
Modeling Cache Performance Beyond LRU

Nathan Beckmann Daniel Sanchez
Massachusetts Institute of Technology

{beckmann,sanchez}@csail.mit.edu

ABSTRACT

Modern processors use high-performance cache replacement
policies that outperform traditional alternatives like least-
recently used (LRU). Unfortunately, current cache models
do not capture these high-performance policies as most use
stack distances, which are inherently tied to LRU or its vari-
ants. Accurate predictions of cache performance enable many
optimizations in multicore systems. For example, cache parti-
tioning uses these predictions to divide capacity among appli-
cations in order to maximize performance, guarantee quality
of service, or achieve other system objectives. Without an
accurate model for high-performance replacement policies,
these optimizations are unavailable to modern processors.

We present a new probabilistic cache model designed for
high-performance replacement policies. It uses absolute reuse
distances instead of stack distances, and models replacement
policies as abstract ranking functions. These innovations
let us model arbitrary age-based replacement policies. Our
model achieves median error of less than 1% across several
high-performance policies on both synthetic and SPEC CPU2006

benchmarks. Finally, we present a case study showing how
to use the model to improve shared cache performance.

1. INTRODUCTION

On-chip caches are fundamental to cope with the long la-
tency, high energy, and limited bandwidth of main memory
accesses. Most cache space is consolidated in a large last-
level cache (LLC) shared among cores, which consumes sig-
nificant resources (e.g., over 50% of chip area [32]). Rising
core counts place mounting pressure on the memory system,
and have led to a resurgence of cache architecture research.
As a result, modern LLCs have become quite sophisticated in
their array organization and replacement policy.

Understanding the LLC’s behavior is critical to achieve
system objectives. Accurate predictions of cache behav-
ior enable a large number of optimizations, including of
single-threaded performance [5, 15, 38], shared cache per-
formance [3, 37, 41, 50], fairness [37, 40], quality of ser-
vice [3, 26], security [39], etc. These optimizations can be
performed in many ways, e.g. by explicitly partitioning the
shared cache in hardware [2, 34, 45] or software [11], or
through job scheduling to avoid interference in cache ac-
cesses [14, 35, 56].

Unfortunately, cache behavior is difficult to predict because
it depends on many factors, both of the application (e.g., its
access pattern) and the cache (e.g., its size, associativity, and
replacement policy). Existing cache models [1, 15, 36, 47,
55] tend to focus on traditional, set-associative caches using

978-1-4673-9211-2/16/$31.00 ©2016 IEEE

simple replacement policies like least-recently used (LRU),
pseudo-LRU, or random replacement. But modern processors
do not use LRU (or pseudo-LRU) for the LLC.

Modern LLCs instead employ high-performance replace-
ment policies that greatly improve cache performance over
traditional policies like LRU (Sec. 2.2). These designs are
available in commercial processors [22,53], and a new model
is needed to understand their behavior.

We present a cache model that accurately predicts the be-
havior of high-performance replacement policies on modern
LLCs. Our model leverages two key observations: First, each
core’s private cache hierarchy filters accesses before they
reach the LLC, capturing successive references to the same
address [5, 28, 30]. Thus, LLC accesses are free of short-term
temporal correlations. (This is also why LRU is a poor policy
for the LLC; LRU relies on temporal locality, and at the LLC,
there is little.) Second, modern LLCs use hashing to map lines
to sets [31, 53], reducing hotspots. Existing models often
focus on the effects of low associativity, i.e. conflict misses,
which can be hard to capture. But with hashing, modern
LLCs have near-uniform behavior across sets and high effec-
tive associativity [44], making conflict misses a second-order
concern (Sec. 2.1).

These two observations mean that modern LLCs can be
modeled as a pseudo-random process: by capturing highly
correlated accesses, private caches essentially randomize the
accesses seen by the LLC; and hashing and high effective
associativity mean that the replacement candidates constitute
a representative sample of cached lines. Our model therefore
computes the probability of various events (hits and evictions)
occurring to individual lines as they age. This approach
lets us model arbitrary age-based policies, including familiar
policies and several high-performance policies, and abstracts
away the details of array organization. Specifically, in this
paper we evaluate LRU, PDP [16], and IRGD [51].

These features set our model apart from existing models.
Existing models target set-associative LRU caches, and many
model the performance of entire sets using stack distances,
which measure the number of unique addresses between ref-
erences to the same line. Stack distances are meaningful
for set-associative LRU caches, but have little meaning for
other cache designs. In particular, it is unclear how to model
high-performance policies through stack distances (Sec. 2.3).

Our model is built from logically distinct components,
each of which captures a separate aspect of cache behavior
(Sec. 4). For instance, to model a new replacement policy,
our model only requires simple changes to a single param-
eter, the ranking function (Sec. 5). We present an efficient,
practical implementation of our model (Secs. 6 and 7) and
thoroughly validate it against synthetic and real benchmarks
(Sec. 8). Finally, we present a case study of cache partition-
ing with high-performance replacement, where our model

225

enables performance gains far exceeding those of cache par-
titioning or high-performance replacement alone (Sec. 9).
In summary, we offer an efficient way to predict the perfor-
mance of high-performance policies, allowing them to enjoy
the many benefits that prior work has demonstrated for LRU.

2. BACKGROUND

We first review the relevant background in modern LLC

architecture, replacement policies, and cache modeling.

2.1 Modern cache architecture

Modern processors feature multilevel cache hierarchies.
Each core has one or two levels of small, fast, private caches
(L1 and L2). These are backed by a much larger last-level
cache (LLC) that contains the bulk of cache capacity.

Cache architecture varies greatly across levels. The pur-
pose of the private levels is to cache the program’s most
frequently accessed data at low latency and high bandwidth,
so they are kept small and simple—and therefore fast. Specif-
ically, they adopt a familiar, set-associative architecture and
use simple replacement policies like pseudo-LRU.

The cache architecture is more sophisticated at the LLC.
Since off-chip misses are very expensive, various caching
techniques are attractive for the LLC that are a poor design for
the private levels. The most significant change is the replace-
ment policy, discussed in detail below. In addition, the LLC

adopts an array organization that ensures high effective asso-
ciativity. For instance, by hashing addresses before indexing
the array, the cache pseudo-randomly spreads accesses across
sets and reduces conflicts [31, 32, 49, 53]. Other designs fur-
ther increase effective associativity without adding ways. For
instance, skew-associative caches [48] and zcaches [44] use
a different hash function for each way, mixing replacement
candidates across sets.

For the purposes of cache modeling, there are two impor-
tant implications. First, private caches capture most “hot”
data, so the LLC’s access stream is stripped of short-term tem-
poral correlations: a second access to the same line requires
that the line be first evicted from the L1 and L2. Second, since
modern LLCs use hashing and achieve high effective associa-
tivity, replacement candidates form a representative sample of
cached lines [5, 41, 44]. Details of array organization, which
have been the focus of prior studies [1,15,36,47,55], are rela-
tively unimportant in modern LLCs. Our model leverages this
insight by modeling replacement as a probabilistic process
affecting individual lines, not sets.

2.2 Replacement policies beyond LRU

The largest single difference between the traditional caches
targeted by existing models and modern LLCs is the replace-
ment policy. Traditional replacement policies (e.g., LRU,
pseudo-LRU, least-frequently used, or random) all perform
poorly at the LLC because private caches filter out most lo-
cality [28]. LRU is the most common, but has common per-
formance pathologies. For instance, when an application’s
working set does not fit in the cache, LRU causes thrashing
and performance cliffs; e.g., iterating sequentially over a 1 MB

array gets zero hits with less than 1 MB of cache, but every
access suddenly hits at 1 MB.

Such pathologies are avoided in the optimal replacement

policy, Belady’s MIN [8, 36], which relies on a perfect oracle
to replace the line that will be reused furthest in the future.
Prior work has proposed many mechanisms that improve on
LRU and attempt to emulate optimal replacement. We observe
that, details aside, they use three broad techniques:
• Recency: Recency prioritizes recently used lines over old

ones. LRU uses recency alone, leading to its pathologies
(e.g., thrashing). Most high-performance policies combine
recency with other techniques.

