, additional optimiza-

tions can be made to the supporting load slice. These opti-
mizations aim to increase parallelism and eliminate unnec-
essary code.

Loop Deepening.
Loop unrolling (Section 4.3) aimed to make full use of the

computation resources available in the array. Loop deepen-
ing aims to make full use of the wide input and output oper-
ations available in DySER. Loop deepening analyzes groups
of related loads and stores (those that differ only by their off-
sets). If the current groups do not utilize the full width of the
available vector operations, then the loop code is replicated
as many times as necessary to utilize the full width.

In our example there are two sets of related loads, those
with base addresses (%rcx,%rax,4) and (%r8,%rcx,4).
Each group initially spans 64-bits. If the CGRA supports
128-bit wide loads, the loop can be deepened once to provide
four 32-bit loads to the same address group. The result is
shown in Figure 7(e).

Load/Store Vectorization.
Vectorization combines load and store operations that dif-

fer only by their offsets into single wide memory operations.
Groups of related loads and stores are candidates for vec-
torization as long as it can be determined that they do not
read or write a location that was written or read by an inter-
vening memory operation. Cases, like our example, where
there are only loads (or stores) in a region, or where the loads
and stores are not interleaved, can always be vectorized. Fig-
ure 7(f) shows the packed load dmovps operations that result
from vectorization in our example.

In cases where loads and stores are interleaved, more care
is required. The translator attempts to add memory disam-
biguation checks to the header of the loop to ensure that the
accessed regions do not overlap. It can add these checks,
and therefore vectorize related loads and stores, when the
address calculation registers for relevant loads/stores do not
change or change only by a fixed amount. In such cases, a
comparison is added to the header comparing the two base

addresses. If they are equal, the optimized region is skipped
and all execution happens in the cleanup section.

Other Optimizations.
A few smaller optimizations further cleanup the load slice.

Dead code elimination removes any instructions whose out-
put is not used before the register is written again. This can
result when computation is performed within the array. An
operation fusion pass combines safe mem-op pairs.

Clean-Up Code.
Transformed loops must only execute as many iterations

as the original version. This often requires additional code to
ensure proper execution. For a register bounded loop, such
as our running example, a header is needed to ensure the
loop will execute at least as many iterations as performed by
the optimized region, and a footer is needed to complete any
additional iterations. In a constant bounded loop the header
can be omitted and the footer may not be needed depend-
ing on the specific bound. Figure 7(f) shows the header and
footer for the kmeans example. The header checks that the
loop will be executed at least four times. The footer first
checks if there are any iterations remaining, and if there are,
executes them using the original region code.

In cases where temporary variables are needed, the header
and footer include stack operations to save the values used as
temporaries. The selected temporary variables are registers
that are not used in the optimized region. Finally, since the
number of instructions in the final code is unlikely to exactly
equal the number in the original region, a jump to the first
instruction after the optimized region is added.

4.7 Implementation
Our C++ implementation of the described algorithm con-

sumes less than 4000 lines of commented code. We model
the coprocessor after the Xtensa LX3 [30]. The LX3 achieves
a 1 GHz clock while occupying 0.044 mm2 for the core alone
and consuming 14 mW at 45nm, providing both speed and
low power. The coprocessor has 32kB data and 16kB in-
struction memories. Simulation with these caches shows
miss rates less than 1%, indicating the coprocessor can exe-
cute out of memories this size.

5. EVALUATION METHODOLOGY
We compare the performance of DORA to the performance

of hand and compiler optimized DySER execution.

5.1 Modeling
We use gem5 [31] to model performance and McPAT [32]

and Cacti [33] to model power. The main core is a 4-way
out-of-order x86 processor with 64 kB L1D and 32kB L1I
caches and a tournament branch predictor. The main core
and DySER fabric run at 2 GHz. Since gem5 does not sup-
port the Xtensa ISA, the translation microcontroller is mod-
eled in gem5 as a single-issue in-order ARM core executing
the embedded Thumb ISA running at 1 GHz. Area estimates
based on McPAT and available literature at the 55/45nm tech-
nology node for the major components are shown in Table 3.
The 0.32 mm2 added for DORA is negligible compared to
the rest of the core.

