
The Anytime Automaton

Joshua San Miguel and Natalie Enright Jerger

University of Toronto
joshua.sanmiguel@mail.utoronto.ca, enright@ece.utoronto.ca

Abstract—Approximate computing is an emerging paradigm
enabling tradeoffs between accuracy and efficiency. However,
a fundamental challenge persists: state-of-the-art techniques
lack the ability to enforce runtime guarantees on accuracy.
The convention is to 1) employ offline or online accuracy
models, or 2) present experimental results that demonstrate
empirically low error. Unfortunately, these approaches are still
unable to guarantee acceptability of all application outputs
at runtime. We offer a solution that revisits concepts from
anytime algorithms. Originally explored for real-time decision
problems, anytime algorithms have the property of producing
results with increasing accuracy over time. We propose the
Anytime Automaton, a new computation model that executes
applications as a parallel pipeline of anytime approximations.
An automaton produces approximate versions of the applica-
tion output with increasing accuracy, guaranteeing that the
final precise version is eventually reached. The automaton
can be stopped whenever the output is deemed acceptable;
otherwise, it is a simple matter of letting it run longer. We
present an in-depth analysis of the model and demonstrate
attractive runtime-accuracy profiles on various applications.
Our anytime automaton is the first step towards systems where
the acceptability of an application’s output directly governs the
amount of time and energy expended.

I. INTRODUCTION

The rise of approximate computing has garnered much

interest in the architecture community. This paradigm of

trading off accuracy for performance and energy efficiency

continues to inspire novel and creative new approximation

techniques [6], [9], [11], [17], [18], [20], [22]. However,

despite the substantial benefits offered by approximate com-

puting, it has not yet earned widespread acceptance to merit

adoption in real processors. This is due to the fundamental

challenge of providing guarantees on error. The approach

in state-of-the-art techniques is to 1) provide offline statis-

tical profiling [3], [6] or online sampling/predictive mecha-

nisms [3], [11], [18] to try to control runtime accuracy, and

2) present experimental results that show how error can lie

within some empirical range. However, these approaches are

still unable to enforce strong guarantees on acceptability of

all outputs at runtime. This is a very challenging task, since

acceptability of an approximation is inherently subjective.

Furthermore, runtime error is dependent on many factors:

application algorithm/code, input data, hardware configura-

tion, operating system and runtime environment (e.g., co-

This work was done in part when Joshua San Miguel was at IBM T. J.
Watson Research Center [23].

executing processes, I/O interaction). Neither the system de-

signers, the programmers nor the users have control over all

of these factors. For example, a programmer may implement

relaxed synchronization [17] in their application and eval-

uate the output on an architecture with limited parallelism.

However, a user may execute this application on a processor

with many cores, yielding far more synchronization conflicts

and unacceptable outputs. To earn widespread adoption, it is

imperative that system designers and architects find a way

to implement approximate computing techniques that can

address these challenges.

Our work tackles this problem by revisiting concepts from

anytime algorithms [5], [10], [12]. Originally proposed for

planning and decision processes in artificial intelligence,

anytime algorithms are defined by two key properties:

1) they can be stopped at any time while still producing a

valid result, and 2) they guarantee progressively increasing

quality over time. We believe that these properties offer

a solution to the challenges of approximate computing.

However, in prior work, anytime algorithms are built into

the derivation of a specific application and are thus difficult

to apply to other applications. Our work generalizes the

anytime concept to approximate computing such that the

acceptability of an approximation is simply defined by how

long the user chooses to run the application.

We propose the Anytime Automaton, a new computation

model that represents an approximate application as a paral-

lel pipeline of anytime computations. Our model enables

early availability of the application output: approximate

versions of the output are produced with increasing accuracy,

guaranteeing that the final precise version is reached even-

tually. It also enables interruptibility: the automaton can be

stopped whenever the current approximate output is deemed

acceptable; otherwise, it is simply a matter of letting it

run longer. Furthermore, the pipeline organization is able

to extract parallelism even out of sequential computations.

Whereas state-of-the-art approximate computing techniques

employ dynamic accuracy control on code segments of

applications [3], [9], [11], [18], our model provides early

availability of the whole application output since the accu-

racy of individual segments does not necessarily translate

to accuracy of the whole application. Our model is also

valuable in user-interactive environments where acceptabil-

ity cannot be defined a priori and in real-time environments

where absolute time/energy constraints need to be met.

2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture

1063-6897/16 $31.00 © 2016 IEEE

DOI 10.1109/ISCA.2016.54

545

Imagine typing a search engine query and instead of pressing

the enter key, you hold it based on the desired amount of

precision in the search. With the anytime automaton, we

advocate for systems where the acceptability of the output

directly governs the amount of time and energy consumed

(hold-the-power-button computing).

We make the following novel contributions:

• We propose the Anytime Automaton, a new computa-

tion model that rethinks the way we use approximate

computing, providing the guarantee of improved accu-

racy over time.

• We evaluate our model on PERFECT [4] and

AxBench [6] applications, demonstrating promising re-

sults with runtime-accuracy profiles.

II. BACKGROUND AND MOTIVATION

In this section, we provide background on approximate

computing and anytime algorithms. We discuss the challenge

of providing accuracy guarantees in approximate computing

and motivate our solution of providing a model for anytime

approximations.

A. Approximate Computing

Approximate computing introduces application output er-

ror/accuracy as an axis in architectural design, which can

be traded off for improved performance and energy effi-

ciency. State-of-the-art approximate computing techniques

have been proposed both in software and hardware. In

software, eliding code/computation can yield acceptable

approximations. Examples include loop perforation [24] and

relaxed synchronization [17] (i.e., approximation via lock

elision). In hardware, many techniques exploit the physical

characteristics of computation [16] and storage elements [7],

[13], [20]. Other techniques approximate based on data pre-

cision [28], [32] as well as previously seen values [22], [21],

[27], [31] and computations [2]. Though these techniques

achieve substantial efficiency gains, it can be difficult to

reason about accuracy of the application output.

Prior work has proposed offline profiling techniques to

build accuracy models [3]. This is also employed via training

in neural-based approximations [6], [9], [15], [26]. Though

these significantly improve accuracy, offline methods can

only draw statistical conclusions and cannot guarantee ac-

ceptability of all computations during runtime. Online ac-

curacy control can be implemented via sampling meth-

ods [3], [18] or predictive models [11]. However, coverage of

sampling and prediction is inherently imperfect and cannot

ensure that the accuracy of a given output during runtime

is acceptable. Accuracy control is best left to users, since

the definition of what is acceptable varies from one case

to another. BRAINIAC [9] addresses this using a multi-

stage flow of neural accelerators; we later show how such

an iterative approach can be generalized via our model. We

address these challenges by revisiting concepts from anytime

algorithms.