• Protection: When the working set does not fit in the cache,
some policies protect a portion of the working set against
eviction to avoid thrashing. This is equivalent to thrash-
resistance [23, 42].

• Classification: Some policies divide accesses into sepa-
rate classes, and treat lines of each class differently. For
example, several policies classify lines as either reused or
non-reused [23,30]. Classification works well when classes
have markedly different access patterns.
For instance, DIP [42] enhances LRU by dynamically de-

tecting thrashing using set dueling, and protects lines in the
cache by inserting most lines at low priority in the LRU chain.
DIP inserts a fixed fraction of lines (ε = 1/32) at high priority
to avoid stale lines. DRRIP [23] classifies between reused
and non-reused lines by inserting lines at medium priority,
includes recency by promoting lines on reuse, and protects
against thrashing with the same mechanism as DIP. SHiP [54]
extends DRRIP with more elaborate classification, based on
the memory address, program counter (PC), or instruction se-
quence. Instruction-based reuse distance prediction [27] uses
PC-based classification, but does not do protection. PDP [16]
decides how long to protect lines based on the reuse distance
distribution, improving on DIP, but does not do classification.
SDBP [29] and PRP [13] predict the probability candidates will
hit and prioritize those that are more likely. Finally, IRGD [51]
adapts its policy to the access stream, ranking lines according
to their harmonic expected reuse distance. The policies we
consider are described in greater detail in Sec. 5.1.

Most of these policies are age-based: lines enter the cache
at a given priority, which changes over time according to how
long the line has been in the cache. However, the policies
vary in details. PDP, PRP, and IRGD directly count the number
of accesses since a line was last referenced, while DRRIP

and SHiP use a clever aging mechanism that allows them to
rank lines using fewer bits in hardware. Our model targets
arbitrary age-based policies, and we age lines by the number
of accesses since their last reference (like PDP, PRP, and IRGD).

No prior work gives a general way to predict these poli-
cies. DIP gives a simple performance analysis on a single
access pattern (the scanning pattern discussed above), but
does not consider performance on realistic access patterns,
nor does their analysis generalize to such cases. PDP employs
an analytical model to choose for how long to protect lines
in the cache. PDP’s model is simple, but it is inaccurate on
common access patterns (Sec. 8.1). Moreover, even if it were
accurate, it is limited to modeling protecting distances, and
therefore does not solve the general problem of modeling
high-performance cache replacement.

2.3 Cache modeling

Most prior work has developed analytical cache models

226

using stack distance distributions [1, 15, 36, 47, 55]. The
stack distance of an access is the number of unique addresses
accessed after the last reference to the same address. For
example, in the sequence ABCBDDA the stack distance of A
is four, as B, C, and D are accessed between both accesses
to A. Stack distances are meaningful for LRU: in a fully-
associative LRU cache of S lines, accesses with stack distance
≤ S will be hits, and all others will be misses.

Stack distances are meaningful for LRU, but have little
direct meaning for other policies. Our insight is that absolute
reuse distances [47] can be used to model cache behavior for
a much wider range of replacement policies. The absolute
reuse distance of an access is the total number of references
after the last reference to the same address. For example, in
ABCBDDA the absolute reuse distance of access A is six.
Absolute reuse distances correspond to lines’ ages (i.e., the
number of accesses since they were last referenced): a line
with absolute reuse distance d will hit at age d if not evicted.

Absolute reuse distance distributions cannot be trivially
translated into miss rates. Our key innovation is to develop an
analytical model that performs this translation for a broad
class of policies. Prior work has used absolute reuse distances
only in a limited context: Sen and Wood [47] use absolute
reuse distances to model random replacement, but use stack
distances for LRU. StatCache [9] models random replacement
through absolute reuse distances, and StatStack [17] builds a
model for LRU, but does not consider more recent policies. By
contrast, we model LRU and several recent policies through a
single framework based on absolute reuse distances.

For brevity, in the rest of the paper we refer to absolute
reuse distances simply as reuse distances. This terminology
is in line with prior cache replacement papers [16, 23, 27],
but note that, since prior work in analytical models focuses
on stack distance, some use reuse and stack distance as syn-
onyms [15, 47, 55].

2.4 Applications of cache models

The inability to predict high-performance policies is espe-
cially unfortunate because it precludes many optimizations,
such as job scheduling to avoid interference in cache ac-
cesses [14, 35, 56] and cache partitioning.

Cache partitioning allows software to divide space among
cores, threads, or types of data [3, 11, 45], enabling system-
wide management of shared caches. Cache partitioning is
often used to improve performance in systems with shared
caches [37, 41, 50], but also has many other uses beyond
performance, and is thus better thought of as an enabling
technology for software control of the cache.

Partitioning strikes a nice balance between scratchpad
memories, which yield control to software but are hard to use,
and conventional hardware-only caches, which are easy to use
but opaque to software. For instance, partitioning has been
used to improve fairness [37, 40], implement priorities and
guarantee QoS [12,20,26], improve NUCA designs [3,33], and
eliminate side-channel attacks [39]. Partitioning is therefore
a general tool to help achieve system-level objectives.

To partition the cache effectively, partitioning schemes
require predictions of performance at different sizes. Unfortu-
nately, these predictions are not available for high-performance
replacement policies. Talus [5] resolves this conflict by parti-

tioning within a single access stream to yield a predictable
policy with good performance. However, Talus itself requires
predictions to choose the partition sizes. Our model is thus
complementary to Talus, and allows partitioning schemes to
partition arbitrary age-based replacement policies.

We present a case study that shows our model can ef-
fectively partition high-performance replacement policies
(Sec. 9). We optimize for shared cache performance in the
case study, but bear in mind this is just one example of the
many applications of partitioning in current systems.

3. OVERVIEW

Fig. 1 shows the high-level design of our cache model. The
input to the model is the cache architecture (its size, associa-
tivity, and replacement policy) and a concise description of
the access stream. Specifically, we describe the access stream
by its reuse distance distribution; i.e., for each distance d,
how many accesses have reuse distance d.

Figure 1: Our model consists of three interdependent
probability distributions. Each distribution captures dis-
tinct model inputs. Arrows denote dependencies: A→ B

means “A depends on B”.

From these inputs, our model produces a concise descrip-
tion of the cache’s behavior. Specifically, it produces the
cache’s hit and eviction distributions: for each age a, how
many accesses are hit or evicted at age a, respectively. We
define age as the number of accesses since a line was last
referenced. The hit and eviction distributions directly yield
the cache’s performance, as the cache’s hit rate is the sum
over the hit distribution. Additionally, they give a rich pic-
ture of the cache’s behavior that can be used to improve its
performance (see our technical report [4, Sec. 10]).

Internally, the model uses three distributions: the hit and
eviction distributions (already discussed) and the age distri-
bution of cached lines (i.e., the probability that a randomly
selected line has age a). These distributions are interdepen-
dent and related to one another by simple equations. Each
incorporates a particular model input and conveys its con-
straints: (i) the age distribution incorporates the cache size,
and constrains modeled capacity; (ii) the hit distribution in-
corporates the access stream and constrains when lines can
hit; and (iii) the eviction distribution incorporates the replace-
ment policy and constrains how long lines stay in the cache.
The model is solved by iterating to a fixed point. When
the distributions converge, the hit and eviction distributions
accurately describe the cache’s behavior.

We build the model in stages. First, we introduce the
model on a specific example. Second, we develop the model
formulation for LRU. Third, we generalize it to other policies.
Finally, we show to solve the model efficiently.

227

3.1 Example

Table 1 shows the behavior of a 3-line LRU cache on a
simple, repeating access pattern. Time (measured in accesses)
increases from left to right and wraps around (e.g., time 9
would be identical to 1). Live lines, those that eventually hit,
are colored green; dead lines, those that do not, are red.

Request A A B C B D B C

Lines
A A D

B B B

C C

Time 1 2 3 4 5 6 7 8

Table 1: Steady-state behavior of a 3-line LRU cache on
a simple, repeating access pattern. Live lines are colored
green, and dead lines red.

The first line is live (green) at time 1 because A hits at time
2. However, D evicts A at time 6, so A is dead (red) in 2–5.
Similarly, A evicts D at time 1, so D is dead in 6–9. B and
C always hit, so they are always live. This divides the cache
into lifetimes, the intervals from last use until hit or eviction.
For example, A’s lifetime starting at time 1 ends after a single
access when A hits at time 2; this starts a new lifetime that
ends after four accesses when D evicts A at time 6.

