
Agile Paging: Exceeding the Best of Nested and Shadow Paging

Jayneel Gandhi, Mark D. Hill, Michael M. Swift

Department of Computer Sciences
University of Wisconsin-Madison

Madison, WI, USA
{jayneel,markhill,swift}@cs.wisc.edu

Abstract—Virtualization provides benefits for many work-
loads, but the overheads of virtualizing memory are not
universally low. The cost comes from managing two levels of
address translation—one in the guest virtual machine (VM)
and the other in the host virtual machine monitor (VMM)—
with either nested or shadow paging. Nested paging directly
performs a two-level page walk that makes TLB misses slower
than unvirtualized native, but enables fast page tables changes.
Alternatively, shadow paging restores native TLB miss speeds,
but requires costly VMM intervention on page table updates.

This paper proposes agile paging that combines both tech-
niques and exceeds the best of both. A virtualized page walk
starts with shadow paging and optionally switches in the same
page walk to nested paging where frequent page table updates
would cause costly VMM interventions. Agile paging enables
most TLB misses to be handled as fast as native while most
page table changes avoid VMM intervention. It requires modest
changes to hardware (e.g., demark when to switch) and VMM
policies (e.g., predict good switching opportunities).

We emulate the proposed hardware and prototype the
software in Linux with KVM on x86-64. Agile paging performs
more than 12% better than the best of the two techniques and
comes within 4% of native execution for all workloads.

Keywords-virtual memory; virtual machines; virtualization;
translation lookaside buffer; nested paging; shadow paging.

I. INTRODUCTION

Virtualization forms the foundation of our cloud in-

frastructure. It provides many benefits including security,

isolation, server consolidation and fault tolerance. These

benefits became achievable because various hardware and

software advances have substantially reduced the cost of

virtualization [5, 19, 20]. Nevertheless, even with hardware

and software acceleration [10, 25, 32] the overhead of

virtualizing memory can still be high.

To fully virtualize memory, two levels of address transla-

tion are used:

gVA⇒gPA: guest virtual address to guest physical address

translation via a per-process guest OS page table (gPT)

gPA⇒hPA: guest physical address to host physical address

via a per-VM host page table (hPT)

There are two state-of-the-art techniques to virtualize

memory which provide different tradeoffs. First, the widely

used hardware technique called nested paging [19] generates

a TLB entry (gVA⇒hPA) to map guest virtual address

directly to host physical address enabling fast translation.

On a TLB miss, hardware performs a long-latency 2D page

Table I
TRADE-OFF PROVIDED BY BOTH MEMORY VIRTUALIZATION

TECHNIQUES AS COMPARED TO BASE NATIVE. AGILE PAGING EXCEEDS

BEST OF BOTH WORLDS.

Base Nested Shadow Agile
Native Paging Paging Paging

TLB hit fast fast fast fast
(VA⇒PA) (gVA⇒hPA) (gVA⇒hPA) (gVA⇒hPA)

Max. memory access 4 24 4 ∼(4—5) avg.on TLB miss

Page table updates
fast fast slow fast

direct direct mediated direct
by VMM

Hardware support
1D 2D+1D 1D 2D+1D

page walk page walk page walk page walk
with switching

walk which walks both page tables. For example, in x86-

64, TLB misses require up to 24 memory references [19] as

opposed to a native 1D page walk requiring up to 4 memory

references. However, this technique benefits from fast direct

updates to both page tables without VMM intervention.

Second, the lesser-used technique called shadow pag-

ing [57] requires the VMM to build a new shadow page
table (gVA⇒hPA) from both page tables. It points hardware

to the shadow page table (sPT), so that TLB hits perform the

translation (gVA⇒hPA) and TLB misses do a fast native 1D

page walk (e.g., 4 memory references in x86-64). However,

page table update requires VMM to perform substantial work

to keep the shadow page table consistent [10].

Table I summarizes the trade-offs provided by the two

techniques to virtualize memory as compared to base na-

tive. With current hardware and software, the overheads of

virtualizing memory are hard to minimize because a VM

exclusively uses one technique or the other.

Past work—selective hardware software paging (SHSP)—
showed that a VMM could dynamically switch an entire

guest process between nested and shadow paging to achieve

the best of either technique [58]. It monitored TLB misses

and guest page faults to periodically consider switching to

the best mode. However, switching to shadow mode requires

(re)building the entire shadow page table, which is expensive

for multi-GB to TB workloads.

We take inspiration from and extend this approach

with agile paging to exceed the best of both techniques.

Intuitively, most of the updates to a hierarchical page table

occur at the lower levels or leaves of the page table. With that

key intuition, agile paging allows virtualized page walk to

start with the shadow paging for stable upper levels of page

table and allows switching in the same page walk to nested
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Figure 1. Different techniques of virtualized address translation as compared to base native. Numbers indicate the memory accesses to various page table
structures on a TLB miss in chronological order. The merge arrows denotes that the two page tables are merged to create shadow page table. Colored
merge arrows with agile paging denotes partial merging at that level. The starting point for translating an address is marked in bold and red.

paging for lower levels of page table which receive frequent

updates. This allows a guest virtual address space to use both

shadow and nested paging at the same time with varying

degree of nesting and allows switching from one mode to

the other in the middle of a page walk. This reduces the cost

of a TLB miss since most of the TLB misses are handled

fully or partially with shadow paging and reduces the costly

VMM interventions by allowing fast direct updates to the

page tables. Table II shows varying degrees of nesting and

memory references for page walks in x86-64 depending on

when the switch from shadow to nested paging occurs. Our

evaluation in Section VII shows that agile paging requires

fewer than 5 memory references per TLB miss on average.

One can think of SHSP [58] as a temporal solution, while

agile paging is both temporal and spatial, where spatial may

grow in importance with increasing memory footprint.

