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Abstract
LaZy Superscalar is a processor architecture which de-

lays the execution of fetched instructions until their results
are needed by other instructions. This approach eliminates
dead instructions and provides the necessary means to fuse
dependent instructions across multiple control dependencies
by explicitly tracking control and data dependencies through
a matrix based scheduler. We present this novel redesign of
scheduling, recovery and commit mechanisms and evaluate
the performance of the proposed architecture. Our simula-
tions using Spec 2006 benchmark suite indicate that LaZy
Superscalar can achieve significant speed-ups while provid-
ing respectable power savings compared to a conventional
superscalar processor.

1. Introduction
In contrast to deeper pipelining approaches of a decade or
more ago, recent superscalar processors emphasize shallow
pipelines and modest clock speeds for their implementation
technology. Shallow pipelines can extract more instruction-
level parallelism (ILP) from instruction streams which have
low ILP and provide better power and energy profiles, which
makes them more suitable building blocks for multi-core pro-
cessor chips. On the other hand, shorter pipelines result in
unbalanced pipelines where the execution step is almost never
on the critical path in the pipeline, providing an opportunity
to fuse dependent instructions and execute them in the same
cycle by using cascaded ALUs [16]. We refer to the tech-
nique of combining dependent instructions in this manner as
instruction fusing.

Instruction fusing can be very effective both with low and
high ILP code, as it may reduce the critical path through the
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dependence graph of the program. The reduction in depen-
dence height increases the amount of available parallelism
at a given look-ahead distance on the instruction stream and
hence promotes a different design goal: instead of buffering as
many instructions as possible and aggressively executing inde-
pendent instructions, we aim to combine as many dependent
instructions as possible to improve available parallelism.

Instruction fusing can be implemented as a pure compiler
technique through the use of a redesigned instruction set ar-
chitecture (ISA), or as a pure hardware technique without
modifying the ISA. The main challenge for both techniques
is to identify those instructions which can be fused together
in a profitable way. Fusing instructions which have a large
slack [5] will not improve available parallelism. Therefore,
just as aggressive techniques need a large pool of instructions
to choose from, fusing needs a large pool of instructions from
which fusible instructions are formed. Although compiler
techniques have good look-ahead, control-flow uncertainty
causes overhead instructions to be executed or opportunities
to be missed. Analogous to distant ILP, fusing instructions
across multiple branches by a compiler cannot be performed
without speculative code-motion and may actually hurt per-
formance. Similarly, existing micro-architecture techniques
have a limited look-ahead, since they require instructions to be
simultaneously available for inspection together to be fused.

In this paper, we define a fusible instruction as an ALU in-
struction that is not a branch with no more than two operands
and a single destination. This condition disqualifies store,
load and branch instructions from fusion as well as multi-
destination operations present in MIPS, such as divide and
multiply. When we study the fusible instructions, we find that
for most benchmarks majority of fusible instructions come
from different basic blocks. This behaviour is shown in Fig-
ure 1. This figure illustrates that simple mechanisms which
only harvest the opportunities available within a single fetch
group may miss many opportunities for a large set of bench-
marks, motivating us to develop a generalized technique that
is insensitive to the presence of control-flow when fusing in-
structions.

LaZy Superscalar1 is a novel micro-architecture which does
not need to have a large pool of instructions for simultaneous
inspection and fusing. Instead, it relies on demand-driven

1In reference to lazy evaluation and the phrase “Much of my work has
come from being lazy” by John Backus as laziness in this respect improves
performance. The capital Z comes from the pronunciation of fuse, i.e., /fju:z/.
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execution such that the execution of instructions are delayed
until they are either demanded by another instruction, or, it
is proven the instruction is dead and it is eliminated. With
this approach, producer instructions delay their execution until
their consumers are encountered, in essence providing unlim-
ited look-ahead for fusing. As a result, distant instructions,
possibly separated by multiple branches from each other can
be effectively fused together. Delaying the execution also
provides automatic detection of partially dead code. Any out-
put dependence on a delayed instruction’s destination register
means the instruction is dead. In other words, if an instruction
is fusible it is either eventually fused to another, executed with-
out being fused due to a demand from a non-fusible instruction
or is simply killed.

Figure 1: Origin of fused instructions

Although this policy would be detrimental to performance
without fusing, with fusing it will deliver at least the same level
of performance as the aggressive execution policy, subject to
resource constraints. We illustrate through a simple example
shown in Figure 2.
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Figure 2: Partially dead code

For the simplicity of illustration, we ignore the execution
of branches except that we assume they separate fetch groups.
We also ignore the pipeline start-up times. Subscripts under
the instruction names indicate the cycle number at which the
instruction was fetched. During 6 cycles of execution, the
superscalar processor yields an IPC of one but executes only
four useful instructions. During the same period, LaZy ex-
ecutes four useful instructions and squashes two, providing

essentially the same performance. This is not a coincidence.
If a useful instruction is delayed, LaZy can make-up for the
missed execution opportunity by executing the dependent in-
struction together with the producer. If a dead instruction is
delayed, the missed execution opportunity cannot contribute
to the overall execution. The real power of delayed execu-
tion surfaces when there is a sufficient number of fetched and
fused instructions buffered for execution. This permits the
LaZy processor to consume dependent chains at a rate of two
instructions per cycle at each execution unit, yielding a higher
IPC than the aggressive superscalar. Furthermore, since killed
instructions do not compete for execution units, their presence
increases the execution bandwidth of LaZy processor com-
pared to the superscalar processor. For example, if a sufficient
number of ready instructions are available, LaZy processor
could execute those instructions in cycle 3, 4, and 5 of our
motivating example, whereas the superscalar schedule would
be extended by three cycles to arrive at the same point in exe-
cution. In this case, the LaZy processor would have achieved
an IPC of roughly 1.5 using a single execution unit, and the
superscalar would remain at one IPC. Although the amount of
dead instructions in highly optimized code is quite low, they
are automatically eliminated as a by-product of our fusion
algorithm and their elimination is still beneficial. Our studies
show that less than 1 % of dynamic instructions in Spec2006
integer benchmarks are dead instructions. We demonstrate
that there are many opportunities for fusing, provided we have
the capability to delay the execution of producer instructions
until their consumers are encountered.