We can redraw Table 1 showing the ages of each line at
each access (Table 2). In steady state, 6 out of 8 accesses are
hits. These hits (underlined) come at ages 1 (A once), 2 (B
twice), and 4 (C twice and B once). The other 2 accesses are
evictions (italic), at ages 3 (D) and 4 (A).

Request A A B C B D B C

Ages
1 1 2 3 4 1 2 3

3 4 1 2 1 2 1 2

2 3 4 1 2 3 4 1

Time 1 2 3 4 5 6 7 8

Table 2: Ages per line in Table 1 (note hits and evictions).

This information lets us compute the hit and eviction distri-
butions, denoted by random variables H and E, respectively.
These distributions give the probability that a (randomly se-
lected) access will hit or be evicted at a given age. For
example, one quarter of accesses hit at age 2 (B at times 4
and 6), so the hit distribution at age 2 is PH(2) = 1/4. Table 3
summarizes our notation and the most important distributions
in the model.

Table 4 gives the three model distributions for the example
in Table 1. For the hit and eviction distributions, we turn
counts into probabilities by dividing by 8 accesses. Since
every lifetime ends in a hit or eviction, the hit and eviction
distributions together sum to 1, but separately sum to less
than 1. We express the distribution inclusive of both hits and
evictions as the lifetime distribution, PL(a) = PH(a)+PE(a)
(not shown in Table 4). L is the age at which a line is either
hit or evicted, i.e. the age when its lifetime ends. Finally, we
can compute the age distribution by counting the ages of lines
and dividing by 3 lines×8 accesses = 24.

Symbol Meaning
P[y] The probability of event y.
E[X] The expected value of random variable (rv) X .

PX (x) The probability that rv X equals x, P[X =x].

PX ,Y (x,y) The joint probability rv X equals x and rv Y equals y.

PX

(
x|y

)
The conditional probability that rv X equals x given y.

RV Meaning
D Reuse distance of an access. Input
H Age at which a line hits.

}
Output

E Age at which a line is evicted.
A Age of a line.

}
Internal

L Lifetime of a line (see text).

Table 3: Notation used in this paper. D is a property of
the access stream; A, H, and E of cached lines.

Age a 1 2 3 4 5 6 7 8 Sum

D
is

tr
ib

u
ti

o
n PD(a)

1⁄8 2⁄8 – 3⁄8 – – 1⁄8 1⁄8 1

PA(a)
1⁄3 7⁄24

5⁄24
1⁄6 – – – – 1

PH(a)
1⁄8 1⁄4 – 3⁄8 – – – – 3⁄4

PE (a) – – 1⁄8 1⁄8 – – – – 1⁄4

Table 4: Model distributions for the cache in Table 1.

These distributions tell us how the cache performs on this
access pattern: its hit rate is the sum over the hit distribution,
3/4. Moreover, the distributions also say how lines behave.
For example, no lines make it past age 4, despite some having
reuse distance of 8.

In this example, we have computed the distributions by
brute force, but this method is too expensive for our purposes.
We instead model the relationships among distributions ana-
lytically and solve them by iteration. This example gives the
intuition behind the model, but note that our independence
assumptions are accurate only for large caches. So while
our model is accurate on real systems (Sec. 8), some model
components are inaccurate on simple examples like Table 1.

4. BASIC MODEL (FOR LRU)

This section presents the model for caches with LRU re-
placement. We present the complete equations for the age
and hit distributions, and the eviction distribution equations
for LRU replacement. Sec. 5 extends the eviction distribution
to model arbitrary age-based replacement policies.

4.1 Model assumptions

First, we make a few simplifying assumptions that make
cache modeling tractable, chiefly about the independence
of certain events. These assumptions are motivated by the
properties of modern LLCs (Sec. 2.1).

We assume each access has reuse distance d distributed
identically and independently according to the distribution
PD(d). This assumption is not exactly correct in practice,
but since private caches filter accesses before they reach the
LLC, it is a good approximation for large caches [5]. Indeed,
the access patterns that cause large errors—highly correlated
references—are precisely those that cache well in the private
cache levels. In other work, we have shown that this as-
sumption is surprisingly robust, yielding accurate predictions

228

even on access patterns that violate it [6]. Sec. 8 validates
our model against real programs at many different cache
sizes and shows that it is accurate. In return, this assump-
tion greatly simplifies the probability calculations, allowing
a simple model to capture diverse access patterns.

Similarly, we model an idealized, random-candidates cache,
where replacement candidates are drawn at random from
cached lines. This is a good model for modern LLCs, where
the replacement candidates form a representative sample of
cached lines. The random-candidates model is a direct ana-
log of skew-associative caches or zcaches, but is also a good
approximation for hashed, set-associative caches with many
ways [44]. Although the accuracy of this assumption depends
slightly on the cache array architecture, it is a reasonable
simplifying assumption for modern LLCs.

Finally, we assume the victim’s age is independent of
whether the cache hits or misses. This is sensible because a
large cache is typically unaffected by a single candidate. The
need for this assumption will become clear below.

4.2 Age distribution

The age distribution is used internally by the model to
constrain cache capacity. It is presented first because it is the
simplest to compute from the other distributions.

Since ages measure the time since a line was last refer-
enced, a line reaches age a if and only if it is not hit or evicted
for at least a accesses. Hence the probability of a line having
age a, PA(a), is proportional to the fraction of lines that sur-
vive at least a accesses in the cache without being referenced.
The probability of surviving exactly x accesses is given by the
lifetime distribution at age x, PL(x) = PH(x)+PE(x), and the
probability of surviving at least a accesses is the probability
over all x ≥ a. The age distribution PA(a) is thus proportional
to P[L ≥ a], which determines the age distribution up to a
constant factor.

To find the constant factor, note that every access necessar-
ily produces a line of age 1 (whether a hit or miss), since we
define ages as the number of accesses since a line was last
referenced. Since ages increase upon each access, there is
always exactly one line of age 1 in the cache. Hence if the
cache has S lines, the age distribution at age 1 is PA(1) =

1/S.
Combining the two results, we find the age distribution for

a cache of S lines is:

PA(a) =
P[L ≥ a]

S
=

∞

∑
x=a

PH(x)+PE(x)

S
(1)

For example, in Sec. 3.1, by counting cells we find that
PA(3) =

5/24. That is, of the twenty-four cells depicted in
Table 2, age 3 appears five times. Eq. 1 gives another way
to arrive at the same conclusion without counting cells: The
probability of a hit or eviction at age 3 or greater is 3/8 +
1/8+ 1/8 = 5/8 (Table 4). Dividing by S = 3 gets PA(3) =

5/24,
as desired. This argument can be generalized to yield an
alternative derivation of Eq. 1 and show ∑

∞
a=1 PA(a) = 1.

4.3 Hit distribution

We now show how to compute when hits occur for a given
access pattern, again assuming the other distributions are
known. The hit distribution is perhaps the most important
product of the model, since it yields the cache’s hit rate.

A line will eventually hit if it is not evicted. Intuitively, a
line’s hit probability depends on its reuse distance (longer dis-
tances have greater opportunity to be evicted) and the cache’s
eviction distribution (i.e., at what age does the replacement
policy evict lines?). Moreover, by definition, a line with reuse
distance d must hit at age d if it hits at all. Thus the hit
probability is just the reuse distance probability minus the
probability of being evicted, or:

PH(d) = PD(d)−P[evicted,D=d]

= PD(d)−
d−1

∑
a=1

PD,E(d,a) (2)

It may be tempting to simply subtract the eviction proba-
bility below d in the above equation. That is, to say PH(d)
equals PD(d)× (1− P[E < d]). This is incorrect; eviction
age and reuse distance are not independent.