88

145



4w-OoO 53.5 mm2 32-E DM Trace Head 10.9 μm2

Coproc 0.17 mm2 16-E DM Region Head 7.4 μm2

Region Cache (4kB) 0.15 mm2

Table 3: Component area estimates (E=entry).

# Reg LU ACC SF LD Vect RRI
fft 1 x x x x

kmeans 2 x x x x

lbm 1 x x

mm 1 x x x x

needle 1 x x x x

nnw 3 x x x x

spmv 1 x

stencil 1 x x x x

tpacf 1 x x

Table 4: Evaluated benchmarks (LU=Loop Unrolling,
ACC=Accumulator Identification, SF=Store Forwarding,
LD=Loop Deepening, Vect=Ld/St Vectorization, RRI=Runtime
Register Information).

Similar to Govindaraju et al. [11], we consider a hetero-
geneous DySER array with 16 INT-ADD, 16 FP-ADD, 12
INT-MUL, 12 FP-MUL, 4 FP-DIV, and 4 FP-SQRT units.
In their area analysis they state that this configuration has
the same area as an AVX unit and twice that of an SSE unit.

5.2 Benchmarks
We evaluate DORA using the Parboil benchmark suite [34].

We select this suite for two reasons. One, the benchmarks
present a challenging but high potential set of workloads.
The scalar code is written without a particular target in mind,
but the workloads contain enough data parallelism to be good
candidates for acceleration. Second, they are the workloads
evaluated by the released DySER compiler [11], providing
access to both compiler and manually optimized versions.2

Table 4 lists the benchmarks we evaluate. The table also
lists the number of regions DORA identifies and then selects
for optimization as well as the primary transformations that
each workload benefits from. With two exceptions for the
compiler, the hand and compiler versions optimize the same
regions as DORA.

6. RESULTS
We wish to determine i) how close DORA performance

comes to compiler (and manually) optimized code, ii) if the
identification and optimization overheads are small enough
when performed on a low power core to not outweigh the
benefits, and iii) how DORA+DySER compares to SIMD
execution.

6.1 DORA Performance
First, we look at the quality of the configurations created

by DORA irrespective of the time to create the configura-
tion. Figure 8 shows the speedup of manually, compiler, and
DORA optimized code relative to the original scalar version.

2The Parboil version used by [11], and therefore the one we use, is
an earlier version with a slightly different mix of benchmarks than
the current release.

  0

  2

  4

  6

  8

  10

ff
t

km
ea

ns

lb
m

m
m

ne
ed

le

nn
w

sp
m

v

st
en

ci
l

tp
ac

f

m
ea

n

Sp
ee

du
p

16.2 11

manual
compiler
DORA
SSE
AVX

Figure 8: Whole program speedup of DySER mapping tech-
niques and compiler SIMD extensions relative to scalar code.

As would be expected, manually generated mappings pro-
vide the most benefit at 3.6X speedup. The compiled code
provides 1.8X speedup while DORA achieves an average
speedup of 1.99X. Not only does DORA match the perfor-
mance of the compiled code, in many cases, it actually ex-
ceeds it. There are three reasons for this. First, the exact way
optimizations are applied by the compiler and DORA differ
in some cases. Second, in two instances, DORA chooses
to optimize regions the programmer-guided compiler does
not. Finally, DORA’s runtime register monitoring allows op-
timizations not available to the compiler.

The performance of the different benchmarks can be roughly
categorized into four groups.

Manual Equivalent Performance.
Three workloads, KMEANS, MM, and STENCIL achieve

performance similar to the manually optimized versions.
Looking into the configurations generated, DORA creates
configurations identical or nearly identical to the manual ver-
sions. For two of the workloads, KMEANS and MM, DORA
achieves better performance than the compiler. MM is im-
pacted by the vectorization optimization selected. Specifi-
cally, DORA vectorizes by unrolling and reducing while the
compiler uses scalar expansion (which cuts the reduction
dependence). In this case, unrolling+reduction is better be-
cause it reduces L1 cache bandwidth use, which is critical
for MM. In KMEANS, DORA identifies a second region to
optimize which is not identified by the programmer-directed
compiler.