In the remainder of paper, we first discuss the concept of
demand-driven execution in a superscalar processor, the basic
execution paradigm for LaZy in Section 2 and how various de-
pendencies can be appropriately represented under this model.
We then discuss two main issues in implementing this model.
The first is how to handle the processor state in a machine
where the notion of program order is blurred. Most exist-
ing mechanisms for handling the processor state rely on a
sequential notion of state and will not work properly under
these conditions. For example, what should happen when an
instruction which was not demanded yet arrives at the head of
the reorder buffer (ROB)? Since it was not yet demanded, it
cannot execute. Consequently, it cannot retire since it has not
yet executed. If the instruction is never demanded before all
resources are consumed, the machine would deadlock. Our
solution is to separate the concepts of committing and retiring
an instruction and to permit a delayed instruction at the head
of ROB to commit to the state and leave the ROB, but not
retire from the processor. In other words, we know that the
result of the instruction would be the correct value for that
register although it has not yet been computed. We discuss
these issues in Section 3.

The second challenge is designing a wake-up/select mech-
anism which takes into account whether an instruction is de-
manded or not. As it is well known, wake-up/select logic is
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almost always on the critical path in contemporary superscalar
processors and incorporating another piece of data on this
logic is challenging. Our solution is to employ a matrix sched-
uler which can track the demand status as well as operand
availability of enqueued instructions. We discuss the layout
and operation of our scheduler in Section 4. We put together
the concepts and present the operation of the LaZy pipeline
and its individual stages in Section 5. We follow with a possi-
ble circuit-level implementation and evaluation of the matrix
scheduler in Section 6. Our experimental evaluation of the
processor design conducted at the cycle level presented in Sec-
tion 7 compares the performance of the architecture to that of
a typical superscalar architecture. We conclude by discussing
related work in Section 8 and summarize our contributions in
Section 9.

2. Demand-driven Execution
Demand-driven execution schedules instructions by using de-
mand signals which are sent from consumer instructions to
their producers, as opposed to conventional dataflow style
wake-up/select mechanisms which send wake-up signals from
producers to consumers. As we have discussed in the in-
troduction, demand-driven execution enables us to identify
which instruction results are needed immediately, whether a
given instruction is dead or not, and finally, fuse the depen-
dent instruction with its producer when that is feasible. This
execution approach reduces the actual dependence height of
the dataflow graph of the program, and hence increases the
available parallelism.
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Figure 3: Demand-driven execution and fusing

Consider the code sequence and the combined data-demand
flow graph shown in Figure 3. Assuming a 3-wide fetch
unit, the execution of this code sequence unfolds on LaZy
Superscalar as follows. In cycle 0, i1,i2 and i3 are fetched. All
three instructions are buffered as none has been demanded
yet. Fetching of i4, i5 and i6 causes three demand signals to
be placed to i2. Instruction i4 fuses with i2 and the pair starts
executing in cycle 1. Instructions i5 and i6 sleep as they are

not yet demanded. Fetching of i7, i8, and i9 causes demand
signals to be sent to i4, i5 and i7, which causes fusing of i7
and i8 and waking-up of i5. As a result, instructions i5 and the
fused pair i7, i8 start executing, yielding the schedule shown at
the right-bottom of the figure.

Demand-driven execution in this manner can uncover the
critical path through the program and can reduce the depen-
dence height of programs by fusing dependent instructions.
For this example, the sequence i2  i4  i7  i8 make up
the critical path, yielding a dependence height of four instruc-
tions. Due to instruction fusing and demand-driven execution
the dependence height of the code is now reduced to three.
Clearly, demand-driven execution in this manner can be ex-
tended so that an instruction is scheduled for execution only
when its child is demanded, or even when the grand-children
are demanded. If we define an architectural parameter, wake-
up depth in reference to the length of a dependent chain of
instructions to be buffered, the paradigm represents a spectrum
of architectures, each becoming increasingly LaZy. Note, for
the purpose of efficiently pipelining the wake-up logic, Stark
et. al., used the paternal relationship among instructions [30].

For example, if the wake-up depth of the architecture is
zero, no instructions are buffered and every fetched instruction
is considered to be demanded and is immediately scheduled
for execution, corresponding to a conventional processor. A
wake-up depth of one implies that a fetched instruction must
be buffered in the wake-up window until the time another
instruction is fetched which references its result and demands
it. In other words, the instruction is woken-up by its children.
This is the architecture we focus on in this paper. As the
wake-up depth of the architecture increases, there will be
additional penalty of not executing an instruction when there is
an opportunity to do so. On the other hand, the scheduler will
converge rapidly towards the critical path through the program
and the approach can provide significant energy savings. Note
that some earlier designs such as the dependence based micro-
architecture design proposed by Palacharla et. al. [22], direct
wake-up architecture proposed by Önder and Gupta [20] can
be viewed as wake-up depth zero (i.e., no buffering) demand-
driven (dependence based) architectures, among others.

Dependencies among instructions are not limited to depen-
dencies through register names. Out-of-order processors track
the dependencies among instructions both implicitly and ex-
plicitly through the use of several hardware structures. Data
dependencies through instruction-set architecture (ISA) regis-
ters are translated to physical register names and output and
anti data dependencies are removed by renaming the instruc-
tion stream. The dependencies through memory typically are
represented implicitly by forcing the memory operations into
first-in-first-out (FIFO) structures such as load/store queues.
Control dependencies are also represented implicitly by fol-
lowing the program order through another FIFO structure,
reorder buffer, and carrying out branch resolution in program
order.
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LaZy moves the heavy lifting of dependency checking to the
front end of the pipeline by mapping all control, register and
memory data dependencies onto register names. At the rename
phase, all instructions are assigned a register name, although
names assigned to branch and memory instructions do not
need to have a corresponding full 32-bit physical register. This
approach allows us to represent all dependencies in a unified
manner and permits dependence-driven execution of the entire
execution sequence. We therefore equip every instruction with
a destination register name. For this purpose, the renamer
is given four distinct register name pools. The first pool has
a one-to-one correspondence with physical registers. The
second pool and the third pool are used to “rename” store and
load instructions respectively and do not have corresponding
physical registers. Finally, the fourth pool is used to “rename”
branch instructions which also do not have corresponding
physical registers. This way, dependences (either predicted,
or actual) among all instructions can be represented properly.
We illustrate through a simple example shown in Figure 4.
The example shows how a total memory order can easily be
implemented using the outlined mechanism. This total order
requires all prior stores to issue before later loads or stores can
commence.