To proceed, we require the critical insight that candidates
of age a look alike to the replacement policy. In other
words, the replacement policy does not know candidates’
reuse distances, only that lines of age a have reuse distance
d > a. Since reuse distances are iid, evicting at age a thus
only implies that the line’s reuse distance was at least a, i.e.
E = a ⇒ D > a. From this insight:

PD,E(d,a) = PD

(
d|E=a

)
PE(a)

(Insight) = PD

(
d|D > a

)
PE(a)

(Simplify) =
PD(d) ·PE(a)

P[D > a]
(3)

This insight relies on reuse distances being (approximately)
iid. Hence, Eq. 3 is accurate for the large LLCs seen in real
systems (Sec. 8), but it is inaccurate for the small example in
Sec. 3.

Finally, we substitute this result into the above equation:
Summing over all a below d counts all the lines of reuse
distance d that are evicted before hitting. Since the rest hit,
subtracting these from PD(d) yields the hit probability:

PH(d) = PD(d)×

(
1−

d−1

∑
a=1

PE(a)

P[D > a]

)
(4)

4.4 Eviction distribution in LRU

The eviction distribution accounts for the replacement pro-
cess and is the most complex part of the model. It models
both the selection of replacement candidates (i.e., associativ-
ity) and the selection of a victim among candidates (i.e., the
replacement policy). For clarity, we begin by presenting the
model for LRU only.

To compute the eviction distribution, we assume that candi-
dates are drawn randomly from the cache, as discussed above.
(We do not assume victims are selected randomly, just that
candidates are.) Among these, LRU simply evicts the oldest,
so the eviction probability at age a is the probability that both
an access misses and a is the oldest age among candidates.
These events are independent by the final assumption above.

Hence to find the eviction probability at age a, we need to
know the probabilities that the access misses and the oldest
candidate has age a: PE(a) = P[miss] ·Poldest(a). The first

229

factor is trivial, since

P[miss] = 1−P[hit] = 1−
∞

∑
a=1

PH(a) (5)

The challenge lies in finding the distribution of oldest
ages, Poldest(a). Replacement candidates are drawn randomly
from the cache, so each has age identically and indepen-
dently distributed according to PA(a). The oldest age is just
the maximum of W iid random variables, where W is the
associativity. The maximum of iid random variables is a
well-known result [19]: the oldest age among replacement
candidates is less than a iff all candidates are of age less than

a. Thus given W candidates, P[oldest < a] = P[A < a]W . To
get the distribution from the cumulative distribution, differ-
entiate: Poldest(a) = P[oldest < a+1]−P[oldest < a]. Alto-
gether, the eviction distribution at age a for LRU is:

PE(a) = (1−P[hit]) Poldest(a) (6)

= (1−P[hit])
(
P[oldest < a+1]−P[oldest < a]

)
⇒ PE(a) = (1−P[hit])

(
P[A < a+1]W −P[A < a]W

)
4.5 Summary

Equations 1, 4, and 6 form the complete model for LRU

replacement. The age distribution incorporates the cache size
and depends on the hit and eviction distributions. The hit
distribution incorporates the access stream and depends on the
eviction distribution. The eviction distribution incorporates
the cache’s associativity and replacement policy (LRU) and
depends on the hit and age distributions.

5. OTHER REPLACEMENT POLICIES

We now extend the eviction distribution to support arbitrary
age-based policies, like those discussed in Sec. 2.2.

5.1 Ranking functions

To support other policies, we must abstract the replacement
policy in a way that can be incorporated into the model. We
do so through a ranking function, R : age → R, which gives
an eviction priority to every age. By convention, higher rank
means higher eviction priority.

Ranking functions capture many existing policies. For
example, LRU’s ranking function is RLRU(a) = a (or any
other strictly increasing function). This represents LRU be-
cause it ensures that older lines will be preferred for eviction.
Similarly, a constant ranking function produces random re-
placement, e.g. Rrandom(a) = 0. Ranking functions can also
capture many high-performance replacement policies.

PDP [16] protects lines up to an age dp, known as the
protecting distance. It prefers to evict lines older than the
protecting distance, but if none are available among candi-
dates, it evicts the youngest line. Thus PDP’s ranking function
decreases up to the protecting distance (dp), upon which it
jumps to a large value and increases thereafter:

RPDP(a) =

{
dp −a If a < dp

a If a ≥ dp
(7)

IRGD [51] ranks lines using an analytical formulation based
on the reuse distance distribution. IRGD essentially ranks lines

by their expected reuse distance, but since in practice very
large reuse distances can’t be measured, IRGD uses a weighted
harmonic mean instead of the conventional, arithmetic mean.
This lets it ignore immeasurably large reuse distances, since
they have a small impact on the harmonic mean.1 Its ranking
function is:

RIRGD(a) = P[D > a]×

(
∞

∑
x=1

PD(a+ x)

a+ x

)−1

(8)

Ranking functions thus model any age-based policy, but
not all high-performance policies are strictly age-based. Our
model can support such policies (e.g., RRIP [23, 54]) with
specialized extensions. However, this paper presents the
general framework, and we leave extensions to future work.

From the ranking function and age distribution, we can
produce a rank distribution that gives the probability a line
will have a given rank. It is then possible to generalize Eq. 6.
While LRU evicts the oldest replacement candidate, in general
the cache evicts the maximum rank among candidates.

5.2 Generalized eviction distribution

Generalizing the eviction distribution is a straightforward
substitution from “oldest age” in LRU to “maximum rank”
in general. If a line of age a is evicted, then the maximum
rank among candidates must be R(a). Additionally, R may
rank several ages identically (i.e., R(a) = R(b)), so we must
ensure that the candidate had age a (not age b).

This consideration is important because, in practice, con-
tinuous ranks are quantized in units of Δr, increasing the pos-
sibility that several ages map to indistinguishable ranks. For
example, if ranks can take values in [0,256) (e.g., LRU with 8-
bit ages), then an efficient model implementation might quan-
tize ranks into regions as [0,8), [8,16) . . . [248,256). Each
region has size Δr = 8, and many ages may have the “same
rank” as far as the model is concerned.

We account for indistinguishable ranks by using the joint
distribution of rank and age to avoid double counting:

PE(a) = (1−P[hit]) ·Pmaxrank,A

(
R(a),a

)
(9)

The joint distribution is in turn:

Pmaxrank,A

(
R(a),a

)
= Pmaxrank

(
R(a)

)
·

PA(a)

Prank

(
R(a)

) (10)

PA(a)/Prank

(
R(a)

)
is the fraction of ranks belonging to age

a in the rank quantum containing R(a) (roughly its Δr-neigh-
borhood). Multiplying by this fraction eliminates double
counting. Eq. 10 should simply be thought as the analog to
Poldest(a) in LRU.

As in LRU, the challenge lies in finding Pmaxrank(r). To
start, we compute the rank distribution in the cache from the
age distribution. Since ranks depend on age, the probability
that a line’s rank equals r is just the total probability of ages
with rank r:

Prank(r) = ∑
a:R(a)=r

PA(a) (11)

1Takagi et al. [51] express IRGD somewhat differently, but the two
formulations are equivalent.

230

Next, the cumulative distribution of maximum rank is com-
puted just as Poldest(a) in LRU as the maximum of iid random
variables:

P[maxrank < r] = P[rank < r]W (12)

Finally, the distribution of maximum rank is obtained by
discrete differentiation [43]:

Pmaxrank(r) =
P[maxrank < r+Δr]−P[maxrank < r]

Δr
(13)

(In LRU, the oldest age distribution uses Δr = 1.)
These formulae fill in all the terms to compute the general-

ized eviction distribution:

PE(a) =
(
1−P[hit]

)
×

(
PA(a)

Prank

(
R(a)

)
)
× (14)

⎛
⎝P

[
rank < R(a)+Δr

]W
−P

[
rank < R(a)

]W

Δr

⎞
⎠

5.3 Discussion

The complete cache model is given by the age (Eq. 1), hit
(Eq. 4), and eviction (Eq. 14) distributions. These equations
describe a cache using an arbitrary, age-based replacement
policy. Our model forms a system of equations that describe
a valid solution, but does not yield this solution directly.

The implicit nature of our model has benefits. The equa-
tions organize the model into logical components. Each
distribution is responsible for a specific model input: the
age distribution for the cache size, the hit distribution for
the access pattern, and the eviction distribution for replace-
ment (both associativity and replacement policy). This makes
it easy to adapt the model to new cache architectures. For
example, a new replacement policy only requires a new rank-
ing function, and all appropriate changes naturally propagate
through the eviction, hit, and age distributions. Likewise, new
applications change only the reuse distance distribution.

