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ABSTRACT
Virtualization has become an important technology that is
used across many platforms, particularly servers, to increase
utilization, multi-tenancy and security. Virtualization intro-
duces additional overhead that often relates to memory man-
agement, interrupt handling and hypervisor mode switching.
Among those, memory management and translation looka-
side buffer (TLB) management have been shown to have
a significant impact on the performance of systems. Two
principal mechanisms for TLB management exist in today’s
systems, namely software and hardware managed TLBs. In
this paper, we analyze and quantify the overhead of a pure
software virtualization that is implemented over a software
managed TLB. We then describe our design of hardware ex-
tensions to support virtualization in systems with software
managed TLBs to remove the most dominant overheads.
These extensions were implemented in the Power embed-
ded A2 core, which is used in the PowerEN and in the Blue
Gene/Q processors. They were used to implement a KVM
port. We evaluate each of these hardware extensions to de-
termine their overall contributions to performance and effi-
ciency. Collectively these extensions demonstrate an average
improvement of 232% over a pure software implementation.

1. INTRODUCTION
Virtualization has seen increased popularity due to cloud

computing, deployment of virtual appliances and consolida-
tion. In contrast to standard system deployment where a
single operating system (OS) controls the physical machine
it is running on, virtualization enables multiple OSs to run
concurrently on a single physical machine. Doing so, enables
new important features. First, different types and versions
of OSs can run side by side. For instance, legacy applications
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relying on older versions of an OS can be deployed at the
same time as modern applications that require more recent
OSs. Furthermore, applications and their OSs can be iso-
lated, which gives rise to the notion of software appliances.
Second, probably equally important, is that this collocation
enables a much higher utilization of computing resources. It
is known that infrastructure services such as print and file
servers, as well as end-user desktop systems, demonstrate
poor system utilization that often does not reach a double
digit percentage [3]. Virtualization, with the resulting abil-
ity to collocate OSs, enables a significantly higher utilization
and is one of the principal enabling technologies that has
been driving cloud computing.

Virtualization introduces a new layer of system software,
called the hypervisor (or Virtual Machine Monitor, VMM),
that controls the access to the physical resources from guest
OSs. The guest OS has restricted control of the physical re-
sources and has to engage with the hypervisor to get access.
This new layer results in additional overhead in the execu-
tion of code and accesses to the I/O devices that can grossly
be categorized in memory management, interrupt handling
and I/O accesses. Processor technology has advanced and
now provides many techniques to mitigate some of this over-
head.

In this paper we pay close attention to the impact on the
memory management subsystem under virtualization. For
instance, almost all modern processors are equipped with
TLBs. Two principal mechanisms for handling TLB misses
are commonly found in modern architectures, namely hard-
ware managed TLBs or software managed TLBs, or some
combination of the two. Processors with hardware managed
TLBs automatically walk the page table to locate a valid
page table entry for the specified virtual address. If an en-
try exists, it is brought into the TLB and the translation
is retried: this time the access will hit in the TLB, allow-
ing the program to proceed. For example, Intel and AMD’s
x86 processors, IBM’s Power Server ISA and ARM’s Cor-
tex are all equipped with hardware managed TLBs. With
the introduction of virtualization, address translation is a
dual lookup, one within the guest translation and one within
the hypervisor/host environment. In systems with hardware
managed TLB, the TLB implementation can be transpar-
ently extended without impact on the system stack.

In contrast, in processors with software managed TLB,
a TLB miss generates a ”TLB miss” exception, and OS
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Figure 1: Pure Software Virtualization on Tradi-
tional Power Embedded Core

code is responsible to traverse the page table to identify the
translation in software. The OS then loads the translation
into the TLB and restarts the program from the instruc-
tion that caused the TLB miss. Processors such as MIPS,
UltraSPARC, and Power Embedded ISA are equipped with
software managed TLBs. With virtualization, two transla-
tions need to be done in software, which are performed in
different protection domains.

In this paper, we describe our design of hardware ex-
tensions to support virtualization in systems with software
managed TLBs. These extensions were implemented in the
Power embedded A2 core, which is used in the IBM Pow-
erEN[10, 11] and the IBM Blue Gene/Q[14] processors, and
subsequently utilized for a port of a Kernel-based Virtual
Machine (KVM) hypervisor. A performance comparison be-
tween a KVM implementation and a pure software mecha-
nism is conducted which shows 232% performance improve-
ment on average.

The rest of this paper is organized as follows. In Section 2,
we describe the pure software based classical virtualization
techniques on the Power embedded core which also high-
lights some of the inefficiencies of the approach. Section
3 proposes the hardware assisted virtualization techniques
for the Power embedded core, which is a software managed
TLB processor. Section 4 describes the virtualization imple-
mentations with different hardware extension mechanisms
on Power embedded core. Section 5 presents the experi-
mental results and evaluates the performance impact of the
different hardware extensions. Section 6 summarizes related
work and Section 7 concludes.