Agile paging builds on existing hardware for virtualized

address translation, requiring only the modest hardware

change of enabling switching between the two modes. In ad-

dition, to further reduce VMM interventions associated with

the shadow technique within agile paging, we propose two

optional hardware optimizations. Similarly, VMM support

for agile paging builds upon existing support and requires

modest changes.

Figure 1 shows address translation techniques for base

native, nested paging, shadow paging, and our technique of

agile paging. The numbers in the figure show the chronologi-

cal order in which different levels of the page table structures

are accessed on a TLB miss. The page tables are hashed in

shadow paging since the hardware has no access to the guest

or host page tables. Agile paging is color coded to show two

of the options available from Table II. The black colored path

Table II
NUMBER OF MEMORY REFERENCES WITH VARYING DEGREE OF

NESTING PROVIDED BY AGILE PAGING IN A FOUR-LEVEL X86-64-STYLE

PAGE TABLE AS COMPARED TO OTHER TECHNIQUES.

Levels of Page Table Base Nested Shadow Agile
Native Paging Paging Paging

PTptr: Page table pointer 0 4 0 0 or 4
L4: Page table level 4 entry 1 5 1 1 or 5
L3: Page table level 3 entry 1 5 1 1 or 5
L2: Page table level 2 entry 1 5 1 1 or 5
L1: Page table entry (PTE) 1 5 1 1 or 5
All 4 24 4 4-24

shows shadow paging in agile paging. With the blue colored

escape path, agile paging allows the hardware to switch from

shadow paging to nested paging for the leaf-level of page

table, requiring up to 8 memory accesses per translation.

The switch from shadow to nested can be performed at any

level of the page table (not shown).

We emulate our proposed hardware and prototype our

proposed software in KVM on x86-64. We evaluate our de-

sign with variety of workloads and show that our technique

improves performance by more than 12% compared to the

best of nested and shadow paging.

In summary, the contributions of our work are:

1) We propose a mechanism agile paging that simultane-

ously combines shadow and nested paging to seek the

best features of each within a single address space.

2) We propose two optional hardware optimizations to

further reduce overheads of shadow paging.

3) We show that agile paging performs better than the best

of shadow and nested paging.
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host_walk(VA, hptr)

PA = hptr;
for (i=0; i≤MAX LEVELS; i++) do

PA = host_PT_access(PA + index(VA,i));
end
return PA;

(a) Base native page walk state machine

nested_walk(gVA, gptr, hptr)

//page fault in hPT will cause a VM exit
hPA = host_walk(gptr, hptr);
for (i=0; i≤MAX LEVELS; i++) do

hPA = nested_PT_access(hPA + index(gVA,i), hptr);
end
return hPA;

(b) Nested page walk state machine

shadow_walk(gVA, sptr)

return host_walk(gVA, sptr);

(c) Shadow page walk state machine

host_PT_access(address)

PTE = *address;
PA = PTE.PA;
if PTE.valid == 0 then

raise host PAGE FAULT;
return PA;

(d) Host page table access helper function

nested_PT_access(address, hptr)

PTE = *address;
gPA = PTE.PA;
if PTE.valid == 0 then

raise guest PAGE FAULT;
//page fault in hPT will cause a VM exit
hPA = host_walk(gPA, hptr);
return hPA;

(e) Nested page table access helper function

Figure 2. Pseudocode of hardware page walk state machine for native and existing virtualized address translation techniques.

II. BACKGROUND

A. Nested Paging

Nested paging is a widely used hardware technique to vir-

tualize memory. The processor has two page table pointers

to perform a complete translation: one points to the guest

page table (gptr) and the other points to the host page table

(hptr). The guest page table holds gVA to gPA translation

and the host page table holds gPA to hPA translations.

In the best case, the virtualized address translation hits

in the TLB to directly translate from gVA to hPA with

no overheads. In the worst case, a TLB miss needs to

perform a 2D page walk that multiplies overheads vis-à-

vis native, because accesses to the guest page table also

require translation by the host page table. Figure 1(b) depicts

virtualized address translation for x86-64. It shows how the

page table memory references grow from a native 4 to a

virtualized 24 references: 4 access to translate gptr (since

each gPA requires access to host page table) and each of the

4 levels of the guest page table (guest page table holds gPA)

plus 4 references for the guest page table itself to obtain

the final hPA: 4 × 5 + 4 references. Figure 2 describes the

hardware page walk state machine for nested paging (see (b)

and helper functions (a) and (e)). Note that various caching

techniques in today’s commodity processors, like caching of

page table entries in data caches [36], MMU caches [15, 21]

and caching intermediate translations [19, 20] can remove

some of the memory references for a TLB miss.

Even though the TLB misses are longer than native, nested

paging allows fast direct updates to both of the page tables

without any VMM intervention.

B. Shadow Paging

Shadow paging is a lesser used software technique to

virtualize memory. With shadow paging, the VMM creates

a shadow page table (on demand) by merging the guest

and host tables, then holds a complete translation from

gVA⇒hPA.

In the best case, the virtualized address translation hits

in the TLB to directly translate from gVA to hPA with no

overheads. On a TLB miss, the hardware performs a 1D

page walk on the shadow page table. The native page table

pointer points to the shadow page table. Thus, the memory

references required for shadow page table walk are the same

as a base native walk. For example, x86-64 requires up to

4 memory references on a TLB miss for shadow paging as

well as base native address translation (shown in Figure 1

(c)). In addition, as a software technique, there is no need for

any extra hardware support for page walks. The hardware

page walk is shown in Figure 2 (c) with helper functions (a)

and (d).

Even though the TLB misses cost the same as native

execution, this technique does not allow direct updates

to the page tables since the shadow page table needs to

be kept consistent [10]. Every page table update requires

a costly VMM intervention (VMtraps) to fix the shadow

page table by invalidating or updating its entries. These

VMM interventions cause significant overheads in many

applications. For example, to mark a page copy-on-write by

a guest OS, shadow paging requires at least two VMtraps

costing 1000s of cycles: one to write to the guest page table

to mark the page read-only and one to force a TLB flush.