Compiler Equivalent Performance.
FFT, LBM, NEEDLE, and NNW match or exceed the per-

formance of the compiler generated code, but fall short of
that achieved by manual optimization. The number of it-
erations of the major inner loop of FFT varies during ex-
ecution, including many small values. While the runtime
register analysis guides DORA to not unroll the loop, this
is less optimal than the per-iteration count optimization of
the hand version. NNW contains a constant memory lookup
table that neither the compiler nor DORA can reason about
to fully vectorize the lookups. NEEDLE contains an inter-
loop dependency that limits parallelism. In LBM, neither the
compiler nor DORA achieve much benefit. LBM has a very
long hot region and currently only a single DySER function

99

146



is created. The manual version achieves better, but still lim-
ited, speedup by optimizing multiple sections of the region.

Suboptimal Benefit.
TPACF achieves speedups less than the compiler. TPACF

faces two issues. The compiler has programmer help to spec-
ify a specific region of the large hot loop to optimize. This
region exposes more parallelism than optimizing from the
head as DORA does, leading to larger gains. Second, the
scalar loop header loads values into registers for use within
the loop. While this is advantageous for normal execution, it
prevents vector loading this information to the array.

Minimal Benefit.
SPMV sees no performance improvement with DORA.

This benchmark is a challenge in general, with manual
and compiler optimizations achieving only 69% and 26%
speedup, respectively. DORA cannot dynamically guarantee
that the load and store addresses accessed by the configu-
ration are distinct and so vectorization is not possible. The
compiler version side steps this by modifying the code to
explicitly guarantee there is no aliasing.

6.1.1 Runtime Register Monitoring
DORA’s ability to monitor the runtime value of registers

for particular instructions provides substantial benefits for
two benchmarks. By monitoring the loop comparison regis-
ters in FFT, DORA is able to determine it is better not to un-
roll the loop so that all iterations can utilize a version of the
DySER function, increasing the benefit provided by DORA
for FFT by 80%. For NEEDLE, DORA embeds runtime
constants in the DySER function, yielding a 37% improve-
ment in DORA’s performance.

6.2 Dynamic Optimization Overhead
Even if DORA produces perfect implementations, they

will only be useful if they are available in time to be used.
To evaluate this, the translation algorithm is simulated on
our coprocessor model for each hot region. From this we
determine how long translation takes, how it compares to
the overall execution time, and how this delay impacts the
achieved speedup.

Region identification happens quickly, with all but one hot
region being selected less than 8000 cycles after it first ex-
ecutes. Region optimization and placement is more costly.
Table 5 shows the amount of time to translate each region
and how this compares to the total scalar execution time.
On average, translation takes 3.8 ms. For comparison, the
DySER related compiler passes take an average 1530 ms to
perform3 (a 400X difference).

Table 5 also shows the performance lost when including
translation overhead compared to zero-overhead dynamic
translation. Even with translation equaling up to 27% of
scalar execution time, realistic DORA is still within 16% of
the ideal in all cases and within 5.1% on average. Realistic
DBT achieves a 1.88X speedup compared to 1.99X with
zero-overhead optimization, showing that the translation
overhead is small even for relatively small input sets and
still better than the 1.8X of compiled code.

3Pass overhead determined from the compiler’s timing report.

Time (ms) % Scalar Exec Perf Loss
fft 4.7 27.0% 15.6%
kmeans R1 1.6 3.2%

10.0%
kmeans R2 1.1 1.6%
lbm 3.3 5.1% 0.1%
mm 1.8 0.0% 0.4 %
needle 4.5 6.9% 3.0%
nnw R1 1.7 4.8%

12.1%nnw R2 5.0 13.7%
nnw R3 2.1 5.9%
spmv 2.2 24.8% 0.0%
stencil 1.7 1.5% 2.3%
tpacf 15.1 5.0% 1.7%

Mean 3.8 4.0% 5.1%

Table 5: Cycles to optimize each region on the coprocessor, per-
centage of scalar execution time, and performance degradation
relative to zero-overhead dynamic translation.