2. CLASSICAL VIRTUALIZATION MECH-
ANISM ON TRADITIONAL POWER EM-
BEDDED CORE

Popek and Goldberg’s 1974 paper [22] defines require-
ments for what is termed classical virtualization. By their
standards, a piece of software can be considered a hypervi-
sor if it meets the following three requirements[1]: fidelity,
performance and safety.

The trap-and-emulate technique for long was thought to
be the only practical method for virtualization. We refer to
it as EMUL virtualization throughout this paper, as com-
pared to the hardware assisted virtualization.

As shown in Figure 1, in the traditional Power embed-
ded core architecture, two operating states or modes are
defined: supervisor (privileged) and user (non-privileged).
An attempt to execute a privileged instruction or to access
a privileged register while in user mode causes a Privileged
Instruction exception to occur.
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Figure 2: Interrupt Handling on Pure Software Vir-
tualization

In EMUL virtualization, all instructions of the guest ma-
chine (aka virtual machine, VM), including ones executing
in the guest OS, are executed in user mode. All privileged
instructions running in the guest machine will trap to the
hypervisor (supervisor mode) and then the hypervisor per-
forms the emulation and returns to the guest. Usually, be-
cause there are a significant number of supervisor instruc-
tions and privileged register accesses that need to be trapped
and emulated, EMUL virtualization introduces significant
overhead on the Power embedded core. For example, the
privilege instruction ’mtmsr r0’ (move the MSR to GPR
r0), which is utilized for monitoring processor state and in-
terrupt handling, issues 669 host instructions during EMUL
virtualization. This overhead includes the guest state sav-
ing (158 instructions), the hypervisor management (144 in-
structions), the emulation (290 instructions) and the guest
state restore (77 instructions). Different interrupts can cause
various overheads. In this paper, the detailed instruction
counts were collected using the Mambo [9] full-system simu-
lator, and all other performance numbers were collected on
real hardware.

Next, we will examine the specifics of the software virtu-
alization approach for the traditional Power embedded core.

2.1 Interrupt Interception
In the Power embedded core, the location of the inter-

rupt service routines is defined by a special purpose regis-
ter (SPR), named IVPR (Interrupt Vector Prefix Register).
Since the guest OS is always executing in user mode, the hy-
pervisor needs to redirect the IVPR register and point it to
the address of the hypervisor interrupt routines before guest
machines run. Usually, there are three operations that need
to be performed in the interrupt routines: hypervisor mode
switch, privileged instruction or function emulation, and in-
terrupt injection to the guest. Hypervisor mode switch im-
plies a switch in privilege level between guest and hypervi-
sor, saving the context of guest machine and preparing the
virtualization related guest data structures. All of the guest
related states including general registers and some special
registers, such as PID (Process ID), PC, stack pointer, re-
turn address, etc., are saved to a reserved data structure
(called vcpu). The IVPR is also redirected to the interrupt
routines of the host OS.

There are two types of instructions that need to be emu-
lated. The first is the set of privileged instructions that can
not execute in user mode. The hypervisor emulates these in-
structions and returns the results to the guest. The second is
the set of instructions which access privileged hardware re-
sources, such as some SPRs, TLB etc. The hypervisor main-
tains a shadow copy of such privileged resources in vcpu. All
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accesses to the privileged resources in the guest machine are
directed to the shadow copy.

According to the type of interrupts, the hypervisor takes
corresponding actions. As we described above, privileged in-
structions are emulated in a hypervisor environment, shown
in Figure 2 as type-1. If an interrupt is destined to the guest
OS for further processing, the hypervisor will inject the in-
terrupt context into the guest OS and switch to the guest
OS’s interrupt routines, shown in Figure 2 as type-2.

2.2 MMU Emulation
In a virtualized system, besides the guest OS maintain-

ing page tables for guest virtual page number (GVN) to
guest physical page number(GPN) mappings, the hypervi-
sor also maintains mappings of GPN to host physical page
number (HPN).

In a software managed TLB processor, privileged system
code (either OS or in the case of virtualization, the hy-
pervisor) uses privileged instructions to maintain the TLB.
Hence, in the EMUL virtualization approach, all TLB in-
structions, such as TLB read/write/search operations, will
invoke a trap and be emulated by the hypervisor. To ac-
complish the emulations, the hypervisor maintains a shadow
TLB structure, which is attached to the guest machine for
its TLB related operations. The shadow TLB contains all
valid TLB entries seen by the virtualized guest OS. When
an address translation for instruction fetch or data access
misses in the hardware TLB, a TLB miss exception occurs
which is intercepted by the hypervisor. The hypervisor first
conducts a lookup in the shadow TLB. If a corresponding
valid shadow TLB entry is found, a mapping from GVN to
GPN can be extracted from the entry. Then the hypervisor
translates the GPN to an HPN and loads the new address
mapping (GV N → HPN) into the hardware TLB entry.
If no entry is found in the shadow TLB, which is a virtual
TLB miss of the guest machine, the hypervisor will inject
the exception into the guest machine and relinquish control
to the guest OS handler to process this exception with guest
page tables. The guest OS handles the TLB miss by issu-
ing TLB read/write/search operations, all of which have to
be intercepted and emulated. As a result, the resolved ad-
dress mapping (GV N → GPN) information is saved into
the shadow TLB for subsequent searches. Finally, the TLB
miss is handled and the guest machine can proceed. This
process is shown as type-2 exception in Figure 2.