Similarly, context switches require a VMtrap for the VMM

to determine the shadow page table for the incoming process.

These costly VMtraps are not required for nested paging or

native paging. Note that we define VMtrap latency as the

cycles required for a VMexit trap and its return plus the

work done by the VMM in response to the VMexit.

III. AGILE PAGING DESIGN

We propose agile paging as a lightweight solution to

the cost of virtualized address translation. We observe that

shadow paging has lower overheads than nested paging,

except when guest page tables change. Our key intuition is

that page tables are not modified uniformly: some regions of
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an address space see far more changes than others, and some

levels of the page table, such as the leaves, are updated far

more often than the upper-level nodes. For example, code

regions may see little change over the life of a process,

whereas regions that memory-mapped files may change

frequently.
We use this key intuition to propose agile paging that

combines the best of shadow and nested paging by:

1) using shadow paging for fast TLB misses for the parts

of the guest page table that remain static, and

2) using nested paging for fast in-place updates for the

parts of the guest page tables that dynamically change.

We refer to these two memory virtualization techniques as

constituent techniques for the rest of the paper. We show that

agile paging performs better than its constituent techniques

and supports features of conventional paging on both guest

OS and VMM.
In the following subsections, we describe the hardware

mechanism which will enable us to use both constituent

techniques at the same time for a guest process and discuss

policies that are used by the VMM to reduce overheads.

A. Mechanism: Hardware Support
Agile paging allows using the constituent techniques

for the same guest process—even on a single address

translation—uses modest hardware support to switch be-

tween the two. Agile paging has three architectural page

table pointers in hardware: one each for shadow, guest, and

host page tables. If agile paging is enabled, virtualized page

walk starts in shadow paging and then switches, in the same

page walk, to nested paging if required. To allow fine grain

switching from shadow paging to nested paging on any entry

at any level of guest page table, the shadow page table

needs to logically support a new switching bit per page table

entry. This notifies the hardware page table walker to switch

from shadow to nested mode. We choose not to support the

switching in the other direction (nested to shadow mode)

since the updates to the page tables are mostly confined to

the lower levels of the page tables. When the switching bit

is set in a shadow page table entry, the shadow page table

holds the hPA (pointer) of the next guest page table level.
There are different degrees of nesting for virtualized ad-

dress translation with agile paging: full shadow paging, full

nested paging, and four degrees of nesting where translation

starts in shadow mode and switches to nested mode at any

level of the page table. These are shown in increasing order

of page walk latency in Figure 3. The hardware page-walk

state machine that uses the switching bit to allow this flexible

paging mechanism is shown in Figure 4. A modest change

needed to switch between the two techniques; the rest of the

state machine is already present to support the constituent

techniques. This change is shown in red in Figure 4.

Page Walk Caches: Modern processors have hardware

page walk caches (PWCs) to reduce the number of memory
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Figure 3. Different degrees of nesting with agile paging in increasing order
of page walk latency. Starting point for each is marked bold and green.

accesses required for a page walk by caching the most-

recently-used partial translations. For example, Intel proces-

sors use three partial translation tables inside PWCs: one

table each to help skip the top one, two, or three levels of

the page table [15, 21]. With shadow paging, PWCs store
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agile_walk(gVA, gptr, hptr, sptr)

if sptr==gptr then
return nested_walk(gVA, gptr, hptr);

else
nested = sPT.switching bit;
hPA = sptr;
for (i=0; i≤MAX LEVELS; i++) do

if nested then
hPA = nested_PT_access(hPA + index(gVA,i), hptr);

else
hPA = host_PT_access(hPA + index(gVA,i));
PTE = *(hPA + index(gVA,i));
//Switching to nested mode
if PTE.switching bit then

nested = true;
end

end
end
return hPA;

Figure 4. Pseudocode of hardware page walk state machine for agile
paging. Note that agile paging requires modest switching support (shown
in red) in addition to the state machines of nested and shadow paging.

the hPA as a pointer to the next level of the shadow page

table and thus skip accessing a few levels of the the shadow

page table. With nested paging, PWCs store the hPA as a

pointer to the next level of the guest page table, and skip

accessing some of the levels of guest page table as well their

corresponding host page table accesses. With agile paging,

PWCs can be used to store partial translations for up to

three levels of the guest page table without any restrictions

on which mode any of the levels may be in. The PWCs will

store an hPA for the partial translation with a single bit to

denote whether the hPA points to shadow or guest page table

so that agile page walk can continue in the correct mode.

While we explained extension to Intel’s PWCs, agile paging

can support other designs as well.

B. Mechanism: VMM Support

Like shadow paging, the VMM for agile paging manages

three page tables: guest, shadow, and host. Agile paging’s

page table management is closely related to that of shadow

paging, but there are subtle differences.

Guest Page Table (gVA⇒gPA): As with shadow paging,

the guest page table is created and modified by the guest

OS for every guest process. The VMM, though, controls

access to the guest page table by marking them read-only.

Any attempt by the guest OS to change the guest page table

will lead to a VMM intervention, which is used to update

the shadow page table to maintain coherence [10].

With agile paging, we leverage the support for marking

guest page tables read-only with one subtle change. The

VMM marks as read-only just the parts of the guest page

table covered by the partial shadow page table. The rest of

the guest page table (considered under nested mode) has full

read-write access. Section III-C describes policies to choose

what part of page table is under which mode. For example,

KVM [43] allows the leaf level of a guest page table to

be writable temporarily, called an unsynced shadow page,

allowing multiple updates without intervening VMtraps. We

extend that support to make other levels of the guest page

table writable in our prototype.

Shadow Page Table (gVA⇒hPA): As with shadow paging,

for all guest processes with agile paging enabled, a shadow

page table is created and maintained by the VMM. The

VMM creates this page table by merging the guest page table

with the host page table so that any guest virtual address is

directly converted to a host physical address. The VMM

creates and keeps the shadow page table consistent [10].