B. Anytime Algorithms

An anytime algorithm is an algorithm that produces an

output with progressively increasing accuracy over time.

Anytime algorithms were first explored in terms of time-

dependent planning and decision making [5], [10], [12].

They are generally studied in the context of artificial in-

telligence under real-time constraints, where suboptimal

output quality can be more acceptable than exceeding time

limits. Anytime algorithms can be characterized as either

contract or interruptible algorithms [33]. Contract algorithms

make online decisions to schedule their computations to

meet a runtime deadline. Researchers have explored optimal

scheduling policies for contract anytime algorithms [8], [29]

and the error composition of anytime algorithms [33]. On

the other hand, interruptible algorithms can deliver an output

when stopped (or paused) at any moment. Our work focuses

on interruptible anytime algorithms, which provide stronger

guarantees for real-time and user-interactive applications.

Despite the wealth of research on anytime algorithms, there

is little to no work on its implications to computer archi-

tecture. The most relevant work explores porting contract

anytime algorithms to GPUs and providing CUDA-enabled

online quality control [14].

Anytime algorithms derive strong accuracy guarantees

at an algorithmic level; the anytime concept is typically

regarded as a property built into algorithms as opposed to

a general technique that can be employed on applications.

In our work, we motivate a rethinking of how approximate

computing is implemented in systems; we introduce a com-

putation model that enables the integration of approximate

computing techniques in an anytime way.

III. THE ANYTIME AUTOMATON

The Anytime Automaton is a new computation model

that enables approximate computing in an anytime way:

1) It generalizes how to apply approximation techniques

to computations such that accuracy increases over time

and is guaranteed to eventually reach the precise result.

2) It executes these computations as a parallel pipeline

such that approximate versions of the whole application

output are available early.

3) It enables interruptibility such that execution can be

stopped when the current approximate output is deemed

acceptable; otherwise, it is a simple matter of running

longer, eventually reaching the precise output.

The anytime automaton is valuable in user-interactive envi-

ronments where acceptability cannot be defined a priori. It is

also valuable in real-time systems where applications need

to support interruptibility in order to meet hard time/energy

constraints. Our model also fits well with conventional

approximate computing where the degree of approximation

546

is dynamically tuned based on accuracy metrics [3], [9],

[11], [18]. These accuracy metrics are measured on either

1) the whole application output (which necessitates re-

execution of the entire application if accuracy is insufficient),

or 2) the outputs of approximate code segments (which does

not necessarily translate to the accuracy of the whole appli-

cation). The pipelined design of our automaton addresses

this by providing early availability of the whole application

output: starting from low-accuracy approximate versions to

the eventual precise version.

As a parallel to dataflow models, the anytime automaton

can be viewed as a data diffusion model. In the former, in-

formation is passed down from computation to computation;

in the latter, information is diffused (i.e., updates/versions of

the information are passed down). Imagine that the precise

version of the application output is a fluid. Instead of waiting

for the fluid to flow in its entirety, its particles are diffused

into the output, gradually increasing the concentration of

precise information.

In this section, we first provide an overview of the anytime

automaton model (Section III-A). We then describe how

approximate computing techniques are applied in an anytime

way (Section III-B) and show how they are composed

into a parallel pipeline (Section III-C). We conclude with

a summary example that brings all key concepts together

(Section III-D).

A. Model Overview

Figure 1 shows a high-level overview of an anytime

automaton. An approximate application is broken down into

computation stages with input/output buffers, connected in

a directed, acyclic graph. These stages can be arbitrarily

large or small. Approximate computing techniques are then

applied to each stage in an anytime way. This allows stages

to execute in parallel as a pipeline, since they can deliver

intermediate approximate outputs as opposed to just the

single precise output in the end. Data is streamed through

the stages, and each stage produces an approximate output

that progressively increases in accuracy over time, eventually

reaching the precise output. The anytime automaton can be

stopped (or paused) once the application output is deemed

acceptably accurate, expending just the right amount of

computation time and energy. The decision of stopping can

either be automated via dynamic accuracy metrics, user-

specified or enforced by time/energy constraints. In all cases,

the user and system designer can rely on the comfort of

knowing that error eventually diminishes.

An example pipeline is shown in Figure 2. Each of the

four stages f , g, h and i are anytime; in this case, their

computations are broken into two parts (i.e., f1 produces an

approximate version of its output and f2 produces the final

precise version). As soon as f1, g1, h1 and i1 have executed,

an approximate output O1111 is available, and thus the

application can already be stopped here. If the approximate

prologue();

f();

g();

h();

i();

epilogue();

f

i

g h

Figure 1: High-level overview of anytime automaton.

g1 g2 g1 g2

f1 f2

i1 i2 i1 i2 i1 i2 i1 i2

h1 h2 h1 h2

time O1111 O1112 O1221 O1222 O2111 O2112 O2221 O2222

Figure 2: Parallel pipeline of anytime automaton.

output is not acceptable, the pipeline can simply continue

executing, progressively improving the output accuracy until

the final precise output O2222. In this way, the anytime

automaton is able to extract parallelism out of sequential

applications. Whereas g and h would have to wait for f to

finish in the original application, our model enables f to

produce an approximate (but still acceptable) output so that

g and h can already start executing.

B. Anytime Computation Stages

We describe how to apply an approximate computing

technique onto a computation stage f such that it produces

an output of increasing accuracy over time. We say that

the resulting stage f is an anytime computation stage.

The general approach is to apply the technique iteratively

with decreasing error (Section III-B1). In many cases, a

technique can be applied diffusively instead (Section III-B2)

to avoid any redundant work introduced by the general

iterative approach. In our discussion, a computation stage

f with input I and output O is represented as:

f (I)→ O

1) Iterative Computations: The general approach is to

convert f to an iterative anytime computation stage. To do

this, f is executed n times sequentially, yielding the set of

computations:

f1(I), ..., fn(I)→ O

∀ i, fi(I)→ Oi

where i ∈ [1...n] and n > 1. These computations are exe-

cuted one after the other starting from f1 until fn. Outputs

O1, ...,On are produced as each intermediate computation

547

completes, with each Oi overwriting the previous Oi−1 in

the output buffer upon completion of fi. The approximate

computing technique is applied to each fi at iteratively

increasing accuracy levels such that fi has greater accu-

racy than fi−1. The final computation fn is simply the

precise version of f (i.e., the approximation technique is

disabled). For example, if applying reduced floating-point

precision, f1 computes f with the lowest precision while fn
computes with the highest. Similarly, BRAINIAC employs

this iterative approach in its multi-stage flow of neural

accelerators [9]. In this way, f becomes an anytime stage

with increasing accuracy over time, eventually reaching the

precise output On = O. Our model imposes Property 1 to

ensure that when fn executes, it is guaranteed to produce

the precise output. Most approximate regions of code in

applications are pure functions [11]. In the simple example

in Figure 2, f , g, h and i are all anytime stages with n = 2.