Code Sequence Renamed Sequence

lw r1, ... p0 = lw [⊥]
sw ...,... s1 = sw [p0]
lw r2, ... p1 = lw [s1]
lw r3, ... p2 = lw [s1]
sw ...,... s2 = sw [p1, p2]

Figure 4: Load-Store ordering through renaming

In our example, the first instruction has no prior load/store
dependencies, so its additional operand shown in brackets is
⊥. This instruction’s logical destination is renamed to phys-
ical register p0. The second store is made dependent on p0,
and its destination is renamed to s1 when it is issued. The
next two load instructions are dependent on s1. Finally, the
last store instruction has both p1 and p2 in its list and is de-
pendent on both of them. This mechanism can be used to
implement virtually any memory ordering scheme, including
any of the dependence speculation mechanisms such as the
store set algorithm [3]. In such a case, the renamer would
use the dependences predicted by the algorithm to produce
the necessary dependence names. For example, if all loads
and stores were known to be independent to the store set algo-
rithm, none of them would have source operand dependencies
to memory instruction predicates. Alternatively, if the second
load and the first store has collided in the past, the second
load would be made dependent on s1. In this mechanism, each
destination register (which may or may not correspond to a
physical register) is simply allocated from the corresponding
pool and returned to the appropriate pool upon completion. In
our evaluations discussed later we model a simple scheduling

mechanism which implements a traditional memory renaming
mechanism using a store queue. As a result, we permit store
instructions to issue as soon as their data operands are ready by
marking them as demanded at decode time and permit loads to
issue when all prior stores have issued. As well, before a store
instruction commits to memory, it is checked to see if all prior
memory operations have completed. Thanks to its predicate
based dependence checking, LaZy Superscalar does not need
a load queue, but a store queue is still employed and is oper-
ated in an identical manner to a typical superscalar processor.
While we do not discuss memory consistency models in this
work, LaZy dependence mechanism can successfully imple-
ment any consistency model implementable by conventional
superscalar processors by altering how the dependencies are
mapped among loads and stores through predicate names and
when those predicates are enforced.

Representation of dependencies in this manner allows us to
unify the entire dependence checking into a single structure,
namely, the dependence matrix. Branch instructions are han-
dled similarly; they are allocated names from a different pool
and all the following instructions become control dependent
on that branch. This unified dependency checking mecha-
nism also relies on the concept of fine-grain processor state
management, the topic of next section.

3. Fine-grain Processor State Handling
In our discussion about how the processor state is managed, we
follow the conventions of in-order state, speculative state and
architectural state [12]. As discussed previously, buffering
of instructions until they are demanded poses special chal-
lenges to state representation and recovery algorithms. This is
because when a misspeculation is detected we need to know
precisely what constitutes the in-order state so that a recovery
can be performed and the execution is resumed. Consider
the motivating example shown in Figure 2. Suppose the first
instruction was fetched and is buffered. The branch has been
incorrectly predicted to be not taken, the loop executed again
and the sequence i1  i2 executed. At this point in time the
first branch resolved and misprediction is detected. What is
the in-order state and how can we resume the execution with
i2 again? In connection with the above problem, it should be
clear that a conventional recovery mechanism cannot tell when
it is safe to retire instructions. The solution to this problem
is to realize that instead of following the lump-sum approach
of representing the state, a fine-grain approach is necessary.
Clearly, at the point of misprediction, the first instance of i1 is
part of the in-order state, even though it has not executed yet.
Our solution therefore is to employ a reorder buffer, but treat
the instruction flow through it differently.

LaZy incorporates a reorder buffer into which identifiers
(in our case allocated rename registers) of fetched instructions
are fed as the instructions are fetched in program order. The
reorder buffer logic checks to see if the instruction at the head
of the reorder buffer is a branch. If the instruction is a branch,
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its completion is awaited as it would happen in a conventional
superscalar. If the branch happens to be mispredicted, the
processor recovers its in-order state and continues fetching
instructions from the correct path. If the instruction is not a
branch, then the corresponding instruction is marked to be
in in-order state (i.e. “committed”), but it is not retired as it
might not have even executed. If the instruction at the head
of the reorder buffer is a store instruction, the store queue is
signalled to commit the value to the memory.

This simple mechanism individually identifies whether each
instruction is part of the in-order state or not and commits the
values to the memory as the values represent the in-order state
for the memory data when a store instruction reaches at the
head of the reorder buffer. This mechanism of separating the
commit and retire actions from detecting what constitutes the
in-order state allows us to perform commits separately and
keep instructions indefinitely until they are either demanded
by another instruction or proven to be dead.