However, with agile paging, the shadow page table is

partial and cannot translate all gVAs fully. The shadow page

table entry at each switching point holds the hPA of the next

level of guest page table with the switching bit set (as shown

in Figure 3). This enables hardware to perform the page walk

correctly with agile paging using both techniques.

Host Page Table (gPA⇒hPA): As with shadow paging,

the VMM manages the host page table to map from gPA to

hPA for each virtual machine. VMM merges this page table

with the guest page table to create a shadow page table. The

VMM must update the shadow page table on any changes

to the host page table. The host page table is only updated

by the VMM and during that update the shadow page table

is kept consistent by invalidating affected entries.

For standard shadow paging, the host page table is never

referenced by hardware, and hence VMM can use other

data structures instead of the architectural page-table format.

However, with agile paging, the processor will walk the host

page table for addresses using nested mode (at any level),

and hence the VMM must build and maintain a complete

host page table for each guest virtual machine as in nested

paging.

Accessed and Dirty Bits: As with shadow paging, ac-

cessed and dirty bits are handled by the VMM and kept

consistent between shadow page table and guest page table.

On the first reference to a page, the VMM sets the accessed

bit in the guest PTE and in the newly created shadow PTE.

The write-enable bit is not propagated to the new shadow

PTEs from the guest PTE. This ensures that the first write

to the page will cause a protection fault, which causes a

VMtrap that checks the guest PTE for write enable bit. At

this point, the dirty bit is set in both the guest and shadow

PTEs, and the shadow PTE is updated to enable write access

to the page. If the guest OS resets any of these bits, the

writes to guest page table are intercepted by the VMM which

invalidates (or updates) the corresponding shadow PTEs.

With agile paging, we use the same technique for pages

completely translated by shadow mode. Pages that end in

nested mode instead use the hardware page walker, available

for nested paging, to update guest page table accessed and

dirty bits. We describe an optional hardware optimization in

Section IV that improves handling of accessed and dirty bits

by eliminating costly VMtraps involved with shadow mode.
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Context-Switches: Context switches within the guest OS

are fast with nested paging, since guest OS is allowed to

write to guest page table register. But with shadow paging,

the VMM must intervene on context switches to determine

the shadow page table pointer for the next process.

With agile paging, the context switching follows the

mechanism used by shadow paging for all processes. The

guest OS writes to the guest page table register, which

triggers a trap to the VMM. The VMM finds the corre-

sponding shadow page table and sets it in the shadow page

table register. Hence, the cost of a context switch with agile

paging is similar to shadow paging. We describe an optional

hardware optimization in Section IV that improves context

switches in a guest OS by eliminating costly VMtraps

involved in shadow paging.

To summarize, the changes to the hardware and VMM

to support agile paging is incremental, but they result in

a powerful, efficient and robust mechanism. The design is

applicable to architectures that support nested page tables

(e.g., x86-64 and ARM) and any hypervisor can use this

architectural support. The hypervisor modifications are mod-

est if they support both shadow and nested paging (e.g.,

KVM [43], Xen [14], VMware [57] and HyperV [4]).

C. Policies: What degree of nesting to use?

Agile paging provides a mechanism for virtualized ad-

dress translation that starts in shadow mode and switches

at some level of the guest page table to nested mode. The

purpose of a policy is to determine whether to switch from

shadow to nested mode for a single virtualized address

translation and at which level of the guest page table the

switch should be performed.

The ideal policy would determine that the page table

entries are changing rapidly enough and the cost of corre-

sponding updates to the shadow page table outweighs the

benefit of faster TLB misses in shadow mode and thus

the translation should use nested mode. The policy would

quickly detect the dynamically changing parts of the guest

page table and switch them to nested mode while keeping the

rest of the static parts of the guest page table under shadow

mode. Note that programs with very few TLB misses should

use nested paging for the whole address space, as shadow

mode has no benefit.

To achieve the above goal, a policy will move some parts

of the guest page table from shadow to nested mode and

vice-versa. We assume that the guest process starts in full

shadow mode. We propose one static policy to move parts

from shadow to nested mode and two online policies to move

parts back from nested to shadow mode.

Shadow⇒Nested mode: Detecting dynamically changing

parts of a guest page table is convenient when these parts

are in shadow mode. These parts are marked read-only, thus

any attempt to change an entry requires a VMM intervention

(Section III-B). Agile paging uses this to track the dynamic

parts of the guest page table in the VMM and move those

parts to nested mode.

To design a policy, we observed that updates to a page in

page table are bimodal at a time interval of 1 second: only

one update or many updates (e.g., 10, 50 or 500) within

a second. Similar observations were made by Linux-KVM

developers and used it to guide unsyncing a page of shadow

page table [2]. For agile paging, if two writes to any level

of the page table are detected by the VMM in a fixed time

interval, then that level and all levels below it are moved to

nested mode. This policy provides a small threshold like the

one used in branch predictors for switching modes.

Nested⇒Shadow mode: The second, more complex, part

of the policy is to detect when the workload changes be-

havior and stops changing the guest page table dynamically.

This requires the switching parts of the guest page table

back from nested to shadow mode to minimize TLB miss

latency.

Our first simple online policy moves all the parts of the

guest page table from nested back to shadow mode at fixed

time interval and then use the above policy to move dynamic

parts of the guest page table back to nested mode. While this

policy is simple, it can lead to high overheads if the parts

of the guest page table oscillate between the two modes.

A second more complex but effective policy uses dirty

bits on the nested parts of the guest page table to detect

changes to the guest page table itself. Under this policy, at

the start of a fixed time interval, the VMM clears the dirty

bits on the host page table entries mapping the pages of the

guest page table. At the end of the interval, the VMM scans

the host page table to which guest page table pages have

dirty bits, which indicates the dynamic parts of the guest

page table under nested mode. The non-dynamic parts of

the guest page table (pages which did not have the dirty bit

set) are switched back to shadow mode. The parent level

of the guest page table is converted to shadow mode before

converting child levels.