However the drawback is that, since these equations are
not explicit, their solution is not entirely obvious. We solve
the system through iteration to a fixed point, discussed next.

6. MODEL SOLUTION

All components of the model are interdependent, and a
general, closed-form solution is unlikely to exist. We solve
the model by iterating to a fixed point, simultaneously solv-
ing the three distributions age by age (Algorithm 1). This
simultaneous solution tightly couples the solution of each dis-
tribution to the others, maintaining their relationships. That is,
each distribution is computed from the others as the solution
evolves, rather than from the distributions at the last itera-
tion. Only the hit rate and rank distribution are fixed across
iterations. We find this tight coupling improves convergence
time.

At each iteration, Algorithm 1 solves Eq. 1, Eq. 4 and
Eq. 14 for age a in constant time, building on the solution
from age a−1. Algorithm 1 uses the following recurrence
relation derived from Eq. 1:

PA(a+1) = PA(a)−
PH(a)+PE(a)

S
(15)

Algorithm 1. The cache model simultaneously solves the cache’s age, hit,
and eviction distributions by iteration.

Inputs: S - Cache size; W - associativity; R - ranking function; rdd - reuse distance
distribution;

Returns: Hit and eviction distributions, hit and evict.
1: function Model
2: age, hit, evict, h’ ← Seed � Initialize distributions.
3: while not Converged:

4: h← h′ � Hit rate from last iteration.
5: h′ ← 0 � x′ is solution of x for this iteration.
6: crd← rdd[1] � Cumulative D probability, P[D ≤ a].
7: evBelow ← 0 � Prob. line evicted at D=a in Eq. 4.
8: age′[1]← 1/S

9: for a ← 1 to N :

10: hit′[a] ← rdd[a] (1−evBelow)

11: evict′[a]← (1−h)maxRankDist[R(a)]
age′ [a]

rankDist[R(a)]

12: age′[a+1]← age′[a]− (hit′[a]+evict′[a])/S

13: h′ ← h′+hit′[a]
14: evBelow ← evBelow+evict′[a]/(1−crd)
15: crd← crd+ rdd[a+1]

16: age,hit,evict← Average(age′,hit′,evict′)

17: return hit, evict

This allows the age distribution to be updated to reflect the
hit and eviction distributions as the solution evolves, which
in turn influences the solution of the hit and eviction distribu-
tions. The hit and eviction distributions are thus constrained,
and negative feedback loops are imposed on over-estimation.
Sums in other equations are similarly broken across iterations
so that each age is solved in constant time. For example, the
variable evBelow is the inner sum in Eq. 4.

We seed the first iteration with sensible but arbitrary pa-
rameters (e.g., hit rate of 50%). To avoid oscillating around
a stable solution, in each iteration we average the old and
new distributions using an exponentially weighted moving
average. We have empirically determined that a coefficient
of 1⁄3 yields good performance. We detect convergence when
the hit rate stays within a 10−3 range for ten iterations. Fi-
nally, the model sets a floor of 0 for all probabilities during
solution. In practice, Algorithm 1 reliably converges after a
few iterations (typically 20-40) on hundreds of thousands of
distributions from real workloads (Sec. 8).

While involved, iteration is computationally cheap: in
practice, we use and monitor coarse ages (see below) for
which N-point distributions with N ≈ 64–256 suffice, and
each iteration runs in linear time on the size of the distri-
butions. Our C++ implementation is publicly available at
http://people.csail.mit.edu/sanchez.

6.1 Convergence

Our model is designed with generality in mind, but this
comes at the cost of complicating some theoretical prop-
erties. Eq. 1, Eq. 4, and Eq. 14 form a non-linear system
(particularly Eq. 14) operating in many dimensions (N points
per distribution and multiple distributions). Moreover, the
model accepts arbitrary N-point vectors as input (the reuse
distance distribution and ranking function). Demonstrating
the convergence of fixed point iteration for non-linear sys-
tems is difficult. Generally, it involves reducing the system
to a contraction mapping of some relevant model parame-
ter [24]. Although several intuitive parameters are attractive
(e.g., hit rate or modeled cache size), we cannot yet prove a
contraction mapping on these parameters in general—indeed,
it seems that for some degenerate ranking functions (not those
in Sec. 5.1), the model does not converge.

231

We instead take an empirical approach. We evaluate our
model on a diverse suite of real applications and demonstrate
its accuracy and utility in that context. Since the model is
solved online at regular intervals, our evaluation represents
hundreds of thousands of model solutions. Thus we conclude
that the model converges on distributions seen in practice.

The model converges to a stable miss rate because there is a
“tug-of-war” between the age and eviction distributions. Evic-
tions reduce the age probability (Eq. 15), so if the modeled
miss rate is too high, then fewer evictions will occur. This
decreases the modeled miss rate at the next iteration, tending
towards equilibrium; the converse holds as well. However,
we leave rigorous convergence conditions to future work.

6.2 Increased step size

Reuse distances in practice can be quite large, and naïve
iteration over all ages would be quite expensive. Moreover,
age-by-age iteration is wasteful, since there are large age
ranges where few events occur or the event probabilities are
roughly constant. Modeling such ranges in detail is unneces-
sary, since they can be approximated by assuming constant
event probabilities throughout the range. This observation
allows the solution to take a large step over many ages at
once and greatly reduces N, the inner loop iterations in Algo-
rithm 1. Reducing N is important when applying the model
online, e.g. as part of a runtime system (Sec. 9).

Figure 2: Model solution with increased step size on a
synthetic benchmark. Solid lines show a full-detail solu-
tion; dashed lines show a solution with N = 32.

For example, Fig. 2 shows a solution of all three model
distributions for a synthetic benchmark (solid lines). These
distributions are coarsened by increasing the step size (dashed
lines), producing a good approximation with much less com-
putation. Indeed, Fig. 2 shows that N = 32 is sufficient to
model this access pattern, even though ages go up to 500.
This is possible because there are large regions (e.g., ages
0-100) where few events occur. There is no reason to model
these regions in great detail. Instead, we adaptively divide
ages into regions, modeling regions of high activity at fine
granularity and others at coarse granularity.

We then model the total probability within each coarsened
region. That is, rather than computing the hit probability at
a single age (e.g., P[H = a]), we compute the hit probabil-
ity over several ages (e.g., P[a ≤ H < b]). Remarkably, the
model equations are basically unchanged by coarsening. For
example, if regions are split at ages a1,a2,a3, . . . then the

coarsened hit equation is:

P[ai ≤ H < ai+1]≈ (16)

P[ai ≤ D < ai+1]×

⎛
⎝1−

i−1

∑
j=1

P
[
a j ≤ E < a j+1

]
P
[
D > a j

]
⎞
⎠

This equation is identical in form to the fine-grain hit equation
(Eq. 4), except now operating on regions rather than individ-
ual ages. The same pattern holds for other equations [4, Ap-
pendix A].

The model is unchanged under coarsening for a deep rea-
son. Our model can be relaxed into a system of differential
equations through some simple transformations [6]. From
this perspective, coarsening is essentially a numerical solu-
tion of the system using an adaptive step size [43]. Such
solutions preserve the form of the original equations.

Another important question is how to choose the age re-
gions. The choice must balance two competing goals: model-
ing regions with high activity at fine granularity, while mod-
eling other ages in sufficient detail for the model to converge.
We address this in two steps. First, we divide all ages evenly
into N/2 regions. For example, with 8-bit ages and N = 64,
we first create the 32 regions divided at ages: 0,8,16 . . .256.
Second, we further divide these regions N/2 times to try to
equalize the probability of hits and evictions in each region.
We sort regions by their probability of hits and evictions,
and recursively divide the largest in equal-probability halves
N/2 times. We find this procedure chooses regions that yield
efficient and accurate solutions.

7. IMPLEMENTATION

We now describe how to integrate our cache model into
a full system which we evaluate in simulation. In our val-
idation (Sec. 8) and case study (Sec. 9), the model is used
to dynamically model or reconfigure the cache, as shown in
Fig. 3. A lightweight hardware monitor samples a small frac-
tion of accesses and produces the application’s reuse distance
distribution. Periodically (e.g., every 100 ms), a software
runtime models the cache’s behavior from the sampled reuse
distance distribution, which is then used to predict the cache’s
behavior over the next interval.