4. LaZy Matrix Scheduler

In order to realize lazy scheduling we use a dependence matrix.
Using a matrix based scheduler for conventional superscalar
processors has been explored before based on the inventions by
Zaidi [31] and Henstrom [9]. Our approach however differs
significantly. These techniques are designed primarily for
scheduling instructions, whereas our approach combines both
demand and data signalling and the entire retire process is
driven by the matrix based design.
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Figure 5: Demand Driven Matrix Scheduler

The dependency matrix (DEPMAT) shown in Figure 5 is a
single bit matrix where each line in the matrix represents the
dependencies of a single instruction. A set bit at a column c at
any line means that instruction represented by that line has a
dependency on the instruction at line c. This could be a data
dependency, memory dependency or a control dependency.
The matrix is divided into four sections. The first section

(S-ALU) is reserved for instructions which need a physical des-
tination register such as arithmetic/logic and load instructions
and each row of the section corresponds one-to-one to a physi-
cal register. The second section (S-MEM) is used for memory
dependencies and provides one row per in-flight store instruc-
tion. The third section (S-LPD) is used for load predicates. A
load predicate is assigned to each load instruction to represent
its memory dependencies. Finally, the fourth section (S-CDP)
is used to track control dependencies and provides one row
per in-flight branch instruction. S-MEM, S-LPD, S-CDP do not
provide physical registers. Assuming the number of physical
registers is V, number of store queue entries is S, number of
load predicates is L and the number of in-flight branches is
given by B, the dependence matrix will have T =V +S+L+B
rows and columns, i.e., T xT .

Each line in the matrix represents an instruction, either com-
pleted or waiting to be completed. An instruction occupying a
matrix line implies a hold on a physical register. A matrix line
is only released when the physical register corresponding to
this line is released. The obvious exception is load predicate,
branch and store sections in the matrix, which do not occupy
physical registers. Branch and store lines are released as they
are completed and confirmed. Load predicates are released
when their partner load executes.

In the matrix, the OR result of a column c is true if another
instruction is dependent on the instruction on line c. The result
of a horizontal OR of the B entries tells us if the instruction at
that line has any unresolved control dependencies. Similarly,
the result of a horizontal OR of L or S entries yields if the
instruction has any load or store dependencies.

The renaming subsystem follows Alpha 21264 style [13].
A simple vector of RAM holds instructions until they are re-
tired. This vector is accompanied by several bit-vectors which
provide support information. The support vectors contain
the following data: (1) Line is free (FREE), (2) Instruction is
complete (COMT), (3) Instruction is part of the in-order state
(STATE), (4) Instruction can fuse (CFUSE), (5) Instruction is
executing (INEX), (6) Line is valid (VALID), (7) Instruction data
may still be used to obtain the current in-order state (INUSE),
(8) Instruction has an exception (EXCP). There are two point-
ers per line as well. The instruction pointer (IPTR) contains
the line number of a related instruction (i.e the second half
of a two destination instruction or the predicate for a load).
The fuse pointer (FUSEPTR) contains the line number of the
second part of a fused pair.

LaZy also models additional dependencies in the matrix.
A general dependency register (GenDepR) is maintained with
all the persistent dependencies instructions should have. For
instance, every instruction will be control dependent on all
unresolved branches preceding them. GenDepR is a register
of size T . The first V bits are reserved, the next S bits map to
store dependencies, the next L bits map to load dependencies,
and the final B bits map to control dependencies.
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5. LaZy Superscalar Pipeline

LaZy Superscalar’s pipeline shown in Figure 6 follows iden-
tical structures to conventional superscalar processors at the
front and the rear of the pipeline. The renaming mechanism
has been enhanced to rename all instructions. Since depen-
dency checking is unified, the machine does not incorporate
load queues. A store queue is provided for buffering the spec-
ulative values from store instructions until they can retire. The
Commit phase of the pipeline commits instructions in program
order irrespective of their completion status, as each instruc-
tion is flagged to belong to the in-order state. Instructions are
retired later in an out-of-order manner as they are completed
or squashed. In the following sections, we follow the pipeline
flow and describe the operation of each stage in relation to
registers and other storage that needs to be updated.
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Figure 6: LaZy Superscalar pipeline

5.1. Instruction Fetch and Decode

Instruction fetch unit supplies the rest of the processor with a
predicted instruction stream as in a conventional superscalar
processor. Compound instructions are split into two separate
instructions. These instructions include all load and store
instructions as well as jump and link and jump to register
instructions. Loads and stores are split into an addition and
memory operation only if the immediate value in the original
memory instruction is nonzero. The split instructions are then
treated as separate instructions from then on in the pipeline.
This also implies that on multi issue fetch units, each split
instruction counts as two instructions fetched. For instance,
an 8 issue fetch unit can only fetch 4 store word instructions if
their immediate fields are non-zero.

5.2. Renaming

LaZy renames all instructions as described above. Therefore,
there will be a stall if there is no free matrix line of the req-
uisite type (value producing, load predicate, store or branch).
One special case is a load instruction which requires a data
result as well as a memory access result. Load instructions
are assigned two registers: one physical register for storing
their data and one load predicate to indicate the memory de-
pendencies. Physical source registers are read through the

front-end map table. After the instruction is renamed, a de-
pendency vector of size T is prepared for each instruction
to be inserted into the matrix. An instruction is dependent
on its operands. This dependency vector is also ORed with
the relevant parts of GenDepR based on the instruction type.
Every instruction has a control dependency on all branches
that precede it - therefore the last B bits are always ORed with
the dependency vector. Load instructions depend on stores
preceding them to issue to the store queue before accessing
memory and their dependency vectors are ORed with the S
section of the GenDepR as well. Finally, store instructions OR
with the L section of GenDepR to prevent a store from writing
to cache while a preceding load is incomplete.

Instruction fusion is also done during this stage. All instruc-
tions read bits from the CFUSE vector to determine if they
can fuse to one of their operands. This vector contains a 1 for
instructions that are fusible, and is reset on read. This means
a non-fusible instruction will also reset the CFUSE bit for its
operands. Not following this policy may cause a dependency
cycle. If fusibility is detected, the identifier of the instruc-
tion being fused to is added to the corresponding FUSEPTR
vector entry. The dependency for the newly fused instruction
is removed from the current dependency vector before inser-
tion into the matrix. If an instruction A is fused with another
instruction B, it should not be dependent on B as they will ex-
ecute at the same time. Dependencies of the instruction fused
with is ORed with the dependency vector being prepared. The
V section of the current dependency vector is then inserted
into the matrix for the entry the instruction fused to.