Short-Lived or Small Processes: Nested paging has been

shown to be performing well for short-lived processes and

for processes that have a very small memory-footprint since

they do not run long enough to amortize the cost of

constructing a shadow page table or do not suffer from TLB

misses [20]. With agile paging, an administrative policy can

be made to start the process in nested mode (no use of

shadow mode) and turn on shadow mode after a small time

interval (e.g., 1 sec) if TLB miss overhead is sufficiently

large. The VMM can measure the TLB miss overhead with

help of hardware performance counters and perform the

switch to use agile paging.

To summarize, with our proposed policies, the VMM

detects changes to the page tables and intelligently makes a

decision to switch modes to reduce overheads.
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IV. HARDWARE OPTIMIZATIONS

Shadow paging was developed as a software-only tech-

nique to virtualize memory before there was hardware

support. We propose two optional hardware optimizations

that can further reduce the number of VMtraps associated

with shadow paging and agile paging’s shadow mode.

Handling Accessed and Dirty Bits: Agile paging requires

costly VMtraps to keep accessed and dirty bits synchronized

for regions of guest page table under shadow mode. Unlike

shadow paging, in agile paging, the hardware has access to

all three page tables (guest, host, shadow). As a result, we

propose to extend hardware to set the accessed/dirty bit in all

three page tables rather than just in the shadow. The extra

page walk required to perform the write of accessed/dirty

bits requires a full nested walk (up to 24 memory accesses)

will be faster than a long VMtrap and thus more efficient.

In addition, recent Intel Broadwell processors introduced

two hardware page walkers per-core to help handle multiple

outstanding TLB misses and writing accessed/dirty bits.

Similar hardware for page walkers can be leveraged to

perform writes to all page tables in parallel.

Context-Switches: With every guest process context

switch, the guest OS writes to the guest page table register,

but is not allowed to set the shadow page table register

since it does not have knowledge about the shadow page

table. This results in costly VMtraps on context switches,

which can degrade performance for workloads that do so

frequently. In order to avoid these VMtraps, we propose

adding a small 4-8 entry hardware cache to hold shadow

page table pointers and their corresponding guest page table

pointer, similar to how a TLB holds physical page numbers

corresponding to virtual frame numbers. This cache can

be filled and managed by the VMM (with help of new

virtualization extensions) and accessed by the hardware on

a context switch. So, if the guest OS writes to guest page

table pointer register, hardware quickly checks this cache to

see if there exists a shadow page table pointer corresponding

to that guest process. On a hit, the hardware sets the shadow

page table register without a VMtrap.

V. PAGING BENEFITS

Agile paging is flexible and supports all features of

conventional paging. We next describe how three important

paging features that are supported with agile paging.

Large Page Support: Current processors support larger

page sizes (2MB and 1GB pages in x86-64) by reducing

the levels of the page tables and mapping larger regions

of aligned contiguous virtual memory to aligned contiguous

physical memory. Larger page sizes reduce the number

of TLB misses for workloads with large working sets.

Larger page sizes are supported at either or both stages for

virtualized address translation with both shadow and nested

Table III
SYSTEM CONFIGURATIONS AND PER-CORE TLB HIERARCHY.

Processor Dual-socket Intel Xeon E5-2430 (Sandy Bridge), 6 cores/socket
2 threads/core, 2.2GHz

Memory 96 GB DDR3 1066MHz

OS Linux kernel version 3.12.13

VMM QEMU (with KVM) version 1.6.2, 24vCPUs

L1 DTLB
4 KB pages: 64-entry, 4-way associative
2 MB pages: 32-entry, 4-way associative
1 GB pages: 4-entry, fully associative

L1 ITLB 4 KB pages: 128-entry, 4-way associative
2 MB pages: 8-entry, fully associative

L2 TLB 4 KB pages: 512-entry, 4-way associative
2 MB pages:

paging; when large pages are used only in one stage of

translation (e.g., guest only), they are in effect broken into

smaller pages for entry into the TLB.

With agile paging, larger page sizes are supported using

their current implementation in shadow paging and nested

paging. The shadow page table, guest page table and host

page table support larger page sizes as they all are multi-level

page tables and can reduce their depth. Thus, agile paging

supports larger page sizes using the same mechanisms and

policies described in Section III.

Content-Based Page Sharing: Content-based page sharing

is a technique used by both the guest OS and the VMM to

save memory for many workloads. The guest OS or VMM

scans memory to find pages with identical content. When

such pages are found, the guest OS or VMM reclaims all but

one copy and maps all the copies using copy-on-write [57].

This allows pages to be shared within a process, between

two guest processes and even between two virtual machines.

Reclamation by the guest OS requires changes to the guest

page table (and shadow page table if applicable) whereas

reclamation by the VMM requires changes to the host page

table (and shadow page table if applicable).

As copy-on-write must update the page table, agile paging

will naturally detect these changes and move parts of the

page table to nested mode to reduce overheads. The overhead

of copy-on-write is very high with shadow paging and will

benefit from nested mode provided by agile paging.

Memory pressure: When free memory is scarce, a guest

OS will frequently scan and clear the referenced bits of page

tables looking for pages to reclaim (e.g., clock algorithm).

With shadow paging, this scanning causes VMtraps, which

increases overhead on an already stressed system. With agile

paging, though, the VMM detects the page-table writes to

clear referenced bits and converts leaf-level page tables to

nested mode to avoid the VMtraps.

To summarize, existing page-based mechanisms blend

naturally with our proposed technique. This shows that agile

paging has the agility to adapt to changing environments and

is powerful to reduce overheads of memory virtualization.
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Table IV
PERFORMANCE MODEL BASED ON PERFORMANCE COUNTERS AND

BADGERTRAP.