Figure 3: An example implementation of our model. A
lightweight hardware monitor on each tile samples a
small fraction of LLC accesses. Our model runs period-
ically in software.

This configuration represents just one use case for the
model; it can also be used to model cache behavior offline.
However, Fig. 3 is the most demanding use case, since it
imposes the most stringent run-time requirements and the
model must contend with sampling error.

232

Figure 4: The cache model on three synthetically generated traces driving small caches using LRU, PDP, and IRGD

replacement. Simulation results are shown as solid lines; model predictions as dashed lines; PDP’s model as dotted lines.

7.1 Application profiling

Our model works with several low-overhead, hardware
monitoring schemes. For instance, PDP [16] proposes a FIFO

that samples a small fraction of accesses and, when an access
hits in the FIFO, records its depth in the FIFO as the reuse
distance. Other monitors record stack distance and could be
adapted to work with our model. For example, utility mon-
itors [41] are a small, tag-only LRU cache that record stack
distance. Geometric monitors [7] extend utility monitors to
efficiently monitor very large stack distances. Stack distances
can then be approximately translated into reuse distances in
software [47].

In our implementation, we add a small, tagged, LRU array
that samples 1% of accesses through an H3 hash function [10].
The monitor thus behaves like a large cache [5]. The monitor
keeps a global timestamp counter that is incremented on every
sampled access. Each monitor entry holds a 16 b hashed,
partial tag and a coarsened timestamp, which stores the value
of the global timestamp divided by a constant A = 32. Upon
a hit in the monitor, we compute the reuse distance as the
(coarsened) global timestamp minus the line’s timestamp, and
then increment a counter corresponding to the reuse distance.
Thus the counter records a histogram of coarsened reuse
distances. Monitors impose small overheads, roughly 1% of
LLC area, that scale in proportion to cache size.

Finally, other schemes can sample the reuse distance dis-
tribution without adding hardware. Software-only schemes
can sample access patterns, e.g. by injecting page faults [57].
Offline profiling can record the access trace, e.g. through com-
piler hooks [15] or dynamic binary translation [52]. These
schemes should enable our model when hardware support is
unavailable, although we have not evaluated them in detail.

7.2 Overheads

Our model requires modest run-time overheads and small
monitoring overheads, similar to prior schemes. The model
takes only a few arithmetic operations per age region per
iteration (∼25). With N = 128 and 30 iterations on average,
the model completes in ∼100 K arithmetic operations. Since
the model runs infrequently (e.g., every 100 ms), this over-
head is small and constant per core in most applications (see
Sec. 9). If this overhead is too large, N can be reduced or the
reconfiguration interval can be increased, typically at little
performance loss ([3, 7], Fig. 6). Alternatively, the model
can be solved in the background with low-priority threads
that interfere minimally with active applications [25]. Finally,
computation can be reduced by specializing the model to
particular ranking functions.

Cores Westmere-like OOO [46], 2.4 GHz

L1 caches
32 KB, 8-way set-associative, split D/I, 1-cycle
latency

L2 caches
128 KB priv. per-core, 8-way set-assoc,
inclusive, 6-cycle

L3 cache
Shared, non-inclusive, 20-cycle; 16-way,
hashed set-assoc

Coherence
MESI, 64 B lines, no silent drops; sequential
consistency

Memory 200 cycles, 12.8 GBps/channel, 1 channel

Table 5: Configuration of the simulated system.

8. VALIDATION

We now validate our model on synthetic and real bench-
marks, showing that it is accurate over diverse replacement
policies, access patterns, and cache sizes.

8.1 Synthetic

Fig. 4 compares the model against simulation of synthetic
traces. These experiments demonstrate the model’s accu-
racy in an environment that largely satisfies its assumptions
(Sec. 4.1). We simulate a small cache that randomly selects
replacement candidates; random-candidates is an idealized
model of associativity [44] that matches model assumptions.
Each trace is pseudorandomly generated to produce the de-
sired reuse distance distribution.

Each trace represents a different access mix: one is cache-
friendly, and two expose cliffs in LRU and PDP, respectively.
Their reuse distance distributions are shown on the left. On
the right there is one graph per replacement policy. On each
graph, simulation results are shown (solid lines) along with
model predictions (dashed lines). The PDP graph also includes
the predictions of PDP’s analytical model (dotted lines).

Our model is accurate on every configuration. The dashed
lines are often not visible because model predictions are
indistinguishable from simulation results. By contrast, PDP’s
model exhibits significant error from simulation, failing to
distinguish between the LRU-cliff and cache-friendly patterns,
and mispredicting the PDP cliff badly.

8.2 Execution-driven

These results carry over to real benchmarks on a full sys-
tem, where model assumptions only approximately hold.
Methodology: We use zsim [46] to evaluate our model. We
perform execution-driven simulation of SPEC CPU2006 bench-
marks on OOO cores using 16-way hashed, set-associative
last-level caches and parameters given in Table 5. We run

233

each benchmark for 10 B instructions after fast-forwarding
10 B, and we perform enough runs to achieve 95% confi-
dence intervals ≤1%. All results hold for skew-associative
caches [48], zcaches [44], and for systems with prefetching.
This methodology also applies to later case studies.

We evaluate a large range of cache sizes, from 128 KB

to 128 MB, and solve the model every 250 K accesses from
the sampled reuse distance distribution in that interval. This
yields many samples—over 400 K model solutions in all.
Results: Fig. 5 summarizes results across all SPEC CPU2006

applications and across all cache sizes from 128 KB to 128 MB.
It shows the distribution of modeling error (|predicted hit rate
− actual hit rate|) in each 250 K-access interval for LRU, PDP,
and IRGD. The figure thus summarizes model accuracy on
many diverse cache behaviors (>400 K solutions).

0 25 50 75 100

Percentile

0.0

0.2

0.4

0.6

0.8

1.0

A
bs

ol
ut

e
E

rr
or

IRGD
LRU
PDP
PDP model

(a) 128-point solution.

0 25 50 75 100

Percentile

0.0

0.2

0.4

0.6

0.8

1.0

A
bs

ol
ut

e
E

rr
or

IRGD
LRU
PDP
PDP model

(b) Full solution.

Figure 5: Model error distribution over 250 K-access in-
tervals. Our model is accurate, while PDP’s model (dotted
line) has large error.

We show results (a) for coarsened solutions with N = 128
(Sec. 6.2) and (b) full solutions. For 128-point solutions,
median error is 0.1%/0.1%/0.6% for LRU/PDP/IRGD, respec-
tively; mean error is 3.3%/3.7%/2.2%; and 90th percentile
error is 7.5%/9.9%/6.1%. For full solutions, median error is
0.1%/1.1%/0.6%; mean error is 2.2%/3.5%/1.9%; and 90th
percentile error is 4.8%/9.9%/5.5%.

Overall, the model is accurate, and there is modest error
from coarsening solutions. Fig. 6 shows the mean and 90th
percentile error for different values of N. (Median error is
negligible in all cases.) Our model is fairly insensitive to
coarsening, although reducing N below 128 noticeably de-
grades accuracy (especially on LRU). Skew-associative LLCs
improve model accuracy even further.

Figure 6: Sensitivity of model to step size for LRU, PDP,
and IRGD, measured by the number of steps, N (Sec. 6.2).
N = ∞ means full, age-by-age solution.

It is important to emphasize that these results are for 250 K-
access intervals—it is not the case that 10% of benchmarks

have error above 7.5%/9.9%/6.1%. Rather, 10% of intervals
have this error. The distinction is critical. Many benchmarks
have an unstable access pattern, and their hit rate changes
rapidly between intervals. Fig. 7 shows four representative
SPEC CPU2006 apps on a 1 MB, LRU LLC, plotting miss ratio
over the first 25 M LLC accesses with N = 128.2 Most apps are
unstable; gcc’s and hmmer’s hit rates fluctuate wildly across
intervals. Our model does a good job of tracking these fluc-
tuations. (Recall that the model only uses the application’s
reuse distance distribution; it does not observe the cache’s
hit rate.) However, since benchmarks are unstable, reuse
distance distributions are not representative of equilibrium
behavior, and model error is large in some intervals.