Finally, the prepared dependency vector is then passed along
to the matrix to be inserted in the slot obtained from the re-
namer. At the same time, the instruction’s matrix line number
is inserted into the ROB, the instruction is written into the
instruction buffer, the corresponding bit in the INUSE arrays
is set. The INUSE bit shows the instruction may be part of
the in-order state and should not be retired until proven other-
wise. The GenDepR is updated to account for new persistent
dependencies for load, store and branch instructions.

5.3. Instruction Selection

In this stage, instructions are selected for execution based on
information output from the DEPMAT. For an instruction to be
selected for execution, another instruction must be dependent
on that instruction. We call such an instruction a demanded
instruction. Being demanded is not the only requirement for an
instruction to issue - all its operands must also be ready. This
information is provided via the matrix as well, by means of
the COMT and EXCP arrays. If one operand for an instruction
has an exception, we must be executing this instruction as a
courtesy to another instruction which it was fused to. Since its
result will not affect the in-order state, we can go ahead and
let it execute regardless of operand readiness. Once we detect
an instruction to be executable, we consider its FUSEPTR
vector. Since we equalized all dependencies of the two fused
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instructions, a fused pair will be ready at the same time -
one part of the fused pair can’t be ready while the other is
not. The value from FUSEPTR is decoded, then the entry
corresponding to the set wire is also sent for execution in the
same execution unit. When there are multiple candidates for
execution, instructions without control dependencies are given
priority since they are the oldest and won’t be rolled back in
case of a misprediction. Otherwise, instructions are selected
starting from the higher index numbers in the matrix. This
gives priority to branches above other computation. Once an
instruction is sent to an EU, its INEX flag is set to indicate it’s
currently executing.

5.4. Execution

Instructions read their registers, execute their operation and
write back their results in this stage of the pipeline (repre-
sented as 3 stages in the cycle accurate simulator). Once an
instruction finishes, it sets its COMT bit to indicate that there
is now valid data in this entry and resets its INEX bit to indi-
cate it is no longer executing. A completed instruction clears
its line (except control and load predicate dependencies) in
the DEPMAT - it has completed, has all it needs from other
instructions, and is no longer dependent on anything except in-
complete branches as well as load predicates in case of stores.
Completion for a load instruction means a successful access
to the store queue or an access to the cache (not necessarily
a hit as long as the cache fulfills misses in correct order). A
completed load also clears the load predicate it was attached to.
Completion for a store instruction means a successful write to
the store queue. Completed load, store and branch instructions
reset their bits from the GenDepR, since newer instructions
should not be dependent on these any longer.

5.5. ROB Commit

When an instruction reaches the head of the ROB, it leaves
immediately after doing some bookkeeping with a few excep-
tions. Result producing instructions must reset the INUSE bit
of the previous physical mapping of their logical destination
and record their mapping in the rear end map table. Branch
instructions must check to see if they’ve completed before
leaving the ROB. Each instruction successfully leaving the
ROB sets its STATE bit to indicate they are part of the in-order
state. Store and branch instructions additionally reset their
INUSE bit as soon as they leave the ROB. A store may leave
the ROB but not be able to leave the store queue due to a load
predicate it depends on not being complete. Therefore stores
do not reset their INUSE bits until they write to memory. A
successfully speculated branch instruction will clear its cor-
responding column in the matrix to indicate the resolution of
the control dependency it represents. A mispredicted branch
will trigger the misprediction recovery mechanism.

During misprediction recovery, the processor needs to do
the following: (1) Retirement map table (RMAP) must be
copied over the front end map table (FMAP); (2) Since ev-

erything fetched after this branch is incorrect, and branches
and stores do not leave the ROB until they are complete, any
remaining branch and store instructions in the matrix must
be discarded and all corresponding bits must be reset; (3)
Any remaining instructions which depend on the mispredicted
branch (encoded by DEPMAT) are marked as an exception by
setting their EXCP bit, and resetting their INUSE bit as they are
proven not to be part of the in order state; (4) Fetch, decode
and rename stages as well as the ROB must be flushed.

Note that the only selective operation we have to do to re-
cover from a misprediction is the modification of EXCP and
INUSE bits. The instruction retire stage will retire these incor-
rect instructions whenever convenient - no additional logic is
required. In fact, with instruction fusion across branches in
place, discarding these instructions may require breaking a
fused pair, which would be a costly operation in hardware.

5.6. Instruction Retire

An instruction may be cleared out of the matrix, free its in-
struction buffer entry and release any registers it’s holding
when the following conditions are met: (1) Instruction has
left the ROB (indicated by a set STATE bit) OR the instruc-
tion had an exception (indicated by a set EXCP bit); (2) No
other instruction depends on the instruction (indicated by the
demand signals on the DEPMAT); (3) The instruction can no
longer possibly be part of the in-order state (indicated by a
reset INUSE bit);

Any instruction fitting this criteria is guaranteed to have
no more effect on the output of the processor. Therefore, all
resources used by these instructions are immediately released
and all control bits pertaining to their operation are cleared.
Note that an instruction being complete is not a requirement
for it to retire.

5.7. Deadlock Prevention

A demand-driven processor that holds instructions for an ar-
bitrary amount of time may be at a risk of deadlock. Here
we will show that LaZy will never deadlock given appropriate
resources. Stores are demanded automatically in LaZy, and on
completion will clear their INUSE bits to retire. Branches also
clear INUSE bits when complete. This release scheme ensures
there will be no deadlock due to load predicate, branch and
store line unavailability. As long as the processor contains at
least one more physical register than double the number of
logical registers, there will also be no deadlock for result pro-
ducing instructions. Consider the pathological case of a series
of n load immediate instructions each writing to a different
logical register in a machine with n logical registers. None of
these instructions would demand another. However, the next
result producing instruction has to either demand one of those
load immediate instructions, in which case that instruction will
get executed and retired. Or, the instruction will end up using
a logical register already in use. In this case, the previous
definition of the register will be marked dead and squashed.
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Inst. Code Sequence Fusion Status Action

i0 add r1, ... Fusible (ALU) Awaiting demand
i1 lw r2,r1 Not Fusible (Load) Demands r1
i2 add ...,r1,r2 Fusible (ALU) Demands r1 and r2

Figure 7: Fusion Dependency Cycle Example

Incorrectly applied fusion may cause dependency cycles
which will cause deadlocks. An example case is given in
Figure 7. i1 and i2 are dependent on i0, but i1 is not a fusible
instruction. i2 is additionally dependent on i1. If i2 is fused
to i0, the i0,i2 pair must now wait for i1 to execute. However,
i1 also can’t execute since it is dependent on i0. To prevent
such dependency cycles, we follow the policy of resetting each
CFUSE bit every time it is read. With this policy, i0 would be
marked as can’t fuse once i1 is renamed, therefore i2 will not
fuse to i0.