Figure 9: Energy breakdown of DySER mapping techniques
relative to scalar code.

As further mitigation, the input sets provided as part of
the Parboil suite are intentionally kept small to keep simula-
tion times short. More realistic inputs would result in longer
overall execution times and even smaller relative overheads.
Further, while efficiency was considered when designing the
translation code, our first goal was flexibility. A refined ver-
sion focusing on speed could reduce the translation execu-
tion time.

6.3 Energy Analysis
Adding hardware for DORA consumes power. Since one

of the major advantages of CGRAs are their energy effi-
ciency, the additional energy for DBT should be small so
as not to overly diminish the energy savings. Figure 9 shows
the relative energy consumption for all four options normal-
ized to the scalar baseline. The figure shows the energy con-
sumed by the main core, the DySER unit, and, in the case of
DORA, the coprocessor and the identification and insertion
hardware. When not optimizing a region, the coprocessor is
assumed to be clock gated, waiting for an interrupt.

The manually and compiler optimized versions consume
30% and 57% of the baseline energy on average. DORA
consumes 47% of the baseline energy. Even with the added
overhead for dynamic translation, DORA consumes less en-
ergy than the compiler in 77% of the cases. In some cases

1010

147



Year Trans. Target Optimization Details Program
Perf. Impr.

Match
Offline

Trans.
Time

DIF [35] 1997 VLIW Engine Speculation; LIW creation small NR low

DAISY [36] 1997 VLIW StdOpts, loop unroll NR low

Transmeta [37] 2000 VLIW StdOpts, loop unroll NR NR NR

Yehia & Temam [22] 2004 FG Func Unit noFP; collapse comb. logic small NR est. low

CCA [15] 2004 1-D FF CGRA noFP; no optimizations small NR est. low

Warp Processor [23] 2004 FG FPGA noFP; loop rerolling, strength prom. large x high

DIM [38] 2008 1-D FF CGRA BB+speculation; noFP small NR est. low

GAP [39, 17] 2010 1-D FF CGRA BB+speculation; noFP small NR est. low

Ferreira et al. [27] 2014 Xbar CGRA Modulo scheduling; noFP; VLIW src NR x low

DynaSPAM [16] 2015 1-D FF CGRA OoO hardware for scheduling small NR low

DORA 2016 2-D CGRA Vectorization, Loop unroll & deepen large x low

Table 6: Overview of past data-parallel dynamic translation proposals, including whole program performance benefit (small =
≤42% improvement; large = ≥90% improvement), ability to match offline translation, and translation time (low = <10ms; high =
>200ms). (BB: Basic block, FG: Fine-grained; FF: Feed-forward; StdOpts: Std DBT Optimizations; noFP: no floating point; NR:
not reported)

energy consumption is better even though performance is
not. This is due to the fact that DORA executes optimized
regions out of its small region cache, which consumes less
energy than running out of the main L1I cache.

Relative to the ideal energy consumption that DORA could
achieve if the supporting hardware consumed no power, the
additional hardware only increases average energy consump-
tion by 2.8%. Almost all of this is from the region cache.

When DORA does not identify candidate regions, its over-
head is minimal. Performance is not impacted and the maxi-
mum identification hardware power amounts to only 0.1% of
the average main core power. In a pathological case where
the coprocessor is constantly, but unsuccessfully, optimiz-
ing, the overhead increases to only 0.23% of main core power.

6.4 SIMD Compilation
SIMD units and CGRAs address a partially overlapping

optimization target. Despite decades of work, automatic
utilization of SIMD extensions, either dynamically or by
compiler, has met limited success. While PARROT [21]
performed a limited form of purely dynamic SIMDization,
most wide ranging dynamic SIMDization requires an of-
fline analysis pass [40, 41, 42, 43]. The last two bars of
Figure 8 show the performance of code compiled for SSE
and AVX extensions. In all cases, DORA performs as well
or better than both extensions without requiring recompila-
tion. While DORA’s performance clearly outstrips compiled
SIMD, SIMD’s 30% benefit is similar to previous CGRA
DBT, showing the importance of target CGRA and opti-
mization selection.