Property 1. For an anytime computation stage f , each and
every intermediate computation f1, ..., fn must be a pure
function; the computation does not depend on nor modify
any external semantic state aside from the data in its input
and output buffers.

In this section, we present examples of how to derive it-

erative computations using common approximate computing

techniques: loop perforation and approximate storage.

Loop Perforation: Loop perforation is a technique that

jumps past loop iterations via some fixed stride, trading

off lower output accuracy for lower runtime and energy

consumption [24]. Loop perforation can be made anytime

by iteratively re-executing the perforation with progressively

smaller strides. Given a computation stage f , applying loop

perforation iteratively involves selecting a set of unique

strides s1, ...,sn. We construct intermediate computations

f1, ..., fn such that each fi executes f with perforated loops

of stride si. The strides are chosen such that si < si−1 and

sn = 1. This enables accuracy to increase over time and

ensures that the final computation fn computes the precise

version of f .

Note that this approach yields redundant work for loop

iterations that are common multiples of the selected strides.

For example, the instructions at iteration s1× s2 of the loop

are executed twice: once in f1 and again in f2. Furthermore,

if the precise output is needed, all loop iterations executed

in previous computations f1, ..., fn−1 must be executed again

in fn. In some cases, this redundant work can be avoided via

sampling techniques (since loop perforation is effectively a

form of sampling), as we discuss in Section III-B2.

Approximate Storage: Architects have proposed designs

for approximate storage elements. They recognize that many

applications—particularly multimedia processing—are tol-

erant to noisy input and output data. Such data can be

stored in storage devices with relaxed physical constraints,

risking bit failures for improved energy-efficiency. For ex-

ample, drowsy caches [7] reduce SRAM cell supply voltage,

increasing bit failure probability while saving significant

energy. Similarly, low-refresh DRAM [13] and approximate

phase-change memory [20] allow for efficiency gains at the

cost of potential data corruption.
Applying approximate storage techniques iteratively re-

quires a means of controlling the accuracy-efficiency trade-

off of the storage device. For example, the SRAM supply

voltages can be dynamically scaled in caches; as voltage

increases, the lower the risk of bit failure. With this, f1, ..., fn
can be defined as executing the compuation f at increasing

accuracy levels of storage (e.g., increasing SRAM supply

voltage in a drowsy cache). Correctness is ensured by using

the nominal (precise) storage operation in fn. Note that

approximate storage techniques are data-destructive; that is

to say, when a bit is corrupted in a storage device (e.g.,

drowsy cache), it remains corrupted even after raising the

device accuracy level (e.g., increasing supply voltage). Thus

at the beginning of each intermediate computation fi, the

storage device must be flushed (or reinitialized to precise

values) so that bit corruptions from fi−1 do not degrade the

accuracy of fi. Alternatively, separate storage devices can be

used for each of f1, ..., fn, though this incurs a much larger

area cost.
2) Diffusive Computations: As discussed in Sec-

tion III-B1, iterative computations are effectively re-

executions of the baseline computation under varying de-

grees of approximation. By construction, they introduce

redundant work, the amount of which increases as more re-

executions are performed. This is because in an iterative

stage, each intermediate computation fi overwrites Oi−1

(i.e., the result of fi−1 that is currently in the output

buffer). This negates any useful work done by any preceding

computations. It is more desirable for each subsequent fi to

use Oi−1 and build upon it. In this way, the accuracy of the

output improves via useful updates from each fi, as opposed

to improving accuracy via rewrites from each fi as in an

iterative stage. Accuracy/precision is effectively diffused into

the output buffer.
We say that such a computation stage f is diffusive and

represent it as:

f1(I,O0), ..., fn(I,On−1)→ O

∀ i, fi(I,Oi−1)→ Oi

where i ∈ [1...n], n > 1, and O0 is the initial value in the

output buffer. Unlike an iterative stage, each intermediate

computation fi is dependent on the state of the output buffer

Oi−1 resulting from the computations before it. Note that

Property 1 is still satisfied; the only difference is that the

output buffer is treated as an input as well. Correctness is

ensured by deriving f1, ..., fn such that their final aggregate

output On equals the precise output. In this way, each fi
contributes usefully to the final result (i.e., its intermediate

output Oi is necessary for reaching the precise output).

548

In this section, we go into detail on how to derive diffusive

approximations using data sampling techniques and reduced

fixed-point precision.
Data Sampling: We describe how to sample the input

and output data sets of a computation stage to generate

anytime approximations. Specifically, instead of waiting to

process all elements in a data set before delivering the final

output, sampling recognizes that the intermediate output (of

the elements processed so far) can serve as an acceptable

approximation.

Input Sampling. Input sampling enables anytime approx-

imations for reduction computations. Reductions process

elements in the input set and accumulate values in the output

buffer. Intuitively, performing the reduction on only a sample

of the input set can yield acceptable approximations of the

final accumulated output. Reductions are most commonly

performed using commutative operators. Examples include

computing a sum, searching for an element or building a

histogram. A diffusive computation stage f is commutative
if it can be represented as:

∀ i, fi(I,Oi−1) = Oi−1 � xi(I)

where � is some commutative operation.
It may be undesirable to sample inputs in their default

memory order since it gives bias to elements at lower

addresses. For a commutative stage f , the final precise

output can be computed from any sequential ordering of

x1, ...,xn. A better approach to input sampling is to simply

permute the order of the x1, ...,xn computations such that:

∀ i, fi(I,Oi−1) = Oi−1 � xp(i)(I)

where p(i) is a bijective function (i.e., a one-to-one and

onto mapping of i). Each intermediate computation fi rep-

resents a sample of size i of the input set. We say that

p is the permutation function. As long as p is bijective,

the precise output is guaranteed since all xi computations

are still performed exactly once. Later in this section, we

discuss various permutation functions and their suitability

for different applications. Figure 3 shows an example of

anytime histogram construction using input sampling with

a pseudo-random permutation. As more input elements are

processed over time, the approximate histogram approaches

the precise output.
Note that if � is not an idempotent operator (i.e., �

is idempotent if α�α = α), the output may need to be

normalized/weighted using the current sample size and the

total population size. For example, consider input sampling

on an anytime sum. Addition is not an idempotent operation.

If I is a set of random positive integers, then the output value

is monotonically increasing. Because of this, the value of

On/2, for example, will likely be approximately half of the

precise output On. To address this, any dependent stages that

use Oi should use a weighted O′i instead:

O′i = Oi×n/i

tim
e

Figure 3: Example of input sampling with a pseudo-random

permutation for anytime histogram construction.

Idempotent operations (e.g., bitwise-and, bitwise-or, set-

union, set-intersection, min, max) do not require such nor-

malization.