6. Matrix Implementation

We require several different operations from the matrix. When
an instruction is retired from the Matrix we need to reset
the entire row to eliminate it. We also want to check the
control dependency of each instruction to allow for commits
to happen. The OR result of the last B bits in the row can
tell us if a branch preceding the instruction is still in flight.
When an instruction is issued, executed and written back, it
needs to clear its corresponding line to stop demanding its
sources. Branches, load predicates and stores will additionally
clear the entire column to allow any check waiting on these
dependencies to resolve. The OR result of the entire column
is the required input to wake up unexecuted instructions.
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Figure 8: Matrix Cell

One possible implementation of the matrix cell is shown
in Figure 8. In addition to an N write port SRAM design, the
matrix cell incorporates 2 extra rows and 2 extra columns. The
2 extra rows are used to reset entire rows and OR the last B
bits (value used in experiments for B is 16) in the rows which
represent the control dependency data. The 2 extra columns
are used to reset the columns and OR entire columns.

Each matrix cell has the same length and height. We also
need to add some empty area around the cell for routing pur-
poses. If a matrix cell has W write ports, for each cell we
have to add W +2 word line area and W +2 bit line area for
routing. W word lines and bit lines are used to write to the
matrix cell and the 2 extra word lines are used to reset the
entire row and OR the last B bits of the row. The extra two bit
lines have a similar function: they are used to reset the entire
column and OR the entire column. Using all this information,
we can calculate the total area of the matrix and get the load
capacitance of each line based on their length and number of
MOSFETs they connect. All the formulas are listed below.

CwordLine = 2∗#Cols∗Cgate +Cmetal ∗Lengthrow +Cdriver
CbitLine = 2∗#Rows∗Cdrain+Cmetal ∗Lengthcolumn+Cdriver
CorRow = #Cols∗Cdrain +Cmetal ∗Lengthrow +CsenseAmp
CorCol = #Rows∗Cdrain +Cmetal ∗Lengthcolumn +CsenseAmp
CresetRow = #Cols∗Cgate +Cmetal ∗Lengthrow +Cdriver
CresetCol = #Rows∗Cgate +Cmetal ∗Lengthcolumn +Cdriver
Since many instructions only depend on a few others, the

matrix is sparse. Therefore, most of the cells contain 0. When
we evaluate the power consumption for the matrix, we only
activate the bit lines which we need to set to 1, which can save
a significant amount of power.

7. Experiments
We simulated a typical superscalar processor as our baseline
and LaZy Superscalar. Simulators were automatically synthe-
sized from descriptions written in ADL processor description
language [19]. Both simulators are cycle accurate and their
ADL implementations respect timing at the RTL level. Base-
line processor shown in Figure 9 uses centralized scheduling
using broadcasting and wake-up/select is completed in a sin-
gle cycle. Load and store instructions are issued directly to
memory units since address computation is done via splitting
the computation into another instruction.

ALU

ALU

ALU

ALU

Load x 2

Store x 2

File

Register

Rename

Register

ICache
L1

Predictor

Branch

Window

Issue

L1

DCache

Load/Store Queue

Fetch
Rename

Decode
Issue Reg Read MemoryExecute

Figure 9: Baseline Superscalar Pipeline

We kept the processors as identical as possible. Both pro-
cessors use identical fetch engines, fetch, decode and execute
the same number of instructions and have identical execution
units. It should be noted that both processors also have the
same number of read and write ports on their register file. If
LaZy Superscalar attempts to execute a fused instruction and
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Simulation Architecture
Parameter Baseline LaZy
Front End Width 8 wide
Commit Width 16 wide
Issue Width 8 wide
Issue Window Size 128 entries N/A
Load Predicates N/A 32
Execution Units 4 int/fp units
Memory Units 1 Load/1 Store - 2 Load/2 Store
Rename Registers 128 registers
Reg. File Ports 16 read, 8 writes
In Flight Branches 16
Load/Store Queue 64 entries N/A
Store Queue N/A 32 entries
Reorder Buffer 176 entries
L1 Data Cache 32KB 2-way, 1 cycle lat.
L1 Inst Cache 32KB 2-way, 1 cycle lat.
L2 Unified Cache 512KB 8-way, 12 cycle lat.
Main Memory 80 Cycle lat
PHT Size 16KB
Branch Prediction GShare with 4KB BTB
Mispred. Recovery 4 cycles

Table 1: Architectural Parameters Used in Experiments

there are not enough ports to write both results during that
cycle, it will stall. In order to have a fair comparison in terms
of issue capability, LaZy Superscalar is provided with a 32
entry store buffer and 32 load predicates as it does not have
a load queue and the baseline is given a 64 entry load-store
queue. The matrix implementation faithfully implements the
operation of the matrix at the bit level. Experiment parameters
are summarized in Table 1. Baseline superscalar enjoys full
age based scheduling (oldest ready instruction in the window
always schedules first). LaZy Superscalar issues instructions
which are dependent on no branches with priority. The ma-
trix in LaZy already provides a single bit output that is 1 if
an instruction is dependent on any branch. This issue pol-
icy lets LaZy approximate age based scheduling. Otherwise,
instructions are issued based on their location in the matrix.

We executed Spec2006 integer benchmarks which were
compiled using gcc version 4.3 with the highest optimization
setting (-O3). The software environment used is Binutils ver-
sion 2.22. Binaries were compiled to MIPS instruction set for
Linux kernel 2.6. O/S kernel was not simulated but C library
code was included in the simulation. uClibC version 0.9.33
was used to link the benchmarks. We ran the ref inputs for
the given benchmarks for 500 million instructions for cache
and branch predictor warm up, then for an additional 1 billion
instructions to gather performance and other data.