To guarantee the security and resource management re-
quirements, two mechanisms are required in emulating the
TLB access and lookup operations in Power embedded core:
address space (AS) isolation and PID mapping. The Power
embedded core provides two address spaces for instruction
and data access: address space 0 and address space 1. Gen-
erally the host system runs in address space 0. Thus ad-
dress space 1 can be reserved for guest machines. This is
done by setting a reserved bit in MSR and a reserved bit
in the TLB entry. The former is used to identify the target
address space of memory accesses. The latter is applied to
indicate the address space where address translation occurs.
The precondition of this method is to guarantee that the
reserved bit is not used in the guest machine. This is true
for many popular OSs such as Linux and BSD. When a TLB
lookup operation is performed, the reserved bit in the MSR
is compared with the corresponding bit in the TLB entry,
which guarantees the address space isolation between guest
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Figure 3: PID Mapping Mechanism for Virtualiza-
tion
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Figure 4: Total Traps to Hypervisor of SPEC-
CPU2006 Test Set

machine and host machine[8].
In EMUL virtualization, all isolations or partitions be-

tween different guest machines are implemented by the PID
mapping. PID is a unique value for each process allocated
by the OS, and is a part of a virtual address. Each TLB en-
try has a PID field to indicate which virtual address space it
belongs to. All guest processes, whether the guest OS (su-
pervisor privileged) or guest applications (user mode), are
user-level processes of the host machine. Though the guest
OS allocates a unique PID for each process, this PID may
not be globally unique across all guest machines. Conse-
quently the hypervisor must keep a globally unique PID for
each guest process. That is accomplished by an additional
PID mapping table per guest (virtual cpu id table), which
maps guest’s virtual PID to real PID (sid) that is ultimately
loaded into the hardware register, as shown in Figure 3. This
additional lookup during hypervisor mode switch further in-
creases the overhead of EMUL virtualization.

2.3 Performance Overhead in EMUL Virtual-
ization

To determine the overhead of pure software based EMUL
virtualization mechanism, we conducted a performance study
running SPECCPU2006 [23, 19] within an OS that was not
virtualized, and then in a virtualized OS. The platform was
an embedded PowerPC, PowerEN processor, which will be
described in detail in Section 4.
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Benchmark Privilege DTLB ITLB Performance
Miss Miss Degradation

perlbench 237559 28475 20443 68%
bzip2 301906 49259 2797 87%
gcc 298313 38782 13669 86%
mcf 363920 51847 2848 99%
milc 390424 44498 2818 97%
gobmk 317475 36108 3458 82%
hmmer 6889 793 444 1%
sjeng 346689 39779 4365 93%
libquantum 10818 1135 555 2%
h264ref 270918 36637 4941 78%
lbm 355284 40400 2106 92%

Table 1: Trap Rate per Second Breakdown with
SPECCPU2006 in EMUL Virtualization

Firstly, we counted and listed all different guest exceptions
that trapped to the hypervisor in SPECCPU2006 cases, as
shown in logarithmic coordinates in Figure 4. We found
that three kinds of exceptions dominate (more than 99.9%)
in guest exceptions: privileged instruction exception, DTLB
miss exception and ITLB miss exception. Hence the discus-
sion below will focus on these three exceptions. Table 1
shows the relative performance degradation and the rate
per second of exceptions on each benchmark. The perfor-
mance degradation is on average 72% with a maximum of
99%. Note that the degradation is not linearly correlated to
the number of traps since various emulations require signifi-
cantly different number of instructions. For instance DTLB
misses require between 1K and several K-instructions to em-
ulate. There are two different kinds of DTLB traps, mi-
nor faults and major faults. A minor fault occurs when a
GV N → GPN mapping exists in the shadow TLB, which
can conduct a write to the hardware TLB after the GPN to
the HPN translation by the hypervisor. A major fault oc-
curs when no mapping is found in the shadow TLB and the
miss needs to be relegated to the guest OS for resolution,
which will potentially cause a series of privileged traps.

Focusing on these three exceptions guided our work to
investigate, propose, implement and evaluate methods that
allow for a more efficient virtualization thus reducing the
need for constant trap-and-emulate.

3. HARDWARE ASSISTED VIRTUALIZA-
TION DESIGN ON POWER EMBEDDED
CORE

In this section, we describe the design of hardware ex-
tensions to support virtualization in systems with software
managed TLBs to overcome the inefficiencies identified in
the previous section.