Output Sampling. Whereas input sampling is applicable

to reductions, output sampling is well-suited for map oper-

ations. We generalize map operations to computations that

generate a set of distinct output elements, each of which are

computed from some element(s) in the input set:

∀ i, fi(I,Oi−1) = Oi−1, Oi[i] = xm(i)(I)

where m(i) is some mapping of input elements to the output

element at index i. This is a special case of a commu-

tative anytime computation; the commutative operation is

effectively a union of disjoint sets: Oi−1 ∪Xm(i). Thus it is

amenable to sampling.

Unlike input sampling, output sampling permutes the

order of the output elements O[i] such that:

∀ i, fi(I,Oi−1) = Oi−1, Oi[p(i)] = xm(p(i))(I)

where p(i) is a bijective permutation function. Output sam-

pling is applicable to common map computations. Examples

include generating pixels of an image, processing lists of

independent items or simulating the movement of particles.

Sampling Permutations. We now discuss permutation

functions that can be used for both input and output sam-

pling. Depending on the computation, some permutations

may be more suitable than others. For example, in the

histogram construction example (Figure 3), accessing the

elements in their sequential memory order may result in

biased approximate outputs (i.e., biased towards the first

elements in memory order). To avoid such bias, a uniform

random permutation is more suitable as shown in the figure.

In general, we find that the three most common permutations

are sequential (for priority-ordered data sets), tree (for

ordered data sets without priority) and pseudo-random (for

unordered data sets).

The default permutation is sequential, where elements are

accessed in memory order (e.g., ascending index i). This

can be expressed simply as p(i) = i or p(i) = n+1− i, for

549

20 elements

21 elements

22 elements

23 elements

24 elements

Figure 4: One-dimensional tree sampling permutation ex-

ample. This shows which indices have been accessed after

20, ...,24 elements are processed.

i ∈ [1...n]. Sequential sampling is well-suited for data sets

that are ordered based on ascending/descending priority or

significance to the final output. Examples include priority

queues or bitwise operations (e.g., reduced fixed-point pre-

cision in Section III-B2).

For some computation stages, elements in data sets are

not prioritized but are still ordered; the positions of elements

are significant to the computation. Examples include image

pixels or functions of time (e.g., audio wave signal, video

frames). We find that an N-dimensional bit-reverse (or tree)

permutation is well-suited for sampling these data sets. With

a tree permutation, the data set is effectively accessed at

progressively increasing resolutions. For example, sampling

pixels in a tree permutation implies that after 4 pixels have

been processed, a 2×2 image is sampled. After 16 pixels,

a 4×4 image is sampled, and so on. This is visualized and

discussed later in Figure 5.

The tree permutation accesses elements in bit-reverse

order along each of N dimensions, interleaving between

dimensions. Thus p(i) is simply a permutation of the bits

of index i. For example, the tree permutation for a one-

dimensional set of 16 elements can be expressed as:

p : b3b2b1b0 → b0b1b2b3

where b j is the jth bit of the set index i. This is shown in Fig-

ure 4. Elements are accessed in the form of a perfect 2N-ary

tree, where N = 1. This produces samples with progressively

increasing resolution along one dimension. Note that since

the tree permutation is a one-to-one correspondence of bits

in the set index, p is a bijective function.

Figure 5 shows an example of the tree permutation on

a two-dimensional data set (e.g., image pixels). For 8×8

elements, the permutation function p can be expressed as:

p : b5b4b3 b2b1b0 → b5b3b1 b4b2b0 → b1b3b5 b0b2b4

where b5b4b3 is the original row index and b2b1b0 is the

original column index. First, the set index is deinterleaved

to produce new row and column indices. Then the new row

and column indices are each reversed. As before, elements

are accessed in the form of a perfect 2N-ary tree, where

N = 2. This produces samples with progressively increasing

two-dimensional resolution.

21 x 21 elements

22 x 22 elements

23 x 23 elements

20 x 20 elements

Figure 5: Two-dimensional tree sampling permutation ex-

ample. This shows which indices have been accessed after

20, ...,26 elements are processed.

When the data set is unordered, to avoid bias in the

memory ordering of elements, we find that a pseudo-
random permutation is most suitable. Examples include

simulated annealing, k-means clustering or histogram con-

struction (Figure 3). A true random permutation would be

ideal; however, the permutation function p would not be

bijective (i.e., we would not be able to guarantee that all

elements are processed exactly once). For a pseudo-random

permutation, p can be computed using any deterministic

pseudo-random number generator. In our experiments, we

use a linear-feedback shift register (LFSR), which is very

simple to implement in hardware.

Reduced Fixed-Point Precision: Reduced fixed-point (or

integer) precision techniques perform computations with

only a subset of data bits. This can be viewed as a form of

sampling since the bit representation bn−1...b0 of an integer

is merely a sum of powers of two:

bn−1...b0 = bn−1 ·2n−1 + ... + b0 ·20

Since addition is a commutative operation, the representation

of integer and fixed-point data is amenable to sampling.

Computing with reduced precision improves both latency

and energy.

This observation extends to other operations that are

distributive to addition (e.g., multiplication). For example, a

stage f computing an anytime reduced-precision dot product

of two vectors I and W can be represented as:

∀ i, fi(I,Oi−1) = Oi−1 + (I · (W & 232−i))

where O0 = 0, and elements in the vectors are 32-bit

integers or fixed-point values such that i ∈ [1...32]. This

computation is effectively applying input sampling on the

bits of elements in W . This draws from classic techniques

of bit-serial computations [25], [30]. Sampling is performed

with a sequential permutation, since the most-significant bits

550

(X)(10.####)
+(Y)(01.####)
+(Z)(11.####) f2

X
Y
Z

(X)(10.11##)
+(Y)(01.00##)
+(Z)(11.01##) f4

X
Y
Z

(X)(10.1101)
+(Y)(01.0010)
+(Z)(11.0110) f6

X
Y
Z

tim
e

Figure 6: Reduced-precision fixed-point dot product.

should be prioritized. This is illustrated in Figure 6 with

6-bit fixed-point data, where I is a vector consisting of

values X, Y and Z. The output of f increases in accuracy

over time and approaches the precise output as more bits

are computed. Note that this computation does not perform

any additional work compared to the baseline non-anytime

dot product, since integer (or fixed-point) multiplication is

computed similarly as a sum of partial products.

C. Anytime Pipeline

In this section, we describe how to compose anytime

computation stages into a parallel pipeline. The pipeline

enables interruptibility and early availability of the whole

application output. Interruptibility is essential in real-time

and user-interactive environments, while early availability

is essential in systems with dynamic error control (such as

Rumba [11]) where error metrics should be applied to the

whole output as opposed to the outputs of individual com-

putations in the application. Furthermore, the pipeline can

extract more parallelism out of applications. Consider the

example in Figure 1. In the original application, computation

i is dependent on g and h, which are both dependent on

f . These dependences enforce the computations to execute

sequentially, as written in the example code. However,

by building the pipeline, the automaton model allows all

computations to run in parallel. Figure 2 takes a closer look.