Fused instruction distribution over the benchmarks and the
performance data are shown in Figure 10. The data has been
collected by running all input sets for a particular benchmark
and taking the average of each run. As can be seen, a large frac-
tion of total instructions are fused successfully using the im-
plemented LaZy scheduling algorithm. However, as expected,
fusing a large number of instructions does not necessarily lead
to improved performance. Bzip2 is an exception showing a

Figure 10: Fused Instructions as Fraction of Total and LaZy
Superscalar Speed-up

wide range of performance depending on the input set (e.g.,
chicken.jpg: 19.63%, liberty.jpg: -10.18 %). Our investiga-
tion yielded that the simulation parameters of warming-up for
500,000M and simulating 1B instructions is not a good fit for
this benchmark as it cannot finish loading the liberty.jpg in
1.5B instructions, therefore it still is in its initialization phase.
Gcc, mcf and perlbench do not show a commensurate increase
in performance to that of number of fused instructions. On
the other hand, some benchmarks show a larger than expected
performance increase, given the number of fused instructions.
This is due to the fact that in these benchmarks, majority of
fused instructions are on the critical path. Collapsing such
dependencies enables available parallelism to be harvested
significantly earlier in the program flow.

Excerpt from P7Viterbi in Hmmer
Instruction Baseline Ex Cycle LaZy Ex Cycle
i01 lw $2,36($fp) 1 1
i02 sll $2,$2,2 2 2
i03 lw $3,80($fp) 1 1
i04 addu $2,$3,$2 3 2 (fused to i02)
i05 lw $4,36($fp) 2 2
i06 li $3,1073676288 1 1
i07 ori $3,$3,0xffff 2 1 (fused to i06)
i08 addu $3,$4,$3 3 2
i09 sll $3,$3,2 4 2 (fused to i08)
i10 lw $4,92($fp) 2 2
i11 addu $3,$4,$3 5 3
i12 lw $4,0($3) 6 4

Table 2: Execution Profile Fragment from P7Viterbi in Hmmer

We show an example fragment from the P7Viterbi function
in the hmmer benchmark in Table 2. In the fragment, 3 out of
12 instructions are fused (25%), which yields a 50% speed-up.
Fusing shortens a dependence chain of length 4 (i06 i07 
i08 i09) to 2. Hmmer spends 99% of it’s execution in this
function, and P7Viterbi contains many similar sequences back
to back and in loops.

Since LaZy only fuses integer instructions, we focus on the
integer benchmarks in the Spec2006 set. For completeness,
we also evaluated the floating point benchmarks. FP bench-
marks get an average performance improvement of 9.06%.
Performance profiles are similar to the integer benchmark set.
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Figure 11: LaZy Superscalar Speed-up with Different
Load/Store Units

As LaZy execution is a technique which improves available
parallelism, it cannot improve the performance of an architec-
ture which cannot harvest what is already available. Improving
the available parallelism is not always free due to the delay
inherent in our demand-driven model and program periods
with largely varying resource requirements. If the improved
available parallelism cannot be harvested, LaZy will clearly
do poorer. To illustrate the point, we varied the number of
load-store units between 1-2. The result is shown in Figure 11.
With one load and one store unit, which may not be able to
harvest the available parallelism in most of these benchmarks,
LaZy actually loses performance in two of the benchmarks
whereas increasing the number of load and store units in both
the LaZy and the baseline superscalar yields results in which
LaZy is clearly superior across the entire suite.

Figure 12: LaZy Superscalar Speed-up with Fusing Over N
Branches

We also evaluated a limited version of LaZy Superscalar by
disabling instruction fusion when there is a branch between
the two instructions (Fuse 0), when there are no more than
a single branch (Fuse 1), no more than two branches (Fuse
2) and unlimited number of branches (Fuse Unlimited) with
the goal of showing the significance of fusing beyond control
dependencies (Figure 12). While there are benchmarks which
can benefit from fusing in a single fetch block, without ex-
ception all benchmarks benefit from fusion across branches,
validating our motivation of designing a general mechanism.

Baseline
Total Inst Win ALU RegFile

bzip2 24.3419 5.3863 1.6016 1.846
gcc 26.739 6.1104 2.0164 2.0082
mcf 18.0578 3.7762 1.1973 1.2332

gobmk 22.6356 4.8681 1.59 1.7178
hmmer 26.3296 5.6902 2.0607 2.2308
sjeng 35.6064 7.4474 2.5745 2.4457

libquantum 35.6022 7.8922 2.5969 2.8325
h264ref 27.0862 6.0292 2.0526 2.2135

astar 30.517 6.9825 2.1313 2.5826
perlbench 22.656 5.4913 1.825 1.7021

LaZy Superscalar
Total Inst Win ALU RegFile

bzip2 23.7724 2.95 2.6083 0.8778
gcc 24.7298 2.85 2.8366 0.8912

gobmk 24.5608 3.01 2.836 0.8543
mcf 18.2716 3.012 1.7223 0.5534

hmmer 28.359 2.89 3.5401 1.1101
sjeng 34.1901 2.845 4.0962 1.1526

libquantum 43.0629 3.01 5.4218 1.9866
h264ref 28.2634 2.802 3.4117 1.1523

astar 33.5478 2.92 3.9513 1.3287
perlbench 20.8651 2.665 2.4505 0.7612

Table 3: Power Analysis (watts)

7.1. Power Analysis

We incorporated power models and estimated the power con-
sumption for both LaZy Superscalar and the baseline. Power
values have been obtained by adapting Wattch[2] to the ADL
simulator framework. The power results have been validated
against the McPAT[15] tool tested with a very similar super-
scalar pipeline to ensure correctness. The breakdown of power
consumption is shown in Table 3 in watts. Within the ten
reported benchmarks, LaZy consumes less total power in four.
In general, LaZy consumes more power for ALU operations
as expected, but makes up for it through reduced power of
the matrix implementation. This information agrees with Safi
et. al.[25]’s work on the physical characteristics of a matrix
scheduler. LaZy appears to consume more power when perfor-
mance increase is high, with mcf and sjeng being exceptions.
Libquantum consumes more power in LaZy due to increased
number of data cache accesses.