3.1 Guest Mode Support
As illustrated in the previous section, the privileged in-

struction trap causes performance overhead because the guest
machine always executes in user mode in EMUL virtualiza-
tion. If the hardware was able to execute guest privileged
instructions directly, many privileged instructions would not
cause exceptions anymore.

To accomplish this, an additional instruction privilege level
is introduced, leading to 3 levels: guest user (applications),
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Figure 5: Virtualization Levels on Hardware-
Assisted Power Embedded Core

supervisor (guestOS), and hypervisor privileged, shown in
Figure 5, just like previous processors such as ARM Cortex
A-15[4] and Freescale e500mc[12] did.

All privileged instructions are divided into hypervisor priv-
ileged instructions and supervisor privileged instructions.
With the support of guest state, all supervisor privileged
instructions can be executed directly on the hardware if the
guest machine is running in supervisor state, which implies
there is no need to trap-and-emulate. The hypervisor priv-
ileged instructions running or accessing a hypervisor privi-
leged resource (such as some SPRs) in guest state or super-
visor state still lead to a hypervisor privileged exception.

3.2 Logical Partition Identification
Guest machine isolation is one of the key characteristics

that the hypervisor and the virtualization technology must
guarantee. As mentioned in the previous section, in EMUL
virtualization, the hypervisor uses the PID mapping mech-
anism to isolated different virtual machines. The PID map-
ping is implemented by trap-and-emulate on PID access in-
structions, which means the PID has to be a hypervisor priv-
ileged resource and access to PID still leads to a privileged
exception.

The guest state support is insufficient to build a globally
unique PID space. To eliminate the mapping overhead, the
hypervisor privileged Logical Partition Identification Reg-
ister (LPIDR) is introduced to identify a guest machine.
The combination of LPID and PID is a unique value in the
whole system for each process and is applied to the address
translation in the processor with guest state support. The
< LPID, PID, vaddr > is maintained in the TLB. With
the presence of the LPIDR, the mandatory PID mapping,
that had to be maintained in the EMUL implementation,
is not necessary. The TLB management instructions can be
executed in supervisor state and the hardware transparently
extends the < PID, vaddr > with the LPID when writing
it to the TLB.

We analyzed the programs of the SPECCPU2006 C test
set with respect to the number of exceptions during their
executions. On average, the number of hypervisor privi-
leged exceptions is only 10.2% of the number of privileged
instruction exceptions in EMUL virtualization. As shown in
the Figure 6, about 90% overhead caused by the privileged
instructions could be reduced with the help of Guest Mode
and LPIDR.

3.3 Interrupt Redirect
As exceptions and interrupts are treated by the architec-

ture and the system software in the same manner, we do not
distinguish them and use these terms interchangeably. In-
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Figure 7: Interrupts Handling on Hardware-
Assisted Virtualization

terrupts in Power embedded cores use the IVPR as the base
address of the interrupt handler vector. Interrupts that are
directed to the hypervisor state use registers SRR0 (for the
instruction address) and SRR1 (for the MSR) to save the
context of interrupts, ESR (Exception Syndrome Register)
to post exception syndrome information, and DEAR (Data
Exception Address Register) to keep the virtual address of
a data reference.

The overhead for a hypervisor mode switch between the
guest and the hypervisor on Power embedded cores is 235
native instructions, including 158 for guest data saving and
77 for hypervisor context restore respectively. Intuitively,
if interrupts can be directed to the guest handler upon ex-
ception without a trap to the hypervisor, the overhead for
hypervisor mode switches between the guest and hypervisor
can be eliminated, as the type-2 shown in Figure 7. Not
every type of exception can be redirected though, for ex-
ample, the hypervisor privilege exception and the I/O in-
terrupt. However, most of the TLB miss exceptions which
are also responsible for most of the performance overhead
can be redirected because they need the intervention of the
guest OS.

Hence, a new register is introduced in the Power embed-
ded core, named GIVPR (Guest Interrupt Vector Prefix
Register), which is used to hold the base address of guest
interrupt handlers. All TLB related exceptions (I/D TLB
miss exception and I/D TLB storage exception) can be con-
figured by the hypervisor to redirect to the interrupt han-
dlers of the guest machine.

Although the interrupt redirect mechanism can skip the
overhead for hypervisor mode switch, TLB related excep-
tion handlers still need many hypervisor interventions. For

example, some SPRs (Special Purpose Register), such as
SRR0/1, ESR, DEAR etc., are accessed in interrupt han-
dlers and always hypervisor privileged, which means access
to them needs trap-and-emulate and the hypervisor main-
tains their shadow copies.