By recognizing that f can be broken down into f1 and f2, our

model is able to provide an intermediate (but still acceptable)

output of f . This allows g and h to begin executing without

having to wait for all of f to finish.

Without loss of generality, we limit much of the discussion

to two computation stages:

f (I)→ F g(F)→ G

where g (the child stage) is dependent on f (the parent

stage). The automaton is constructed such that Property 2

holds. This enforces a strict producer-consumer relation

between parent and child stages and ensures that the parent

executes independently of the child.

Property 2. For an anytime computation stage f , all of
its intermediate outputs F1, ...,Fn are stored in a single
output buffer, and no other computation stages are allowed
to modify this buffer.

f g h O1
h(g(F1)) g(F2) F3

I

f g h O2
h(g(F2)) g(F3) F4

I

f g h O3
h(g(F3)) g(F4) F5

I

tim
e

f g h On
h(g(Fn)) g(Fn) Fn

I

Figure 7: Asynchronous pipeline example.

We present two pipeline organizations: asynchronous and

synchronous. An asynchronous pipeline (Section III-C1) is

the general approach for composing stages, allowing them

to run independently in parallel while still guaranteeing

the eventual precise output. A synchronous pipeline (Sec-

tion III-C2) leverages the distributivity of diffusive stages to

avoid redundant computations.

1) Asynchronous Pipeline: An asynchronous pipeline is

the general approach to composing multiple computation

stages. Stages simply execute concurrently and indepen-

dently of each other. If f is an anytime computation, then g
can be computed on any or all intermediate Fi outputs such

that:

g(F1), ...,g(Fn)→ G

where g(Fi) → GFi. At any point in time, g processes

whichever output Fi happens to be in the buffer. We say that

this is an asynchronous pipeline since no synchronization is

necessary between f and g to ensure correctness; the only

requirement is that g is eventually computed on Fn = F to

produce the precise output GFn =G. Thus the precise output

is always reachable. These stages form a parallel pipeline

since any fi can execute in parallel to any g(Fj) where

j < i. The pipeline is constructed such that Property 3 holds,

ensuring that g processes no other possible outputs aside

from F1, ...,Fn. Note that correctness is still ensured even

if f is not anytime (i.e., n = 1); thus the pipeline supports

non-anytime stages.

Property 3. For an anytime computation stage f , all of
its intermediate outputs F1, ...,Fn are written into its output
buffer atomically.

An example is shown in Figure 7. The outputs of f flow

through the pipeline, producing final outputs O1, ...,On with

progressively increasing accuracy. At any point in time, g
simply processes the most recent available output of f . The

precise output is eventually reached since both g and h
eventually compute on Fn.

If g is also an anytime computation, then each g(Fi) can

be represented as:

g1(Fi,GFi,0), ...,gm(Fi,GFi,n−1)→ GFi

where g j(Fi,GFi, j−1)→GFi, j and GF1,0 = ...= GFn,0 = G0.

551

tim
e

“H” = g(“h”)
“HE” = g(“he”)
“HEL” = g(“hel”)
“HELL” = g(“hell”)
“HELLO” = g(“hello”)

non-distributive g(F)

tim
e

“H” += g(“h”)
“HE” += g(“e”)
“HEL” += g(“l”)
“HELL” += g(“l”)
“HELLO” += g(“o”)

distributive g(X)

Figure 8: Example of distributive computation stage g.

As defined by the sequential ordering of f1, ..., fn, the output

Fi is always produced after Fi−1. Thus we can guarantee

that Fn is the eventual output of f . Following from this,

g(Fi) (and its output GFi) must always come after g(Fi−1)
(and its output GFi−1). And similar to f , the sequential

ordering of g1, ...,gm within each g(Fi) enforces that g j(Fi)
(and its output GFi, j) always comes after g j−1(Fi) (and its

output GFi, j−1). This guarantees that GFn,m (which equals

the precise output G) is the eventual output of g(F).
2) Synchronous Pipeline: A synchronous pipeline pre-

vents redundant computations when the parent stage f is

diffusive and the child stage g is distributive over the

computations in f . Assume f is a diffusive anytime stage

that can be represented as:

∀ i, fi(I,Fi−1) = Fi−1 ♦ xi(I)

where ♦ is some left-associative operator, and xi(I)→ Xi.

With a diffusive f , X1, ...,Xn are effectively the updates to

the output F . We say that g is distributive over f if:

g(F) = g(F0 ♦ X1 ♦ ... ♦ Xn) = g(F0) ♦ g(X1) ♦ ... ♦ g(Xn)

As in the asynchronous pipeline, g can be computed on any

or all intermediate Fi outputs such that:

g(F1), ...,g(Fn)→ G

where g(Fi)→ GFi. However, since g is distributive, taking

a closer look at each g(Fi) and g(Fi−1), we can see that g
performs redundant work:

g(Fi−1) = g(F0) ♦ g(X1) ♦ ... ♦ g(Xi−1)

g(Fi) = g(F0) ♦ g(X1) ♦ ... ♦ g(Xi−1) ♦ g(Xi)

Figure 8 shows an example where f is generating a string

letter-by-letter (i.e., ♦ is the concatenation operator), and

g capitalizes each letter in this string. If the current string

value is Fi (e.g., ”hel”), then computing g(Fi) would involve

capitalizing all letters, even the ones that were already pro-

cessed previously in Fi−1 (e.g., ”he”). Since g is distributive,

it only needs to capitalize each newly added letter Xi (e.g.,

”l”). Other examples of distributive computations include

sorting/searching over a growing set of elements or matrix

multiplication over addition. Thus composing distributive

and diffusive stages via an asynchronous pipeline can yield

redundant computations.

f g h O1
h(g(X1)) g(X2) X3

I

f g h O1+O2
h(g(X2)) g(X3) X4

I

f g h O1+O2+O3
h(g(X3)) g(X4) X5

I

tim
e

f g h O1+…+On
h(g(Xn)) g(Xn) Xn

I

Figure 9: Synchronous pipeline example.

To address this, we can form a synchronous pipeline

between f and g. We simply expose the intermediate updates

Xi and redefine g(F)→ G to gS(X)→ G such that:

∀ i, gS(X ,GS
Fi−1) = GS

Fi−1 ♦ g(Xi)

where GS
F0 = g(F0). Unlike g, which takes in the output of

f (i.e., F), gS instead takes in the updates to F (i.e., X) as

input. In the asynchronous pipeline, only g(Fn) is needed

to compute the precise output. However, in the synchronous

pipeline, all gS(X1), ...,gS(Xn) are necessary. For this reason,

f and gS must synchronize such that f does not overwrite Xi
with Xi+1 before gS(Xi) begins executing. This forms a syn-

chronous pipeline where each fi(I) can execute in parallel to

gS(Xi−1). Note that with such a pipeline, gS(X1), ...,gS(Xn)
all contribute usefully towards the final precise output. An

example is shown in Figure 9. The intermediate updates X
flow through the pipeline instead of the outputs F as in the

asynchronous pipeline (Figure 7).