The calculated energy delay product (EDP) of LaZy over
the baseline implementation is 0.92 on average. Assuming
both machines can be implemented at the same clock speeds,
we believe LaZy promises to be a better approach than con-
ventional eager scheduling with its lower EDP.

8. Related Work

We are not aware of any publications which evaluate a demand-
driven scheduler for superscalar processors. We are also not
aware of any technique which dynamically fuses instructions
and eliminates partially dead instructions automatically as
proposed by LaZy Superscalar architecture. However, there
are many techniques from which we have benefited in our
design. We present an incomplete list of these publications.
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There are a number of publications which target the delay
of the instruction scheduling logic by using matrix schedulers.
One of the earliest publications we could find is the work
of Masahiro et.al. [8] which uses a matrix scheduler. This
work uses two matrices one for each operand. It reads a
column and bitwise ORs it with a ready vector for both Left
and Right operands. The paper reports energy savings as
well as minor IPC degradation. There are several related
patents filed by Intel Corporation. The work of Merchant et.
al. [17] uses a dependency matrix for scheduling intel IA32
uops but not branches or stores. A later patent application
by Alexander Henstrom [9] incorporates store and branch
instruction support. A matrix scheduler similar to the one we
are using was evaluated for the physical-level characteristics
of a matrix instruction scheduler by Safi et. al. [25]. It shows
the power usage on a matrix read or write based on the number
of rows in the matrix as well as the delay of the matrix circuit.
Techniques developed in this work can also be incorporated
into our scheduler to improve delays. Sasaki et. al. [26]
group instructions in a traditional CAM scheduling window
by splitting the scheduling window into two. Fusion is done
between renaming and insertion into the windows by scanning
the queues feeding the windows. Unlike our work, an ALU
instruction and a load instruction may be fused. Work by
Sassone et. al. [27] uses a mapping table between register
names and matrix entries. It also incorporates a loose age
tracking technique. Our technique can benefit from these
ideas as well.

There are several techniques which performed instruction
fusing. Work of Hu et. al. [11] accomplishes fusing through
binary translation and a virtual machine. This technique fuses
80 % of fusible instructions. Hu et. al. improve on this
work to generate more efficient fused code by software im-
provements and convert the entire pipeline to execute these
fused instructions[10]. The patent by Ronen et. al. [24] is a
collaborative technique where the compiler generates fused
instructions statically and the micro-architecture directs them
to fused instruction execution units. Another patent by Goc-
man et. al. [7] fuses micro-operations generated by a single
macro-instruction in the hardware. Most micro-architecture
techniques which attempt to use the performance of the wake-
up/select logic utilize dependence information. Gochman et.
al.’s [6] description of the Pentium M processor includes in-
struction fusing on some memory operation micro-ops and
some test and branch pairs, which is mainly used to virtually
improve reorder buffer and issue queue capacity as well as
allowing branches to resolve earlier in the pipeline. Kim et.
al. [14] shows an in-processor macro-op fusion where instruc-
tions with single cycle latency are systematically removed
from the pipeline and combined into macro-ops, which are
then scheduled nonspeculatively in the pipeline as multi-cycle
operations. This technique also focuses on increasing the ef-
fective size of the instruction window. Sassone et. al. [28]
group instruction sets called strands, which are linear chains

of dependent instructions without intermediate fan-out, into
macro operations, thus freeing up reorder buffer and issue
queue space. Additionally, the paper explores the optimization
of these strands. Sassone et. al. improve on their previous
work by proposing the usage of static strands [29], which are
dependent chains without fan out which are exposed by a com-
piler pass. These instruction chains can be manipulated to
improve the processor’s power usage and increase the pipeline
resources. Bracy et. al. describe a technique called handle
prefix outlining [1], which is a hybrid technique combining
PRISC [23], static strands and CCA-subgraphs to aggregate
instructions. Clark [4] takes on the problem of adding gen-
eral purpose accelerators to microprocessors. This becomes
relevant to instruction fusion when we note that computation
accelerators collapse portions of an application’s data flow
graph, which is what fusing instructions aim to achieve.

9. Conclusion

We have presented a novel architecture which schedules in-
structions based on demand signals from other instructions.
The architecture naturally eliminates dead code and fuses in-
structions which can be fused together to remove delays from
the critical path of the program. There are several contributions
we make: (1) We contribute an alternative superscalar pipeline
which implements a general dependency tracking mechanism
for all instruction types and we show that such a mechanism
is viable for superscalar processors. This general dependency
tracking mechanism allows unification of dependence check-
ing for all instruction types and results in a cleaner layout of
the pipeline. In this organization, memory operations can be
treated very much like any other instruction and can be com-
bined into the main scheduler. (2) We contribute a fine-grain
state handling mechanism which permits instructions to be
retired in any order and over a large time span. The fine-grain
state mechanism should work with other novel approaches in
which in-program order of instruction retire may not be possi-
ble. (3) We show that aggressive instruction scheduling is not
a must for good performance and show that a lazy architecture
can be effective in improving performance, particularly with
those benchmarks with highly dependent code. (4) We show
that combination of shallow pipelines with operation fusing is
another dimension of processor optimization, as opposed to
removing delays through deeper pipelining.

Our future work includes more thorough experimental eval-
uation of the paradigm, modification of the selection logic
so that an execution slot is not wasted if there are idle execu-
tion units, extension of fusibility to other instruction types and
implementation of previously proposed dependence height cut-
ting techniques, such as speculative and non-speculative mem-
ory cloaking and bypassing [18, 21]. We are also planning to
extend the capabilities of the architecture so that memory de-
pendence speculation is integrated into the pipeline structure
of LaZy Superscalar.
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