Ideal execution time
Eideal = E2M − T 2M

(from base native)
Overhead of page walks

PWB/N/S = [EB/N/S − Eideal −HB/N/S ]/Eideal

(for both 4K and 2M)
Overhead of VMM

VMMB/N/S = HB/N/S/Eideal

(for both 4K and 2M)
Avg. cycles per TLB miss

CB/N/S = TB/N/S/MB/N/S(for both 4K and 2M)

Overhead of page walk (A) PWA = [CN ∗
4∑

i=2

(FNi) + CS ∗ (1−
4∑

i=1

FNi)

(for both 4K and 2M) +(CN + CS) ∗ 0.5 ∗ FN1] ∗MB

Overhead of VMM (A)
VMMA = OS −

n∑

i=1
(FV i ∗ CEi)(for both 4K and 2M)

VI. METHODOLOGY

To evaluate our proposal, we emulate our proposed hard-

ware with Linux and prototype our software in KVM.

State of the art: We compare against six configurations:

base native (B), nested paging (N) and shadow paging (S),

each with two page sizes 4KB and 2MB. The prior work,

SHSP [58] performs similarly to the best of shadow and

nested paging, so we do not evaluate it separately.

We run workloads to completion on real hardware as

described in Table III. We use Linux’s perf utility [6] to mea-

sure (i) total execution cycles for all six configurations: base

native (EB), nested paging (EN ) and shadow paging (ES)

for both page sizes, (ii) number of TLB misses (MB/N/S)

(iii) cycles spent on TLB misses (TB/N/S) (iv) cycles

spent in the hypervisor (HB/N/S) (v) number of VMtraps

(VB/N/S) for each page size. For the virtualized setting, we

use the same page size for both levels of address translation

since they only reduce TLB misses when both have same

page size. For using 2MB and 4KB page sizes transparently,

we turn on transparent huge page support in Linux [9]. Note

that the effects of various caching techniques like caching of

PTEs in data caches [36], page walk caches [15, 21], Intel

EPT caches and nested TLBs [19, 20] are already included

in the performance measurement since they are part of the

base commodity processor.

Linux does not use 1GB pages transparently and instead

requires applications to explicitly use 1GB pages. Thus, we

did not include that configuration. Agile paging supports

1GB page size (Section V) and has the potential to reduce

overheads of page walks with 1GB page size.

We calculate the overhead of page walks and that of

VMM interventions and report those for each of the six

configurations based on the performance model described

in Table IV.

Agile Paging: We use a novel two-step approach to report

improvements for agile paging. We first generate a trace

of page table updates from KVM and then use that trace

with BadgerTrap [31] to calculate performance using a linear

model. Next we describe our novel two-step methodology.

Step 1: The goal of this step is to create a list of

dynamically changing gVAs to classify under nested mode

and calculate the fraction of VMtraps (FV i) that agile paging

Table V
WORKLOAD DESCRIPTION AND MEMORY FOOTPRINT.

Suite Description Input Memory

SPEC 2006
compute and memory astar 350 MB
intensive single-threaded gcc 885 MB
workloads mcf 1.7 GB

PARSEC Shared-memory multi- canneal 780 MB
threaded workloads dedup 1.4 GB

BioBench Bioinformatics single- tigr 610 MBthreaded workloads

Big Memory
Generation, compression Graph500 73 GBand search of graphs
In-memory key-value cache Memcached 75 GB

eliminates with reason “i”. This emulates the optional hard-

ware optimizations for agile paging as well. The workload

is run to completion with shadow paging on real hardware

(described in Table III) with an instrumented VMM to create

a per-vCPU trace of all updates to the guest and host page

table that lead to shadow page table updates. We use the

trace-cmd tool [8] with KVM, modified to print extra trace

information, for creation of the trace in this step. We process

the trace to find which areas of the page tables are changing

by looking at the reasons for VMtraps. We record the gVAs

being dynamically changed due to changes on any level

of the page table. This helps us create four lists of gVAs

under nested mode corresponding to their switching level of

page table. The lists of gVAs are considered under nested

paging for step 2. This step also finds the fraction of VMM

interventions that agile paging will reduce (FV i) from the

trace since areas of the page table under nested paging are

known. Note that we emulate our shadow-to-nested policy

in an offline fashion when processing the trace.

Step 2: The goal of this step is to find the fraction of

TLB misses that would be serviced under nested mode (FNi)

for each level ”i“ the switch occurs. The workload is again

run to completion, but this time with nested paging along

with BadgerTrap [31]: a tool that converts all x86-64 TLB

misses to a trap, which allows us to analyze TLB misses and

classify TLB addresses, while enabling full-speed execution

of instructions with TLB hits. We instrument the TLB misses

and classify them under shadow mode or nested mode

at each switching level. We compare TLB miss addresses

against the gVAs for nested mode to find the fraction of

TLB misses serviced in nested mode at each switching level

i (FNi). We conservatively assume that when a TLB miss is

serviced in nested mode FN1 pays half the cost of a nested

TLB miss beyond native and the rest FN2, FN3 and FN4

pays full cost of nested paging. This assumption leads to

higher overheads for agile paging than with real hardware.

Cost of VMtraps: We measure VMtrap latency as the

cycles to complete the VMM intervention: the VMexit

operation and return plus the work done by the VMM in

response to the VMexit. The total cost varies and can be

1000s of cycles. We use LMbench [3] and microbenchmarks

to measure the cost of the VMtrap for a context switch, page
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Figure 5. Execution time overheads due to page walks (bottom bar) and VMM interventions (top dashed bar) for all workloads.

table update and page fault. We calculate reduction in cycles

spent in the VMM, by subtracting the number of VMtraps

of each type multiplied by its cost.

Performance Model: We use the fractions calculated using

the above two step approach to develop a linear model

to project performance for agile paging (A) with both

page sizes (i) fraction of VMtraps reduced (FV i) and, (ii)

fraction of TLB misses serviced under nested mode (FNi)

for both page sizes. The linear model takes the performance

of shadow paging, subtracts the cost of VMtraps avoided,

but adds in the higher cost of nested TLB misses. This

linear performance model is similar to previous research

[21, 32, 40, 49].