3.4 Privileged Resource Mapping
To further improve performance of guest machine, a reg-

ister mapping mechanism is introduced in Power embedded
cores to build a guest copy of frequently used SPRs in hard-
ware, and redirect the SPR access in guest machine to them.
This redirection takes place when executing in supervisor
state. For example, when an instruction ’mtspr SRR0,r5’
is executed in supervisor state, the access to SRR0 is redi-
rected to GSRR0, instead of accessing SRR0. The map-
ping is transparent to the guest machine, and separates per-
formance critical resource of the hypervisor and the guest
OS. It removes the requirement of the hypervisor software
to handle the interrupts with these SPR accesses, and the
needs to maintain shadow copies for guest machine. In addi-
tion, it keeps the same programming interface for both host
and guest OS. Once register mapping is implemented, the
accesses to the corresponding registers are supervisor privi-
leged since the guest kernel can access them natively.

3.5 Instruction Mapping
The register mapping above is utilized for instructions

that access registers directly, such as mtspr and mfspr. In
Power embedded cores, the rfi instruction (return from in-
terrupt) is used to return from a base class interrupt. All in-
terrupt handlers use it to return to the interrupted program.
Its semantic is as follows: MSR← SRR1 and PC ← SRR0.
When executing in guest machine, execution of an rfi in-
struction can be mapped to rfgi, which is executed in place
of the rfi. The semantic of rfgi is below: MSR ← GSRR1
and PC ← GSRR0.

This mechanism is called instruction mapping, which al-
lows the elimination of trap-and-emulate overhead for rfi
instruction and the same programming interface for guest
and hypervisor.

3.6 MMU Virtualization
With the above mechanisms, the number of trap-and-

emulates for TLB misses can be significantly reduced, but
the traps for TLB management instructions such as tlbwe
(write) and tlbre (read) still exist.

When a tlbwe instruction is executed, an address mapping
entry is filled into the TLB. Because the guest machine can
not directly operate on the hardware TLB, and the guest has
no knowledge of the mapping between host physical address
(HPA) and guest physical memory, the tlbwe in the guest
machine must conduct a trap to ask for the hypervisor’s
help. The hypervisor searches the shadow TLB for the GVN
to GPN mapping, and translates the GPN to HPN before
inserting the GV N → HPN mapping into the hardware
TLB. This trap and the hypervisor intervention introduce
more than 1000 instructions overhead for the TLB miss.

To eliminate the overhead caused by tlbwe, a hardware
extension is introduced in Power embedded cores, which
conducts the GPN to HPN translation automatically and
transparently. A new address translation table is built in
hardware, called LRAT (Logical to Real Address Transla-
tion, here Logical==GPA and Real==HPA), providing a
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Guest Mode

fast lookup for GPA to HPA translation. The LRAT con-
sists of multiple entries. Each entry should be assigned to
a guest machine. On the other hand, a guest machine can
have multiple entries. A high degree of flexibility is achieved
through the support of different segment sizes in each entry.
And it also has mechanisms to support memory holes in huge
entry blocks, which can be used for small block sharing and
fragmentation cases. The LRAT is owned and managed by
the hypervisor.

With LRAT, writing TLB entries with tlbwe is supervisor
privileged and is executable by either hypervisor or guest.
When a tlbwe is executed in hypervisor, it works as before.
When a tlbwe is executed in guest, the LRAT entries are
searched for a matching GPN by the hardware. If one entry
is found, the GPN is translated to an HPN before being
written into the TLB. In the case where no match is found,
an LRAT miss exception is raised that must be resolved by
the hypervisor (e.g. allocate memory from the system and
create an LRAT entry for the guest machine). The tlbwe
instruction’s workflow is shown in Figure 8.

Finally, combining all introduced mechanisms allows TLB
miss handling to be completely executed in the guest ma-
chine without hypervisor intervention.

4. VIRTUALIZATION IMPLEMENTATIONS
ON POWER EMBEDDED CORE

In this section, we describe our KVM-based hypervisor
implementations with the hardware assisted extensions on
the Power embedded A2 core.

4.1 IBM A2 Core
Based on the 64-bit Power ISA BookE[16] architecture, A2

cores support in-order execution and dual issue from up to
four active hardware threads in a fine-grained simultaneous
multi-threaded (SMT) fashion. Each A2 has a 16KB L1-I
and L1-D cache and 512 TLB entries (4-way set associative).
A group of four A2s share a 2MB L2 cache. A2 cores are
currently deployed in two different systems, the IBM Pow-
erEN processor[10, 11] and the IBM Blue Gene/Q[14]. The
IBM PowerEN processor was designed to meet the demands
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Figure 9: KVM Virtualization Infrastructure

of next generation network applications. It integrates 16
general purpose, 4-way SMT A2 cores, with an array of on-
chip accelerators. BG/Q is the third generation computer
architecture in the Blue Gene series[17] of supercomputer.
Each BG/Q compute chip has 16 A2 cores. For reference,
all experiments were conducted on a PowerEN system.