7. RELATED WORK
DBT has a rich history and has been targeted at a vari-

ety of architectures. Many works optimize a set of instruc-
tions for execution on a typical processor, many translating
to a different ISA at the same time [21, 44, 45, 46, 47,
7, 48, 26]. Focusing on those that perform translation in
hardware, PARROT [21] and rePLay [26] identify hot re-
gions of single-entry, single-exit blocks in hardware and per-
form various optimizations, including partial renaming, dead
code elimination, and instruction fusion, on the regions. I-

COP [47] introduces using a separate coprocessor to create
and optimize traces for a processor’s trace cache.

7.1 DBT for Data-Parallel Architectures
Of particular relevance to this work are proposals which

translate code to employ a more power-efficient comput-
ing architecture. Existing works have proposed DBT for
SIMD [21], VLIW [36, 37, 35], 1-D feed-forward or
fully connected CGRA [38, 15, 27, 16, 39, 17, 22], and
FPGA [23] architectures. Table 6 summarizes this past
work. DIF [35], DAISY [36] and Transmeta [37] trans-
late standard RISC or CISA ISAs to VLIW architectures.
Warp Processing [23] proposes an architecture to dynam-
ically identify and map code to a simplified FPGA. Due
to the nature of the targeted FPGA and the complexity of
the mapping process, they target only tight integer loops.
Translation takes on the order of seconds, often relegating
the use of the optimized region to future executions. Yehia
and Temam [22] employ rePLay to target a fine-grained,
look-up table-based customizable function unit. CCA [15],
DIM [38, 14], and GAP [39, 17] dynamically translate to
1-D, feed-forward arrays. The reported performance benefit
for reasonable array configurations is <30% for all three de-
signs. Ferreira et al. [27] perform dynamic modulo schedul-
ing from a VLIW ISA to a fully connected CGRA with
internal storage. DynaSPAM [16] uses existing out-of-order
hardware to schedule to a 1-D, feed-forward CGRA. While
they briefly discuss targeting a 2-D array, it is not evaluated
and would create suboptimal mappings due to the restricted
nature of their scheduling frontiers. DynaSPAM’s optimiza-
tions come implicitly through out-of-order scheduling and
are influenced by the number of branches supported in a
trace and the size of the instruction window instead of the
target array itself. DORA, instead, performs optimizations
tailored to the targeted CGRA. None of the above previous
works achieve both large power and performance and low
translation time.

7.2 Compiler-Supported DBT
Other works investigate compiler-supported DBT for

power-efficient architectures. CCA [15, 49] also considered

1111

148



having the compiler identify and rework candidate regions
to allow efficient run time translation. VEAL [2] is a loop
accelerator where the compiler identifies candidate regions
and expresses them in a modulo schedulable form. A dy-
namic translator attempts to map the identified regions to the
available hardware. HASTE [50] includes a feed-forward
reconfigurable function unit in an embedded processor. Po-
tential kernels are marked in the binary and mapped to the
reconfigurable unit at runtime.

8. CONCLUSION
We propose DORA, the first software-transparent dynamic

translation scheme for CGRAs which simultaneously achieves
substantial performance benefits, low translation overhead,
and benefits on par with offline mapping. When targeted at
DySER, our system performs as well as or better than a com-
piler in nearly 80% of cases and provides 1.99X speedup
over scalar execution without any modifications to the code.
The translation overhead is minimal at a 5.1% performance
and 2.8% power loss.

A major challenge to the adoption of semi-specialized ar-
chitectures like SIMD and CGRAs is that they generally
require software reengineering. After decades of work on
SIMD compilation, SIMD autovectorization is hard, and only
getting harder with successive generations like AVX. We
show that dynamic CGRA translation performance, when
targeted at the right architecture, can exceed compiled SIMD
code and match compiled CGRA code, offering a replace-
ment for both. Especially for environments where architec-
tural transparency is critical, our results show that dynamic,
transparent CGRA translation is feasible and is a favorable
option compared to extending existing SIMD ISAs.