D. Summary

We conclude this section with an example that sum-

marizes key concepts of our model. Figure 10 shows an

example application with two computation stages: f (I)→ F
and g(F)→G. Stage f processes input sensor information to

generate a matrix of fixed-point data (shown as [AA.BB]).

Stage g is dependent on f ; it computes the dot product of

F with some matrix [C].

As Figure 10 shows, in the baseline application, f and

g simply execute one after the other. To construct an

anytime automaton, we apply some approximate computing

technique—say, reduced fixed-point precision—on f . The

general approach is to apply the technique iteratively (f
iterative); first with half-precision generating [AA] (f1) then

with full-precision generating [AA.BB] (f2) if accuracy is

not acceptable. Half-precision yields lower latency for both

f and g. However, if it yields unacceptable error, both f
and g need to be recomputed at full-precision, resulting in

longer runtime overall. We recognize that f2 is independent

of the half-precision invocation of g. Thus we construct

an asynchronous pipeline to allow the computation stages

to execute in parallel (f iterative, asynchronous pipeline),

reducing overall runtime. In this way, data is effectively

passed down through a parallel pipeline.

552

F := [AA.BB] G := F ● [C]

F := [AA] G := F ● [C] F := [AA.BB] G := F ● [C]

F := [AA] G := F ● [C]

F += [.BB] G := F ● [C]

X1 := [AA] G := X1 ● [C]

X2 := [.BB] G += X2 ● [C]
time

baseline

f iterative

f diffusive, asynchronous pipeline

f diffusive, g distributive, synchronous pipeline

F := [AA] G := F ● [C]

F := [AA.BB] G := F ● [C]

f iterative, asynchronous pipeline

Figure 10: Example comparing varying anytime automaton

organizations. Stage f applies anytime reduced-precision

approximations to produce output matrix F . Dependent stage

g computes dot product on F to produce output G.

By recognizing properties of common approximate com-

puting techniques and application computations, we can

minimize redundant work when constructing anytime au-

tomata. Since f is merely generating fixed-point values

at varying precision, it can be constructed as a diffusive

anytime stage. This implies that f2 can use the current state

of its output buffer (which is the output of f1) to update the

current output value without having to recompute at full-

precision. Specifically, f2 simply needs to add the rest of the

bits [.BB] to the output of f1 [AA]. Thus constructing f as

a diffusive stage improves performance further (f diffusive,
asynchronous pipeline). Note that this does not affect the

latency of the full-precision invocation of g. This is because

g is oblivious to f ’s diffusivity, so it needs to perform the

full-precision computation on [AA.BB]. To improve on

this, we can construct a synchronous pipeline (f diffusive, g
distributive, synchronous pipeline), since the dot product in

g is distributive over the addition operations of the updates

to f . Stage g is modified to take as input the output buffer

updates (X1 and X2 for f1 and f2, respectively) instead of

the output values themselves (F1 and F2), yielding lower

overall runtime. In this way, data is effectively diffused (as

opposed to passed down) through the entire pipeline. From

this example, we see how our model is able to transform

approximate applications into automata where accuracy is

guaranteed to increase over time.

IV. EVALUATION

In this section, we construct anytime automata for vari-

ous applications and evaluate the runtime-accuracy tradeoff

under different approximate computing techniques. We then

discuss other design considerations for anytime automata.

A. Methodology

This section describes the methodology and approximate

applications that we use in our experiments.

1) Experiments: We perform our evaluation of any-

time automata on real machines, demonstrating attractive

runtime-accuracy tradeoffs even without specialized hard-

ware. We also simulate the impact of approximate com-

puting techniques, such as reduced-precision operations and

approximate storage, to show their impact on error. We run

experiments on IBM Power 780 (9179-MHD) machines.

We use two nodes with four 4.42 GHz POWER7+ cores

each, with four-way hyper-threading per core, yielding 32

hardware threads in total. The system consists of 256 KB

of L2 cache and 10 MB of L3 (eDRAM) cache per core.

All applications are parallelized (both in the baseline precise

execution and in the anytime automaton) to fully utilize the

available hardware threads.

2) Applications: We evaluate our anytime automaton

model on applications from PERFECT [4], a benchmark

suite containing a variety of kernels for embedded comput-

ing, and AxBench [6], an approximate computing bench-

mark suite. We focus on five approximate applications that

are widely used, are applicable to real-time computing and

have visualizable outputs for our evaluation. We use large

image input sets for all applications. We measure accuracy

in terms of signal-to-noise ratio (SNR)—a standard metric in

image processing—of the approximate output relative to the

baseline precise. SNR is measured in decibels (dB) where

∞ dB is perfect accuracy. Since acceptability is naturally

subjective, we present sample outputs in our evaluation.

2d convolution (2dconv) from PERFECT applies a con-

volutional kernel to spatially filter an image; in our case,

a blur filter is applied. It consists of many dot products,

computed for each pixel. This is a common computation in

computer vision and machine learning. The application is

simple in structure, yielding an anytime automaton with a

single diffusive stage. We employ output sampling with a

tree permutation in generating the filtered image. We also

evaluate reduced fixed-point precision (Section IV-B1) and

approximate storage (Section IV-B2) on 2dconv.

Histogram equalization (histeq) from PERFECT enhances

the contrast of an image using a histogram of image inten-

sities. This is common in satellite and x-ray imaging. We

construct an automaton with four computation stages in an

asynchronous pipeline. The first stage is diffusive; it builds

a histogram of pixel values using anytime pseudo-random

input sampling, similar to the example in Figure 3. The

second and third stages are not anytime; they construct a nor-

malized cumulative distribution function from the histogram.

The fourth diffusive stage generates the high-contrast image

using tree-based output sampling.

Discrete wavelet transform (dwt53) from PERFECT per-

forms a discretely-sampled wavelet transform on an image.

This computation is a common form of data compression.

We approximate the transform and then execute the inverse

transform precisely; accuracy is measured on the inversed

output relative to the original image. Our automaton consists

553

0
5

10
15
20
25
30
35
40

0 0.5 1 1.5 2

SN
R

(d
B)

runtime (normalized to baseline)

Figure 11: Runtime-accuracy of 2dconv anytime automaton.

The vertical line indicates an SNR of ∞ dB.

0

5

10

15

20

0 0.5 1 1.5

SN
R

(d
B)

runtime (normalized to baseline)

Figure 12: Runtime-accuracy of histeq anytime automaton.

of a single iterative stage that employs loop perforation when

processing and transposing pixels.