The hardware extensions described in Section 3 are all im-
plemented in the A2 core. These extensions are designed to
be configurable by the hypervisor. For example, the guest
mode extension can be enabled by setting the MSR[GS].
LRAT can be enabled or disabled by setting tlbwe instruc-
tion to supervisor privileged or hypervisor privileged. The
hardware overhead for these extensions is negligible, nor do
they introduce complex logic or require large memory. For
example, the LRAT in each A2 core is a small 8-way fully as-
sociative CAM (Content Addressable Memory). Each LRAT
entry in the A2 core supports multiple ”chunk” sizes, from
1MB to 1TB, which can be dynamically configured by the
hypervisor based on different requirements of applications
and scenarios.

In the A2 core, the privileged registers are decoupled to
supervisor privileged and hypervisor privileged, allowing the
guest OS to access the supervisor ones directly. There are
127 non-user SPRs in the A2 core and 52 among them are
supervisor privileged. These 52 supervisor privileged SPRs
include many high-use registers, such as MSR and the in-
terrupt handler related registers, which can be accessed na-
tively in the guest OS.

4.2 Kernel-based Virtual Machine Implemen-
tations

KVM[18] is an open source hypervisor implementation
that is integrated into the Linux kernel and provides feature-
rich and highly efficient virtualization. It consists of a load-
able kernel module which provides the core virtualization
infrastructure, and a processor specific module for the ar-
chitecture emulation and interrupt handling. The KVM ar-
chitecture is shown in Figure 9.

In order to evaluate each of the hardware extensions and
determine their overall contribution to performance improve-
ments, we enable them gradually. We implemented 3 differ-
ent KVM hypervisors for the A2 core architecture. The
implementations are based on the Linux 3.1 kernel. These
versions are described in the following.

4.2.1 KVM for EMUL Virtualization:
The first hypervisor version is a pure software EMUL vir-
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tualization implementation, which assumes the A2 core does
not have any hardware assisted virtualization support. All
hardware extensions in the A2 core are disabled at system
start time. We leverage the KVM framework for Power em-
bedded core and implement the A2 specific operations for
EMUL virtualization. In order to model the hardware re-
sources and emulate the instructions for the guest machine,
several thousands lines of code are added to the hypervisor.
The shadow TLB for each guest is modeled identical to the
hardware TLB organization (e.g. number of TLB entries)
in the A2 core.

Because in general a guest can not access I/O directly, I/O
device virtualization in KVM is provided through QEMU[6].
For I/O accesses, a guest OS usually invokes a guest device
driver, which then triggers an interrupt and switches ex-
ecution into the KVM environment. KVM then transfers
the device access request to QEMU for device emulation.
If the access should be emulated by software, QEMU calls
a software device model, emulates the corresponding device
behaviors and returns the results. Otherwise, QEMU calls
a host device driver to provide the desired I/O function. Its
workflow is also shown in Figure 9.

4.2.2 KVM for GS Virtualization:
In the GS virtualization implementation, we enable all

hardware extensions above, except MMU virtualization, i.e.
LRAT and interrupt redirection are not enabled. The hy-
pervisor still leverages the shadow TLB, and all TLB related
instructions in the guest always cause a trap-and-emulate.
The complexity of the hypervisor implementation has been
reduced. For instance, due to the introduction of LPID, PID
mapping in the hypervisor is not required anymore.

4.2.3 KVM for LRAT Virtualization:
Finally, we enable all hardware assisted virtualization fea-

tures, and call this hypervisor version the LRAT virtualiza-
tion. The shadow TLB is no longer needed, as the guest
can directly access the hardware TLB, and GPN → HPN

translation is handled transparently by the LRAT. However,
the LRAT management module is now integrated with the
hypervisor, which is shown as ’LRAT MM’ in Figure 9.

Generally I/O accesses from the guest machine are al-
ways trapped to the hypervisor by the DTLB miss and then
emulated by leveraging QEMU. However, in LRAT virtu-
alization all guest TLB misses are redirected to the guest
handlers, instead of trapping into the hypervisor. When the
guest handler processes the DTLB miss for I/O accesses, it
executes a tlbwe instruction, which causes the LRAT miss
exception because the hypervisor has not inserted the ad-
dress mapping for the I/O address. That LRAT miss excep-
tion traps to the hypervisor and the hypervisor can detect
using the GPN with tlbwe that the guest OS is handling an
exception caused by an I/O access. However, the specific
address of the I/O access can no longer be detected because
two exceptions (a DTLB miss and an LRAT miss) have oc-
curred. Without the address, emulation for the I/O device
can not be conducted.