9. ACKNOWLEDGMENTS
We thank Karu Sankaralingam for his feedback as this

work developed and for comments on draft versions of the
paper. We also thank David Albonesi and the anonymous
reviewers for their feedback on the paper.

10. REFERENCES
[1] D. J. Kuck and R. A. Stokes, “The burroughs scientific processor

(bsp),” IEEE Transactions on Computers, vol. 31, pp. 363–376, May
1982.

[2] N. Clark, A. Hormati, and S. Mahlke, “Veal: Virtualized execution
accelerator for loops,” in Proceedings of the 35th Annual
International Symposium on Computer Architecture, ISCA ’08,
pp. 389–400, IEEE Computer Society, 2008.

[3] M. Duric, M. Stanic, I. Ratkovic, O. Palomar, O. Unsal, A. Cristal,
M. Valero, and A. Smith, “Imposing Coarse-Grained Reconfiguration
to General Purpose Processors,” in International Conference on
Embedded Computer Systems: Architectures, Modeling and
Simulation, July 2015.

[4] H. Park, Y. Park, and S. Mahlke, “Polymorphic pipeline array: A
flexible multicore accelerator with virtualized execution for mobile
multimedia applications,” in Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO
42, pp. 370–380, ACM, 2009.

[5] S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris,
M. Schuette, and A. Saidi, “The reconfigurable streaming vector
processor (RSVP),” in Proceedings. 36th Annual IEEE/ACM
International Symposium on Microarchitecture, 2003. MICRO-36.,
pp. 141–150, Dec 2003.

[6] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, S. C.
Goldstein, and M. Budiu, “Tartan: Evaluating spatial computation for
whole program execution,” in Proceedings of the 12th International
Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XII, pp. 163–174, ACM, 2006.

[7] A. Deb, J. M. Codina, and A. González, “Softhv: A hw/sw
co-designed processor with horizontal and vertical fusion,” in
Proceedings of the 8th ACM International Conference on Computing
Frontiers, CF ’11, pp. 1:1–1:10, ACM, 2011.

[8] Y. Park, J. Park, and S. Mahlke, “Efficient performance scaling of
future CGRAs for mobile applications,” in 2012 International
Conference on Field-Programmable Technology (FPT), pp. 335–342,
Dec. 2012.

[9] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman,
“Charm: A composable heterogeneous accelerator-rich
microprocessor,” in Proceedings of the 2012 ACM/IEEE
International Symposium on Low Power Electronics and Design,
ISLPED ’12, pp. 379–384, ACM, 2012.

[10] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, H. Huang, and
G. Reinman, “Composable accelerator-rich microprocessor enhanced
for adaptivity and longevity,” in Proceedings of the 2013
International Symposium on Low Power Electronics and Design,
ISLPED ’13, pp. 305–310, IEEE Press, 2013.

[11] V. Govindaraju, T. Nowatzki, and K. Sankaralingam, “Breaking simd
shackles with an exposed flexible microarchitecture and the access
execute pdg,” in Proceedings of the 22nd International Conference
on Parallel Architectures and Compilation Techniques, PACT ’13,
pp. 341–352, IEEE Press, 2013.

[12] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, “Bundled
execution of recurring traces for energy-efficient general purpose
processing,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-44,
pp. 12–23, ACM, 2011.

[13] M. A. Watkins and D. H. Albonesi, “ReMAP: A Reconfigurable
Heterogeneous Multicore Architecture,” in Proceedings of the 2010
43rd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’43, pp. 497–508, IEEE Computer
Society, 2010.

[14] A. C. Beck and L. Carro, Dynamic Reconfigurable Architectures and
Transparent Optimization Techniques - Automatic Acceleration.
Springer, 2010.

[15] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner,
“Application-specific processing on a general-purpose core via
transparent instruction set customization,” in Proceedings of the 37th
Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 37, pp. 30–40, IEEE Computer Society, 2004.