Debayering (debayer) from PERFECT converts a Bayer

filter image from a single sensor to a full RGB image. It is

commonly used in image sensors for security cameras and

x-ray imaging. The structure of the application is similar

to 2dconv; the interpolations in debayer are similar to the

convolutional filter. As a result, we use a similar single-

diffusive-stage automaton with tree-based output sampling.

K-means clustering (kmeans) from AxBench performs

the k-means algorithm for clustering over the pixels of an

image. This is a very common computation in data mining

and machine learning. We construct an automaton with two

stages in an asynchronous pipeline. The first stage computes

the cluster centroids and assigns pixels to clusters based on

their Euclidean distances. This is diffusive; we employ any-

time output sampling with a tree permutation. The second

(non-anytime) stage reduces the centroid computations of

the multiple threads from the previous stage.

B. Performance-Accuracy Tradeoff

In this section, we evaluate the performance-accuracy

tradeoffs of our anytime automata. The runtime-accuracy

results are presented in Figures 11 (2dconv), 12 (histeq),

13 (dwt53), 14 (debayer), and 15 (kmeans). These plots are

generated from multiple runs, executing each automaton and

halting it after some time to evaluate its output accuracy.

The x-axis is the runtime of the automaton normalized to the

baseline precise execution. The y-axis is our accuracy metric

SNR in decibels. We later show example image outputs to

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5

SN
R

(d
B)

runtime (normalized to baseline)

Figure 13: Runtime-accuracy of dwt53 anytime automaton.

The vertical line indicates an SNR of ∞ dB.

0
2
4
6
8

10
12
14
16
18

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

SN
R

(d
B)

runtime (normalized to baseline)

Figure 14: Runtime-accuracy of debayer anytime automaton.

The vertical line indicates an SNR of ∞ dB.

0

5

10

15

20

25

0 0.3 0.6 0.9 1.2 1.5 1.8

SN
R

(d
B)

runtime (normalized to baseline)

Figure 15: Runtime-accuracy of kmeans anytime automaton.

The vertical line indicates an SNR of ∞ dB.

relate SNR to image quality. The vertical line indicates the

point where SNR reaches ∞ dB (precise output). This is

shown for all applications except for histeq, where precise

output is reached at 6× the runtime of the baseline; this

is high due to non-anytime computations as discussed later.

From our runtime-accuracy results, our model maintains the

universal and most important trend in that accuracy increases

over time and eventually reaches precise output.

As shown in Figures 11 and 14, 2dconv and debayer

reap the most benefit from the anytime automaton model.

At only 21% of the baseline runtime, 2dconv is able to

produce an output with an SNR of 15.8 dB, which may

be acceptable in certain use cases. This output is visualized

in Figure 16, comparing against the baseline precise output.

The benchmarks 2dconv and debayer are able to achieve

high accuracy at low runtimes because 1) their computations

are diffusive, and 2) their pipelines are simple. For both

2dconv and debayer, we employ output sampling, a diffu-

554

(a) 21% runtime, SNR 15.8dB

(b) baseline precise

Figure 16: Output of 2dconv anytime automaton.

sive anytime approximation that minimizes redundant work.

In Sections IV-B1 and IV-B2, we also evaluate reduced-

precision operations and approximate storage on 2dconv.

The pipelines for 2dconv and debayer are simple since they

only consist of one stage. They are not hindered by the

presence of non-anytime stages, unlike in histeq and kmeans.

Despite the good results, neither 2dconv nor debayer (nor

any of the other applications) reach precise output as early

as the baseline execution. This is primarily due to poor

cache locality from non-sequential sampling permutations.

As we discuss later in Section IV-C3, this can be alleviated

by architectural optimizations.

As shown in Figure 13, dwt53 has a steep runtime-

accuracy curve. The automaton produces unacceptable ap-

proximations for over half of the baseline runtime before

finally delivering acceptable output. This is due to the itera-

tive loop perforation. Unlike with diffusive sampling where

the output constantly increases in accuracy as elements are

processed, iterative loop perforation re-executes the com-

putation with progressively larger strides. This results in

redundant computations and yields a runtime-accuracy curve

that is less smooth. Despite this, with the dwt53 automaton,

Figure 17 shows that acceptable output (SNR 16.8 dB) can

be reached at only 78% of the baseline runtime.

As shown in Figures 12 and 15, histeq and kmeans do

not perform as well as 2dconv and debayer. This is due to

the presence of non-anytime stages. Non-anytime stages are

common for performing small (typically sequential) tasks

such as normalization of data structures (as in histeq) or

reducing thread-privatized data (as in kmeans). Despite this,

both applications produce acceptable outputs at about 60%

(a) 78% runtime, SNR 16.8dB

(b) baseline precise

Figure 17: Output of dwt53 anytime automaton.

(a) 63% runtime, SNR 16.7dB (b) baseline precise

Figure 18: Output of kmeans anytime automaton.

of the baseline runtime, visualized in Figure 18 for kmeans.

Note also that though some computation stages are not

anytime in our design, it may still be possible to make them

anytime using other methods. This motivates future research

avenues in the wider design space exploration of anytime

automata and new anytime approximation techniques.

1) Impact of Reduced Fixed-Point Precision: In this sec-

tion, we evaluate the accuracy of applying reduced-precision

operations (integer, in this case) to the 2dconv automaton.

Figure 19 shows the SNR using 8-bit (default), 6-bit, 4-

bit and 2-bit pixel precisions. The x-axis is the increasing

sampling resolution, since output sampling is employed

in the 2dconv automaton. After processing all elements

(i.e., sample size of 1), for 6-bit and 4-bit precision, output

accuracy is 37.9 dB and 24.2 dB respectively. Reduced-

precision can be applied in conjunction with sampling while

still maintaining reasonable accuracy. Furthermore, reduced-

precision operations for integers are diffusive, minimizing

redundant computations, as discussed in Section III-B2.

555

∞

0

10

20

30

40

50

SN
R

(d
B)

sample size

8 bits

6 bits

4 bits

2 bits

Figure 19: Sample size-accuracy of 2dconv anytime automa-

ton when varying pixel precision.

∞

0

10

20

30

40

50

SN
R

(d
B)

sample size

0%

0.00001%

0.001%

Figure 20: Sample size-accuracy of 2dconv anytime automa-

ton when varying SRAM read upset probability.

2) Impact of Approximate Storage: In this section, we

evaluate the use of iterative anytime techniques via ap-

proximate storage (low-voltage SRAM [7], in this case).

Figure 20 shows how 2dconv accuracy is impacted with

varying SRAM bit failure probabilities. We explore read

upset probabilities of 0.00001% and 0.001%, the latter

of which is estimated to yield up to 90% supply power

savings [19]. As shown in the figure, allowing for such read

upsets still yields acceptable outputs in many cases. Note

that the curves line up at lower sample sizes; this is expected

since the number of bit flips is directly related to number of

data elements processed so far.