Simulation Model Error

0 5 10 15 20 25
Accesses (x1M)

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

at
io

(a) cactus.

0 5 10 15 20 25
Accesses (x1M)

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

at
io

(b) soplex.

0 5 10 15 20 25
Accesses (x1M)

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

at
io

(c) hmmer.

0 5 10 15 20 25
Accesses (x1M)

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

at
io

(d) gcc.

Figure 7: Trace of simulated and predicted miss ratio
for the first 25 M LLC accesses on a 1 MB, LRU LLC. Some
benchmarks are unstable over time, introducing model
error on some intervals.

This model error tends to average out in the long-run,
and indeed our model is quite accurate at predicting each
benchmark’s miss curve over its entire execution (Fig. 8, next
page). For 128-point solutions, the mean model error over
10 B instructions is 1.9%/2.7%/1.1% for LRU/PDP/IRGD, re-
spectively, while the 90th percentile error is 4.7%/6.7%/3.1%.
Results for full solutions are similarly reduced, with long-run
mean error of 1.2%/2.7%/1.0% and 90th percentile error of
3.3%/6.7%/2.9%. Hence, the model error presented in Fig. 5
is a conservative assessment of our model’s accuracy.

Ultimately, the cases where we observe significant model
error are on the benchmarks mcf, lbm, and Gems when using
LRU or PDP replacement. Essentially, these benchmarks do not
satisfy the model’s assumption of iid reuse distances, causing
the model to mispredict the “cliff” in the miss curve, e.g.
predicting a drop in the miss rate at 1 MB instead of at 2 MB

for Gems. This error can be removed at modest additional

2Model behavior on PDP and IRGD is essentially identical. We
omitted these results due to space constraints.

234

Simulation Model Error

12
8K

B

25
6K

B

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

M
B
32

M
B
64

M
B

12
8M

B
0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

at
io

(a) cactus.

12
8K

B

25
6K

B

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

M
B
32

M
B
64

M
B

12
8M

B
0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

at
io

(b) soplex.

12
8K

B

25
6K

B

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

M
B
32

M
B
64

M
B

12
8M

B
0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

at
io

(c) hmmer.

12
8K

B

25
6K

B

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

M
B
32

M
B
64

M
B

12
8M

B
0.0

0.2

0.4

0.6

0.8

1.0
M

is
s

R
at

io

(d) gcc.

Figure 8: Simulated and predicted miss ratio over 10 B

instructions vs. LRU LLC size. Our model is accurate over
the entire execution of each benchmark.

complexity by breaking accesses into multiple classes, as
described in our technical report [4]. Other than these cases,
we find that the model is accurate across the vast majority
of benchmarks and cache sizes. The model’s accuracy thus
compares well with prior modeling work on LRU [47]. We find
that in practice the model is accurate and useful at predicting
cache behavior, as we now illustrate in a case study.

9. CASE STUDY: CACHE PARTITIONING

In this section, we show how to apply the model to improve
shared cache performance with high-performance replace-
ment policies. Recall from Sec. 2.4 that partitioning has many
benefits: improving shared cache performance [41], quality
of service [26], fairness [40], security [39], etc.

Partitioning algorithms use each application’s miss curve to
size partitions. Miss curves allow the partitioning algorithm
to choose sizes that minimize misses. (The optimal solution
is NP-complete, but good approximations exist [3, 37, 41].)

In principle, cache partitioning is complementary to high-
performance cache replacement: cache partitioning allocates
capacity among applications, and the replacement policy then
maximizes each application’s hit rate on its partition. How-
ever, cache partitioning is only effective when miss curves
are available—otherwise, software cannot predict the effect
of different partition sizes, and therefore cannot size them to
achieve system objectives [5].

Our model resolves this conflict, enabling many optimiza-
tions on systems with high-performance replacement policies.
It can model high-performance replacement policies at arbi-
trary cache sizes, and thus predicts the replacement policy’s
miss curve. These miss curves are given to the partitioning al-
gorithm, which can then choose partition sizes that maximize
performance (or achieve other objectives).
Methodology: We evaluate the performance of a shared

LRU
UCP+Model LRU

TA-DRRIP
UCP+Model IRGD

UCP+UMON

0 20 40 60 80 100

Workload

0.95

1.00

1.05

1.10

1.15

1.20

W
ei

gh
te

d
S

pe
ed

up

1.44x1.36x1.38x|

0 20 40 60 80 100

Workload

0.95

1.00

1.05

1.10

1.15

H
ar

m
on

ic
 S

pe
ed

up

1.27x1.25x1.27x|

Figure 9: Speedup for 100 random mixes of SPEC CPU2006

apps. Our model enables partitioning of IRGD, improving
performance over the state-of-the-art.

4 MB LLC on a 4-core system running 100 random mixes of
SPEC CPU2006 applications. We use a fixed-work methodology,
similar to FIESTA [21], with each application fast-forwarded
20 B instructions and run for at least 1 B instructions. We
only use the first 1 B instructions of execution to compare
performance. This case study thus represents over 400 billion
instructions of real programs.

We compare five schemes: (i) unpartitioned LRU, (ii) a
representative thread-aware high-performance policy (TA-

DRRIP [23]), LRU with utility-based cache partitioning [41]
and (iii) hardware LRU monitors (UCP+UMON) or (iv) our
model (UCP+Model LRU), and (v) a high-performance pol-
icy (IRGD) with utility-based cache partitioning (UCP+Model
IRGD) and our model.

Both UCP schemes partition the cache every 100 M cycles
using 16-point miss curves per application. For UCP, this
means a 16-way utility monitor, which adds small hardware
overheads [41]. For UCP+IRGD, this means 16 model solutions.
Multiple sizes can be solved independently, so a vectorized
implementation can produce a full miss curve in 1.4 Mcycles
(using 32-bit floating-point values and 256-bit vectors), im-
posing a 0.6% runtime overhead.
Results: Fig. 9 shows the distribution of weighted and har-
monic speedup over the 100 mixes [18], normalized to un-
partitioned LRU. TA-DRRIP and UCP+UMON both outperform
the LRU baseline respectively by 4.5% on gmean weighted
speedup, and by 2.4%/3.4% on gmean harmonic speedup.

Meanwhile, UCP+Model LRU improves performance gmean
weighted speedup by 6.5% and gmean harmonic speedup by
5.1%, outperforming the hardware monitor. We conjecture
this is because conflict misses affect UMON accuracy with
small partitions, while our model does not suffer this effect.

Finally, UCP+Model IRGD improves by gmean weighted
speedup by 10.2% and and gmean harmonic speedup by
6.1%. Our model combines the single-stream benefits of
high-performance cache replacement and the shared-cache
benefits of partitioning, outperforming the state-of-the-art.
These results show that our model is general-purpose, but
performs as well as an specialized monitor on LRU.

In a technical report [4], we present a further case study
that uses the model to improve IRGD’s performance.

10. CONCLUSION

We have presented a cache model for modern LLCs with
high-performance replacement policies. Our model is moti-
vated by observations of modern cache architecture that allow

235

us to abstract away details of array organization and focus on
modeling the replacement policy. As a result, we capture a
broad class of policies at relatively low complexity. We have
presented an efficient implementation of the model and thor-
oughly evaluated its accuracy and implementation tradeoffs.
Finally, we showed how to use the model to improve cache
performance over state-of-the-art techniques.

Acknowledgments

We thank the anonymous reviewers as well as Harshad Kas-
ture, Po-An Tsai, Mark Jeffrey, Suvinay Subramanian, and
Joel Emer for their helpful feedback. This work was sup-
ported in part by NSF grant CCF-1318384 and a grant from the
Qatar Computing Research Institute.

11. REFERENCES

[1] A. Agarwal, J. Hennessy, and M. Horowitz, “An analytical cache
model,” ACM TOCS, vol. 7, no. 2, 1989.

[2] D. H. Albonesi, “Selective cache ways: On-demand cache resource
allocation,” in MICRO-32, 1999.

[3] N. Beckmann and D. Sanchez, “Jigsaw: Scalable software-defined
caches,” in PACT-22, 2013.