The new two step approach with linear model enables us

to evaluate realistic workloads (in time and data footprint).

We use a linear performance model to illuminate trends. Our

two-phase approach includes the real system effects of page

sharing, zapping of shadow entries, page walk cache, etc.,

and approximates the performance impact of these effects

on agile paging.

Benchmarks: Our proposal is applicable to a wide variety

of workloads from desktop to big-memory workloads. To

evaluate our proposal, we select workloads with high TLB-

miss overhead (more than 5MPKI) from SPEC [35], PAR-

SEC [24], BioBench [13], and big-memory workloads [17]

as summarized in Table V.

VII. RESULTS

This section evaluates the cost of address translation and

VMM interventions of agile paging, and shows that agile

paging outperforms state-of-the-art techniques.

A. Performance analysis

Figure 5 shows the execution time overheads associated

with page walk and VMM interventions for each workload

in eight different configurations: base native paging (bars

4K:B and 2M:B), nested paging (bars 4K:N and 2M:N),

shadow paging (bars 4K:S and 2M:S) and agile paging

(bars 4K:A and 2M:A). Each bar is split into two segments.

The bottom segment represents the overheads associated

with page walks and the top dashed segment represents the

overheads associated with VMM interventions.

Agile paging outperforms its constituent techniques for

all workloads and improves performance by 12% over the

best of nested and shadow paging on average, and performs

less than 4% slower than unvirtualized native at worst. We

find:

1) For most workloads, the base native system with 4KB
pages incurs high overheads. For example, mcf, tigr

and graph500 spend 50%, 32% and 41% respectively.

2) With virtualization, the overheads increase drastically
under nested paging. For example, the overheads in-

crease from 50% to 97% for mcf (bar 4K:B vs. bar

4K:N). Compared to native, translation overheads in-
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crease by 2.5× with nested paging using 4KB pages

(geometric mean).

3) Shadow paging has high cost due to VMM interventions
for some workloads. While shadow paging generally

performs better than nested paging, dedup, memcached

and gcc have high overheads with shadow paging.

Dedup has 57% overhead spent in the VMM servicing

page table updates. Compared to native, translation

overheads increase by 3.1× with shadow paging using

4KB pages (geo. mean).

4) Agile paging outperforms the best of shadow paging
and nested paging for all workloads. Agile paging

achieves low cost of VMM interventions as well low

latency TLB misses. Agile paging is only 2.3% slower

than native on average (up to 3.7%). This includes the

benefit of hardware optimizations.

5) 2MB large pages help reduce overheads of virtual
memory. Agile paging helps reduce overheads further.
Large pages consistently improve performance with

agile paging as compared to the 4KB page size.

B. Insights into Performance of Agile Paging

We report the fraction of TLB misses covered by each

mode of agile paging in Table VI for 4KB pages. For this

table alone, we assume no page walk caches are present. We

see that more than 80% of TLB misses are covered under

complete shadow mode allowing fast TLB misses. Thus,

few of the pages suffering TLB misses also have frequent

page-table updates. By converting the changing portion of

the guest page table to nested mode, agile paging is able

to prevent most of the VMexits that makes shadow paging

slower. We also note that most of the upper-levels of the

page table remain static after being initialized and hence

use shadow mode. Overall, the average number of memory

accesses for a TLB miss comes down from 24 to between

4-5 for all workloads.

C. Discussion: Selective Hardware Software Paging

SHSP seeks to select the best paging technique dynam-

ically [58]. Their results for a 64-bit VM running SPEC

workloads showed that SHSP can achieve approximately the

best of the two techniques. While SHSP, with no hardware

support, improves on a single system-wide choice, it is

limited by the high cost of each virtualization techniques

alone. Agile paging breaks that limitation and exceeds the

best of shadow and nested paging by more than 12% on

average, even with a pessimistic model. Moreover, Table VI

shows that only part of the address space needs switching

from one mode to the other.

VIII. RELATED WORK

We already discussed closely related work on memory

virtualization techniques: nested paging [19], shadow pag-

ing [57], and selective hardware software paging [58, 61].

Table VI
PERCENTAGE OF TLB MISSES COVERED BY EACH MODE OF AGILE

PAGING WHILE USING 4KB PAGES ASSUMING NO PAGE WALK CACHES.
MOST OF THE TLB MISSES ARE SERVED IN SHADOW MODE.

Switch Level Shadow L4 L3 L2 L1 Nested
Mem. accesses 4 8 12 16 20 24 Avg.
memcached 88.2% 4.5% 7.3% 0% 0% 0% 4.76
canneal 94.7% 4.6% 0.7% 0% 0% 0% 4.24
astar 92.3% 7.5% 0.2% 0% 0% 0% 4.32
gcc 81.6% 11.7% 6.7% 0% 0% 0% 5.00
graph500 99.8% 0.2% 0% 0% 0% 0% 4.01
mcf 99.1% 0.9% 0% 0% 0% 0% 4.04
tigr 88.3% 7.6% 3.1% 0% 0% 0% 4.51
dedup 91.4% 2.2% 6.4% 0% 0% 0% 4.60

Virtualization: Virtualization has been used since the

1970s [34] to run multiple operating systems on a single ma-

chine by introducing a layer of indirection between hardware

and the operating systems, called the hypervisor or virtual

machine monitor (VMM). Virtualization’s renaissance began

with Disco in 1996 [26], and since then the overheads

of virtualization have been decreasing [10, 19]. Hardware

support for virtualization has greatly reduced the number and

latency of VMM interventions [5, 7, 19]. Binary translation

can help reduce some of these overheads further [10, 11]. A

2013 industrial study showed that virtualizing memory still

has very high overheads [25].