[16] F. Liu, H. Ahn, S. R. Beard, T. Oh, and D. I. August, “DynaSpAM:
Dynamic Spatial Architecture Mapping Using out of Order
Instruction Schedules,” in Proceedings of the 42nd Annual
International Symposium on Computer Architecture, ISCA ’15,
pp. 541–553, ACM, 2015.

[17] S. Uhrig, R. Jahr, and T. Ungerer, “Advanced architecture
optimisation and performance analysis of a reconfigurable grid ALU
processor,” IET Computers Digital Techniques, vol. 6, pp. 334–341,
Sept. 2012.

[18] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically
specialized datapaths for energy efficient computing,” in 2011 IEEE
17th International Symposium on High Performance Computer
Architecture (HPCA), pp. 503–514, 2011.

[19] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Epimap: Using
epimorphism to map applications on cgras,” in Proceedings of the
49th Annual Design Automation Conference, DAC ’12,
pp. 1284–1291, ACM, 2012.

[20] Y. Park, J. J. K. Park, H. Park, and S. Mahlke, “Libra: Tailoring
SIMD execution using heterogeneous hardware and dynamic
configurability,” in Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-45,
pp. 84–95, IEEE Computer Society, 2012.

[21] Y. Almog, R. Rosner, N. Schwartz, and A. Schmorak, “Specialized
dynamic optimizations for high-performance energy-efficient
microarchitecture,” in Proceedings of the International Symposium
on Code Generation and Optimization: Feedback-directed and
Runtime Optimization, CGO ’04, pp. 137–148, IEEE Computer

1212

149



Society, 2004.

[22] S. Yehia and O. Temam, “From sequences of dependent instructions
to functions: An approach for improving performance without ilp or
speculation,” in Proceedings of the 31st Annual International
Symposium on Computer Architecture, ISCA ’04, pp. 238–249, IEEE
Computer Society, 2004.

[23] R. Lysecky, G. Stitt, and F. Vahid, “Warp processors,” in Proceedings
of the 41st Annual Design Automation Conference, DAC ’04, (New
York, NY, USA), pp. 659–681, ACM, 2004.

[24] E. Duesterwald and V. Bala, “Software profiling for hot path
prediction: Less is more,” SIGPLAN Not., vol. 35, pp. 202–211, Nov.
2000.

[25] ARM, AMBA AXI and ACE Protocol Specification, 2013.

[26] S. Patel and S. S. Lumetta, “rePLay: A hardware framework for
dynamic optimization,” IEEE Transactions on Computers, vol. 50,
pp. 590–608, June 2001.

[27] R. Ferreira, W. Denver, M. Pereira, J. Quadros, L. Carro, and
S. Wong, “A run-time modulo scheduling by using a binary
translation mechanism,” in Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS XIV), 2014
International Conference on, pp. 75–82, July 2014.

[28] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-s. Kim,
“Edge-centric modulo scheduling for coarse-grained reconfigurable
architectures,” in Proceedings of the 17th International Conference
on Parallel Architectures and Compilation Techniques, PACT ’08,
pp. 166–176, ACM, 2008.

[29] K. M. Hazelwood and T. M. Conte, “A lightweight algorithm for
dynamic if-conversion during dynamic optimization,” in Proceedings
of the 2000 International Conference on Parallel Architectures and
Compilation Techniques, PACT ’00, pp. 71–, IEEE Computer
Society, 2000.

[30] Tensilica, Xtensa LX3 Customizable DPU, November 2009.

[31] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, pp. 1–7,
Aug. 2011.

[32] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,” in
Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 42, (New York, NY,
USA), pp. 469–480, ACM, 2009.

[33] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. Jouppi, “Cacti
5.1,” Tech. Rep. HPL-2008-20, HP Labs, 2008.

[34] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput
computing,” Tech. Rep. IMPACT-12-01, University of Illinois, at
Urbana-Champaign, March 2012.