[4] N. Beckmann and D. Sanchez, “A cache model for modern processsors,”
MIT, Tech. Rep. MIT-CSAIL-TR-2015-011, 2015.

[5] N. Beckmann and D. Sanchez, “Talus: A simple way to remove cliffs
in cache performance,” in HPCA-21, 2015.

[6] N. Beckmann and D. Sanchez, “Cache calculus: Modeling caches
through differential equations,” Computer Architecture Letters, 2016.

[7] N. Beckmann, P.-A. Tsai, and D. Sanchez, “Scaling distributed cache
hierarchies through computation and data co-scheduling,” in HPCA-21,
2015.

[8] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Sys. J., vol. 5, no. 2, 1966.

[9] E. Berg and E. Hagersten, “StatCache: A probabilistic approach to
efficient and accurate data locality analysis,” in ISPASS, 2004.

[10] J. L. Carter and M. N. Wegman, “Universal classes of hash functions
(extended abstract),” in Proc. STOC-9, 1977.

[11] D. Chiou, P. Jain, L. Rudolph et al., “Application-specific memory
management for embedded systems using software-controlled caches,”
in DAC-37, 2000.

[12] H. Cook, M. Moreto, S. Bird et al., “A hardware evaluation of cache
partitioning to improve utilization and energy-efficiency while preserv-
ing responsiveness,” in ISCA-40, 2013.

[13] S. Das, T. M. Aamodt, and W. J. Dally, “Reuse distance-based proba-
bilistic cache replacement,” ACM TACO, vol. 12, no. 4, 2015.

[14] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” in ASPLOS-XVIII, 2013.

[15] C. Ding and Y. Zhong, “Predicting whole-program locality through
reuse distance analysis,” in PLDI, 2003.

[16] N. Duong, D. Zhao, T. Kim et al., “Improving cache management
policies using dynamic reuse distances,” in MICRO-45, 2012.

[17] D. Eklov and E. Hagersten, “StatStack: Efficient modeling of LRU
caches,” in ISPASS, 2010.

[18] S. Eyerman and L. Eeckhout, “System-level performance metrics for
multiprogram workloads,” IEEE Micro, vol. 28, no. 3, 2008.

[19] C. M. Grinstead and J. L. Snell, Introduction to probability. American
Mathematical Soc., 1998.

[20] F. Guo, Y. Solihin, L. Zhao et al., “A framework for providing quality
of service in chip multi-processors,” in MICRO-40, 2007.

[21] A. Hilton, N. Eswaran, and A. Roth, “FIESTA: A sample-balanced
multi-program workload methodology,” in Proc. MoBS, 2009.

[22] S. Jahagirdar, V. George, I. Sodhi et al., “Power management of the
third generation Intel Core micro architecture formerly codenamed Ivy
Bridge,” in Hot Chips, 2012.

[23] A. Jaleel, K. Theobald, S. Steely et al., “High performance cache
replacement using re-reference interval prediction,” in ISCA-37, 2010.

[24] M. Javidi, “Iterative methods to nonlinear equations,” Applied Mathe-
matics and Computation, vol. 193, no. 2, 2007.

[25] M. Kamruzzaman, S. Swanson, and D. M. Tullsen, “Inter-core prefetch-
ing for multicore processors using migrating helper threads,” in
ASPLOS-XVI, 2011.

[26] H. Kasture and D. Sanchez, “Ubik: Efficient cache sharing with strict
QoS for latency-critical workloads,” in ASPLOS-XIX, 2014.

[27] G. Keramidas, P. Petoumenos, and S. Kaxiras, “Cache replacement
based on reuse-distance prediction,” in ICCD, 2007.

[28] G. Keramidas, P. Petoumenos, and S. Kaxiras, “Where replacement
algorithms fail: A thorough analysis,” in Proc. CF-7, 2010.

[29] S. M. Khan, Y. Tian, and D. A. Jimenez, “Sampling dead block predic-
tion for last-level caches,” in MICRO-43, 2010.

[30] S. M. Khan, Z. Wang, and D. A. Jiménez, “Decoupled dynamic cache
segmentation,” in HPCA-18, 2012.

[31] M. Kharbutli, K. Irwin, Y. Solihin et al., “Using prime numbers for
cache indexing to eliminate conflict misses,” in HPCA-10, 2004.

[32] N. Kurd, S. Bhamidipati, C. Mozak et al., “Westmere: A family of
32nm IA processors,” in ISSCC, 2010.

[33] H. Lee, S. Cho, and B. R. Childers, “CloudCache: Expanding and
shrinking private caches,” in HPCA-17, 2011.

[34] R. Manikantan, K. Rajan, and R. Govindarajan, “Probabilistic shared
cache management (PriSM),” in ISCA-39, 2012.

[35] J. Mars, L. Tang, R. Hundt et al., “Bubble-up: Increasing utilization
in modern warehouse scale computers via sensible co-locations,” in
MICRO-44, 2011.

[36] R. L. Mattson, J. Gecsei, D. R. Slutz et al., “Evaluation techniques for
storage hierarchies,” IBM Sys. J., vol. 9, no. 2, 1970.

[37] M. Moreto, F. J. Cazorla, A. Ramirez et al., “FlexDCP: A QoS frame-
work for CMP architectures,” ACM SIGOPS Operating Systems Review,
vol. 43, no. 2, 2009.

[38] A. Mukkara, N. Beckmann, and D. Sanchez, “Whirlpool: Improving
dynamic cache management with static data classification,” in ASPLOS-
XXI, 2016.

[39] D. Page, “Partitioned cache architecture as a side-channel defence
mechanism,” IACR Cryptology ePrint archive, no. 2005/280, 2005.

[40] A. Pan and V. S. Pai, “Imbalanced cache partitioning for balanced
data-parallel programs,” in MICRO-46, 2013.

[41] M. Qureshi and Y. Patt, “Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared
caches,” in MICRO-39, 2006.

[42] M. Qureshi, A. Jaleel, Y. Patt et al., “Adaptive insertion policies for
high performance caching,” in ISCA-34, 2007.

[43] L. Richard and J. Burden, “Douglas faires, numerical analysis,” 1988.

[44] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling ways and
associativity,” in MICRO-43, 2010.

[45] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and efficient fine-
grain cache partitioning,” in ISCA-38, 2011.

[46] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microarchitec-
tural simulation of thousand-core systems,” in ISCA-40, 2013.

[47] R. Sen and D. A. Wood, “Reuse-based online models for caches,” in
Proc. SIGMETRICS, 2013.

[48] A. Seznec, “A case for two-way skewed-associative caches,” in ISCA-
20, 1993.

[49] M. Shah, J. Barren, J. Brooks et al., “UltraSPARC T2: A highly-
treaded, power-efficient, SPARC SOC,” in ISSCC, 2007.

[50] S. Srikantaiah, R. Das, A. K. Mishra et al., “A case for integrated
processor-cache partitioning in chip multiprocessors,” in SC09, 2009.

[51] M. Takagi and K. Hiraki, “Inter-reference gap distribution replacement:
an improved replacement algorithm for set-associative caches,” in
ICS’04, 2004.

[52] D. K. Tam, R. Azimi, L. B. Soares et al., “RapidMRC: Approximating
L2 miss rate curves on commodity systems for online optimizations,”
in ASPLOS-XIV, 2009.

[53] H. Wong, “Intel Ivy Bridge cache replacement policy, http://blog.
stuffedcow.net/2013/01/ivb-cache-replacement/,” 2013.

[54] C.-J. Wu, A. Jaleel, W. Hasenplaugh et al., “SHiP: Signature-based hit
predictor for high performance caching,” in MICRO-44, 2011.

[55] M.-J. Wu, M. Zhao, and D. Yeung, “Studying multicore processor
scaling via reuse distance analysis,” in ISCA-40, 2013.

[56] X. Zhang, E. Tune, R. Hagmann et al., “CPI2: CPU performance
isolation for shared compute clusters,” in EuroSys, 2013.

[57] P. Zhou, V. Pandey, J. Sundaresan et al., “Dynamic tracking of page
miss ratio curve for memory management,” in ASPLOS-XI, 2004.

236

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