One approach for guest I/O accesses is source-level mod-
ifications using a technique called paravitualization[5]. The
source code of the guest OS is modified to create an inter-
face that proactively invokes the hypervisor for the device
virtualization. Paravirtualization offers high performance,
but its one disadvantage is that it requires changes on the

Host Linux

Guest I/O Access

1. DTLB miss

Guest DTLB Handler

 (tlbwe)

2. LRAT miss

LRAT MM

Hardware TLB

4. return 

Data Storage Handler

QEMU

6. Data Storage 

Exception

3. Insert modified TLBe

8. I/O emulation

VM

KVM

5. return 

I/O Map Table

7. Translation

Figure 10: Guest I/O Device Access in LRAT Vir-
tualization

guest OS.
A general choice is to leverage LRAT miss exception and

data storage exception to conduct the I/O emulation. As
shown in Figure 4, DTLB misses occur significantly more
frequent than data storage exceptions. Hence redirecting
storage exceptions back to the hypervisor will not introduce
significant overhead. When an I/O access is detected during
LRAT miss exception, LRAT MM inserts a hardware TLB
entry which permission has been changed (for example, no
read, no write or no execute) to cause a storage exception on
the I/O pages (GPN). Meanwhile, LRAT MM maintains the
GVN to GPN mapping in an I/O map table. When the guest
tries to access the I/O device the second time with GVA, it
causes a data storage exception rather than a DTLB miss
exception. Since the data storage exception is configured
by the hypervisor, the storage exception handler can detect
the I/O access by the GVA from the guest context, and
translate it to the GPA by the I/O map table. Then QEMU
can be invoked to emulate the I/O access as it does before.
The work flow of this guest I/O access approach takes eight
steps and is shown as the dashed lines in Figure 10.

Our goal for LRAT virtualization is to simplify the imple-
mentation of a robust hypervisor, which can support a broad
range of unmodified guest OSs, and to maintain high level
of performance. Based on the approach above, we lever-
age the register mapping mechanism of the A2 core to build
a simpler solution. For example, The Data Exception Ad-
dress Register (DEAR) in the Power embedded core keeps
the exception-causing address for Data TLB Error and Data
Storage interrupts. When running in guest state, the DEAR
will be mapped to the GDEAR. The specific address of the
I/O access is reserved in the GDEAR during the guest TLB
miss handler. When a tlbwe LRAT miss exception occurs,
the new exception address (GPN) is kept in the DEAR.
Hence, the LRAT MM can directly invoke QEMU to em-
ulate the I/O device with the information in the guest map-
ping register. This is accomplished with only three steps
and shown using solid line in Figure 10.

5. PERFORMANCE EVALUATION
This section evaluates the performance of the different

virtualization mechanisms based on the Linux kernel 3.1
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Figure 12: Performace of Virtualization for SPEC-
CPU2006 Relative to Native Execution

booting process and the SPECCPU2006 benchmarks. The
three KVM hypervisor versions are evaluated on the same
IBM PowerEN platform with the Linux kernel 3.1 running
as the host OS. The main memory is 16GB on the host
PowerEN system, and the virtual machines are always con-
figured to have 1GB memory in the following evaluations.
Since Linux is widely used in virtual machine solutions,
we choose guest Linux kernel booting process as a practi-
cal workload for evaluation, which has a complicated code
path and various hypervisor mode switches. We measure
the elapsed time from the first instruction until the init pro-
cess starts running. SPECCPU2006 C test set is used as
another computation-intensive workload to evaluate the vir-
tualization performance. We have chosen to measure SPEC-
CPU2006 over SPECvirt sc2010 [24] as we want a finer grain
analysis of the overhead that occurred, similar to [2].

5.1 Efficiency of Virtualization Mechanisms
Figure 11 shows the overhead breakdown of guest Linux

kernel booting in different virtualization mechanisms. The
GS virtualization mechanism reduces privileged instruction
emulation overhead (from 12% to 1.6%), but fails to im-
prove the performance of TLB misses, which is a major part
of the virtualization overhead (37.5%). The LRAT mecha-
nism further reduces the instruction emulation overhead to
0.3%, and the TLB miss overhead to less than 1.5%. The

remaining 1.5% TLB miss overhead is due to MMIO excep-
tions, which can not be avoided and must be handled by
QEMU.

We also evaluate the efficiencies of different virtualiza-
tion mechanisms by comparing the execution time of SPEC-
CPU2006 benchmarks. The relative results of the SPEC-
CPU2006 benchmarks running under 3 different virtualiza-
tion mechanisms are shown in Figure 12. On average the ef-
ficiency of software virtualization (EMUL) is less than 30%
of that of the native system, with GS virtualization having
to some extent obvious improvements (+17.9%). However,
with LRAT virtualization it achieves 93% of the performance
of the native runs. That is comparable to hardware man-
aged TLB mechanisms. We conducted the same experiments
on x86 with KVM and SPECCPU2006, which also achieved
about 93% performance of native runs. The privileged in-
struction optimization of GS virtualization has limited im-
pact on performance. This might be due to SPECCPU2006
benchmarks being computation intensive applications with
few privileged operations. However the TLB miss optimiza-
tion in LRAT virtualization improves the performance sig-
nificantly (on average 232%), since most of the virtualiza-
tion overhead comes from TLB operations. Mcf benchmark
in LRAT virtualization even gets 146X times performance
gain than in EMUL virtualization. That is due to mcf be-
ing a memory-intensive program, which causes much more
TLB misses exceptions than others do[15]. Its performance
in EMUL virtualization is only 0.7% of native, which is not
acceptable.