[35] R. Nair and M. E. Hopkins, “Exploiting instruction level parallelism
in processors by caching scheduled groups,” in Proceedings of the
24th Annual International Symposium on Computer Architecture,
ISCA ’97, pp. 13–25, ACM, 1997.

[36] K. Ebcioğlu and E. R. Altman, “DAISY: Dynamic Compilation for
100% Architectural Compatibility,” in Proceedings of the 24th
Annual International Symposium on Computer Architecture, ISCA
’97, pp. 26–37, ACM, 1997.

[37] A. Klaiber, “The Technology Behind Crusoe Processors,” tech. rep.,
Transmeta Corporation, Jan. 2000.

[38] A. Beck, M. Rutzig, G. Gaydadjiev, and L. Carro, “Transparent
reconfigurable acceleration for heterogeneous embedded
applications,” in Design, Automation and Test in Europe, 2008.
DATE ’08, pp. 1208–1213, Mar. 2008.

[39] S. Uhrig, B. Shehan, R. Jahr, and T. Ungerer, “The Two-dimensional
Superscalar GAP Processor Architecture,” International Journal on
Advances in Systems and Measurements, vol. 3, no. 1-2, pp. 71–81,
2010.

[40] N. Clark, A. Hormati, S. Yehia, S. Mahlke, and K. Flautner, “Liquid
SIMD: Abstracting SIMD Hardware using Lightweight Dynamic
Mapping,” in IEEE 13th International Symposium on High

Performance Computer Architecture, 2007. HPCA 2007,
pp. 216–227, Feb. 2007.

[41] D. Nuzman, S. Dyshel, E. Rohou, I. Rosen, K. Williams, D. Yuste,
A. Cohen, and A. Zaks, “Vapor SIMD: Auto-vectorize once, run
everywhere,” in Proceedings of the 9th Annual IEEE/ACM
International Symposium on Code Generation and Optimization,
CGO ’11, pp. 151–160, IEEE Computer Society, 2011.

[42] A. Kotha, K. Anand, M. Smithson, G. Yellareddy, and R. Barua,
“Automatic parallelization in a binary rewriter,” in Proceedings of the
2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’43, pp. 547–557, IEEE Computer
Society, 2010.

[43] E. Yardimci and M. Franz, “Dynamic parallelization and mapping of
binary executables on hierarchical platforms,” in Proceedings of the
3rd Conference on Computing Frontiers, CF ’06, pp. 127–138, ACM,
2006.

[44] E. Altman, D. Kaeli, and Y. Sheffer, “Welcome to the opportunities
of binary translation,” Computer, vol. 33, no. 3, pp. 40–45, 2000.

[45] E. R. Altman, K. Ebcioglu, M. Gschwind, and S. Sathaye, “Advances
and future challenges in binary translation and optimization,”
Proceedings of the IEEE, vol. 89, no. 11, pp. 1710–1722, 2001.

[46] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A transparent
dynamic optimization system,” in Proceedings of the ACM SIGPLAN
2000 Conference on Programming Language Design and
Implementation, PLDI ’00, pp. 1–12, ACM, 2000.

[47] Y. Chou and J. P. Shen, “Instruction path coprocessors,” SIGARCH
Computer Architecture News, vol. 28, pp. 270–281, May 2000.

[48] B. Fahs, S. Bose, M. Crum, B. Slechta, F. Spadini, T. Tung, S. J.
Patel, and S. S. Lumetta, “Performance characterization of a
hardware mechanism for dynamic optimization,” in Proceedings of
the 34th Annual ACM/IEEE International Symposium on
Microarchitecture, MICRO 34, pp. 16–27, IEEE Computer Society,
2001.

[49] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner,
“An architecture framework for transparent instruction set
customization in embedded processors,” in Proceedings of the 32nd
Annual International Symposium on Computer Architecture, ISCA
’05, pp. 272–283, IEEE Computer Society, 2005.

[50] B. A. Levine and H. H. Schmit, “Efficient application representation
for haste: Hybrid architectures with a single, transformable
executable,” in Proceedings of the 11th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, FCCM ’03,
pp. 101–110, IEEE Computer Society, 2003.

1313

150



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