Virtual Memory: Virtual memory has been an active area

of research and various previous work have shown that TLB

misses lead to performance loss for many applications [17,

18, 19, 22, 23, 32, 40, 42, 44]. The performance degradation

is exacerbated when running in a virtualized system [12, 19,

25, 32].

One way of reducing the overheads of virtual memory

is to accelerate the page walk, which reduces the latency

of a TLB miss. Commodity processors cache the page

table entries in the their data caches to reduce page walk

latency [36]. Most processors today have memory man-

agement unit (MMU) caches that cache partial translations

or top levels of the page table to reduce the TLB miss

latency [15, 21]. Other proposals like cooperative caching

help increase the effective size of the TLB [44]. Also, shared

last-level TLB [22] or cooperative TLBs [53] accelerate

the page walk for multithreaded applications. Prefetching of

PTEs or TLB entries can hide TLB miss latency [19, 39, 50].

Various software-defined caching structures like TSBs in

SPARC [54], and software managed sections of TLB in

Itanium [1] pin entries into the TLB to improve performance.

These techniques are orthogonal to our work and could be

used to accelerate agile paging

For virtualized systems, there are caching structures like

MMU caches, to store partial or intermediate translations. A

special cache called the nested TLB was proposed to cache

the nested translations (gPA⇒hPA) to reduce latency of TLB

miss with virtualization [19]. Intel hardware calls this EPT

TLB, but uses the same TLB structure physically [20]. Our

results include some of these caching effects as we run

on real hardware. Software managed TLBs have also been
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proposed for virtual machines [27]. However, our focus is

on hardware managed TLBs.

Ahn et al. [12] proposed a flat page table to replace x86-64

page tables for the second stage of translation (gPA⇒hPA).

This reduces the number of nested page table memory

accesses from 4 to 1 and a 2D page walk from 24 to 8

accesses. While this work is promising, it does not support

large pages and still requires up to 8 memory references for

a TLB miss, while agile paging needs as few as 4 accesses.

Another way of reducing the overheads of virtual memory

is to reduce the number of TLB misses. Larger page size

have been the primary driver to reduce TLB misses [29,

30, 52, 55, 56]. Most modern processors like x86-64,

ARM, MIPS, ALPHA, PowerPC and UltraSPARC support

multiple page sizes [37]. Alternatively, Barr et. al. proposed

speculative translation based on huge pages [16]. Similarly,

Papadopoulou et al. [46] proposed a prediction mechanism

that allows all page sizes to share a single set-associative

TLB. Also, Du et al. [28] proposed mechanisms to allow

huge pages to be formed even in the presence of retired

physical pages. Recently, Pham et al. [49] proposed to use

the maximum of the two page sizes instead of minimum

when different page sizes are used with two-levels of address

translation. These approaches can help reduce TLB misses

and can be used even with agile paging.

Operating system support for large pages haves been

shown to be tricky [30, 45, 56]. There have been various

proposals on coalescing contiguous adjacent TLB entries

or clustering TLB entries to increase the reach of the

TLB [47, 48]. All of these proposals come with their own

limitations [40].

Recent proposals for using segments along with paging

like direct segments [17], virtualized direct segments [32]

and redundant memory mappings (RMM) [33, 40, 41] show

a promising new direction to reduce overheads of virtual

memory. Both techniques based on direct segments [17, 32]

trade off various features of paging to extract performance,

whereas agile paging supports all features of paging. RMM

adds multiple ranges in addition to paging, but has not been

extended to support virtualization. These techniques rely

on additional hardware and some software support beyond

what is needed for agile paging, but in return promise better

performance.

Another option to reduce TLB overheads is to remove the

TLB from critical path with virtual caches [18, 38, 51, 59,

60]. These techniques perform well for certain workloads,

but introduce challenges for address aliasing. In addition, the

common use of content-based deduplication in virtualized

system makes synonyms a larger problem.

IX. SUMMARY

We and others have found that the overheads of virtu-

alizing memory can be high. This is true, in part, because

currently guest processes must choose between (i) nesting

paging with slow 2D page table walks or (ii) shadow paging

wherein page table updates cause costly VMM interventions.

Ideally, one would want to use nested paging for addresses

and page table levels that change, and use shadow paging

for addresses and page table levels that are relatively static.

Our proposal—Agile Paging—seeks the above ideal. With

Agile Paging, a virtualized address translation usually starts

in shadow mode and then switches to nested mode only if

required to avoid VMM interventions. Agile paging requires

a new hardware mechanism to switch modes during a page

walk in response to a page-table-entry bit set by the VMM.

The VMM policy seeks to invoke the mode change only on

more dynamic page table entries.

We emulate the proposed hardware and prototype the

software in Linux with KVM on x86-64. We find that, for

our workloads, agile paging robustly performs better than

the best of nested paging and shadow paging.
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superpages in non-contiguous physical memory,” in Proceedings of the 21st
IEEE International Symposium on High Performance Computer Architecture
(HPCA), Feb 2015, pp. 223–234.

[29] Z. Fang, L. Zhang, J. B. Carter, W. C. Hsieh, and S. A. McKee, “Reevaluating
Online Superpage Promotion with Hardware Support,” in Proceedings of the 7th
International Symposium on High-Performance Computer Architecture, 2001.

[30] N. Ganapathy and C. Schimmel, “General Purpose Operating System Support
for Multiple Page Sizes,” in Proceedings of the Annual Conference on USENIX
Annual Technical Conference, 1998.

[31] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “BadgerTrap: A Tool to
Instrument x86-64 TLB Misses,” SIGARCH Comput. Archit. News, vol. 42, no. 2,
pp. 20–23, Sep. 2014.

[32] ——, “Efficient Memory Virtualization: Reducing Dimensionality of Nested
Page Walks,” in Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, 2014, pp. 178–189.

[33] J. Gandhi, V. Karakostas, F. Ayar, A. Cristal, M. D. Hill, K. S. McKinley,
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