5.2 LRAT Organization Evaluation
The evaluation reveals that LRAT is an important and

effective component of hardware extensions for Power em-
bedded core virtualization. One possible concern is whether
the small LRAT table (8 entries) of the A2 core restricts
the virtualization performance or not. In Figure 13a-d, we
show the performance impact of different LRAT organiza-
tions relative to native execution. We evaluated different
numbers of LRAT entries and different memory chunk sizes
of each entry. In general, the benchmarks of SPECCPU2006
show good locality in data accesses. Thus 1M x 4 (4 entries
with 1MB chunk size) or 16M x 2 for a guest is sufficient to
keep the efficiency above 80% of native. The abnormal cases
are mcf and sjeng, which access data randomly and with a
wide stride. The experiments indicate that 256M x 2 for a
guest machine is a reasonable choice. Adding more entries
for a guest machine does not improve their efficiency. An
8-entry LRAT can support at least two guest machines per
core without significant performance loss. The wide stride
of entry chunk size selection can help to improve the perfor-
mance behavior on abnormal cases like mcf and sjeng. In
addition, a dynamic LRAT chunk allocation mechanism in
the hypervisor based on TLB miss behavior analysis might
further help to improve guest efficiency.

6. RELATED WORK
Virtualization is now found in almost all processors. Since

virtualization introduces new overhead that origins from the
virtualization of the CPU, the MMU and the I/O, many
processor vendors have introduced hardware extensions to
reduce the overhead. In this section, we briefly discuss the
virtualization capabilities of the MIPS, UltraSPARC, X86
and ARM architectures.
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Figure 13: Performance Impact of Varying Numbers of LRAT Entries

MIPS and UltraSPARC also use software managed TLBs.
To the best of our knowledge, there is no official hardware
virtualization support in the MIPS architecture[20]. Hence,
MIPS processors have to utilize shadow TLBs and the trap-
and-emulate approach to virtualize their software managed
TLBs. One can expect similar overheads as demonstrated
in EMUL evaluation. UltraSPARC supports hardware as-
sisted virtualization[25, 26]. However, the hypervisor soft-
ware handles the translation from GPA to HPA. ARM has
recently added full virtualization support as an IP option
and has included it in their latest high end processor ARM
Cortex-A15 MPcore[4].

X86 based architectures (Intel and AMD) use a hard-
ware managed TLB. The hardware determines the GV A→

HPA translation through a duality of page table transla-
tions and enters them into the TLB. Over the years both
Intel and AMD have introduced hardware features to as-
sist and improve virtualization. Both AMD and Intel in-
troduced their first-generation support[21] for x86 virtual-
ization (AMD-V and Intel VT-x technologies) but VMware
demonstrated limited performance gains[1]. In their second
generation of hardware support that incorporates MMU vir-
tualization (Intel’s EPT and AMD’s RVI), performance was
improved significantly (42%∼600%)[28, 27]. When EPT is
active, the ordinary page tables (referenced by control reg-
ister CR3) translate from linear addresses to guest-physical
addresses. A separate set of page tables (the EPT tables or
nested page tables) translate from GPAs to the HPAs that

are used to access memory. As a result, guest operating sys-
tems can manage their own page tables and directly handle
page faults[13].

Bhargava et al. discussed page walk overheads in virtual-
ized systems and showed that a small number of entries for
nested page tables are frequently reused due to spatial and
temporal localities. They extended their architecture with
page walk caches in non-virtualized systems to cover nested
page walks[7]. In academia, Ahn et al proposed flat nested
page tables with minor hardware extensions to reduce mem-
ory references required for 2D page walks[2]. They also pro-
posed speculative inverted shadow paging to reduce the cost
of a nested page walk to a single memory reference, without
hypervisor interventions for guest page table changes. They
evaluated their two schemes, which can improve the page
walker 7% and 14% respectively.

7. CONCLUSION
In this paper, we discussed the design of hardware ex-

tensions to support virtualization in systems with software
managed TLBs. These extensions were implemented in a
Power embedded A2 core and evaluated on a port of an em-
bedded KVM hypervisor. The extension focused on elimi-
nation of privileged instructions traps, introducing a TLB
management and interrupt steering to the guest that do
not lead to hypervisor traps thus significantly improving
performance. A performance comparison with a pure soft-
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ware implementation based KVM is conducted and we show
that performance improvements are on average 232% bet-
ter. With the support of hardware extensions, virtualization
achieves 93% performance of native runs. The techniques
introduced and evaluated in this paper are universally ap-
plicable to improving virtualization on architectures with
software managed TLBs.
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