C. Discussion

In this section, we discuss new insights, challenges and

research opportunities that emerge when designing architec-

tures for our anytime automaton model.

1) Multi-Threaded Sampling: Our model supports com-

putation stages that are multi-threaded. Though we use non-

sequential permutations when sampling, sampling can still

be performed by multiple threads. For both the tree and

pseudo-random permutations, the permutation function p(i)
is bijective and deterministic. Given the base index i which

is incremented 1, ...,n, the permutation p(i) simply yields

a different (but still deterministic) sequence for accessing

elements. It is then straightforward to divide this permu-

tation sequence among threads for sampling. For the tree

permutation, we typically want to produce a low resolution

output as early as possible. Thus the permutation sequence

of p can be divided cyclically; given n threads, a thread that

is currently processing the element at p(i) will next access

the element at p(i+n). For the pseudo-random permutation,

either cyclic or round-robin distribution is acceptable.

2) Pipeline Scheduling: The anytime automaton opens

up new interesting challenges in thread scheduling. Given

an architecture with limited cores and hardware threads, it

can be difficult to decide how many threads to allocate per

computation stage. The conventional approach for pipelining

is to assign threads to stages such that all stages have

similar latencies. However, this may not be suitable for the

automaton pipeline.

First, the latency of a computation stage may not be

static. An anytime stage f is broken down into intermediate

computations f1, ..., fn, whose latencies can vary signifi-

cantly. In many cases, the latencies increase from f1 to

fn since the later stages likely perform more computations

to achieve higher accuracy. Thus it may be beneficial to

reassign threads among stages dynamically. However, this

can be difficult since stages are not necessarily synchronized.

For example, at one point in time, fn can be co-executing

with g1, while at another, it can be executing alongside g2.

Second, thread assignment depends on the desired gran-

ularity of anytime outputs. The granularity of outputs is

defined by 1) how early the first approximate output is

available, and 2) how frequently the approximate outputs

are updated as they approach the precise output. Consider

the example pipeline in Figure 2. If we want to minimize the

amount of time it takes to reach the first approximate output

O1111, we need to allocate more threads to the longest stage

f . On the other hand, if we want to minimize the amount

of time between consecutive outputs O1111 and O1112, we

need to allocate more threads to the final stage i. Though

challenging, pipeline scheduling is merely an optimization

problem; correctness is ensured regardless. This motivates

the design of architectures with fine-grained, intelligent

thread migration/scheduling; this is left for future work.

3) Data Locality: In conventional architectures, the any-

time automaton can suffer from poor cache and row buffer

locality when sampling with the non-sequential tree and

pseudo-random permutations. However, both permutations

are deterministic. As a result, simple hardware prefetchers

can be implemented to alleviate the high miss rates due

to poor locality. The overhead and complexity of such

prefetchers is minimal: an address computation unit coupled

with the deterministic tree or pseudo-random (e.g., LFSR)

counters. Furthermore, thanks to recent advancements in

near-data processing [1], input and output data sets can be

reordered in-memory, since the sampling permutations are

typically static throughout the runtime of the application.

V. CONCLUSION

We propose the Anytime Automaton, a new computation

model that represents an approximate application as a paral-

lel pipeline of anytime computation stages. This allows the

556

application to execute such that 1) it can be interrupted at

any time while still producing a valid approximate output,

and 2) its output quality is guaranteed to increase over

time and approach the precise output. This addresses the

fundamental drawback of state-of-the-art approximate com-

puting techniques: they do not provide guarantees on the

acceptability of all outputs at runtime. With the anytime

automaton model, the application can be stopped at any

point that the user is satisfied, expending just enough time

and energy for an acceptable output. If the output is not

acceptable, it is a simple matter of letting the application run

longer. The anytime automaton greatly simplifies (for users

and system designers) the process of executing applications

in an approximate way. This can catalyze the acceptance of

approximate computing in real-world systems and invigo-

rate the design of architectures where output acceptability

directly governs the amount of time and energy expended

(hold-the-power-button computing).

ACKNOWLEDGEMENTS

The authors thank their internship collaborators at IBM

T. J. Watson Research Center [23]: Vijayalakshmi Srini-

vasan, Ravi Nair and Daniel A. Prener. The authors also

thank the anonymous reviewers for their insightful feedback.

This work is supported by a Queen Elizabeth II/Montrose

Werry Scholarship in Science and Technology, the Natural

Sciences and Engineering Research Council of Canada,

the Canadian Foundation for Innovation, the Ministry of

Research and Innovation Early Researcher Award and the

University of Toronto.

REFERENCES

[1] B. Akin et al., “Data Reorganization in Memory Using 3D-
stacked DRAM,” in ISCA, 2015.

[2] C. Alvarez et al., “Fuzzy memoization for floating-point
multimedia applications,” IEEE TOCS, 2005.

[3] W. Baek and T. M. Chilimbi, “Green: a framework for
supporting energy-conscious programming using controlled
approximation,” in PLDI, 2010.

[4] K. Barker et al., PERFECT (Power Efficiency Revolution
For Embedded Computing Technologies) Benchmark Suite
Manual, Pacific Northwest National Laboratory and Georgia
Tech Research Institute, December 2013, http://hpc.pnnl.gov/
projects/PERFECT/.

[5] T. L. Dean and M. Boddy, “An analysis of time-dependent
planning,” in AAAI, 1988.

[6] H. Esmaeilzadeh et al., “Neural acceleration for general-
purpose approximate programs,” in MICRO, 2012.

[7] K. Flautner et al., “Drowsy caches: simple techniques for
reducing leakage power,” in ISCA, 2002.

[8] A. Garvey and V. Lesser, “Design-to-time real-time schedul-
ing,” IEEE SMC, 1993.

[9] B. Grigorian et al., “BRAINIAC: Bringing reliable accu-
racy into neurally-implemented approximate computing,” in
HPCA, 2015.

[10] E. J. Horvitz, “Reasoning about beliefs and actions under
computational resource constraints,” in Workshop on Uncer-
tainty in Artificial Intelligence, 1987.

[11] D. S. Khudia et al., “Rumba: An Online Quality Management
System for Approximate Computing,” in ISCA, 2015.

[12] V. Lesser et al., “Approximate processing in real-time
problem-solving,” AI Magazine, 1988.

[13] S. Liu et al., “Flikker: saving DRAM refresh-power through
critical data partitioning,” in ASPLOS, 2011.

[14] R. Mangharam and A. A. Saba, “Anytime Algorithms for
GPU Architectures,” in RTSS, 2011.

[15] T. Moreau et al., “SNNAP: Approximate Computing on
Programmable SoCs via Neural Acceleration,” in HPCA,
2015.

[16] S. Narayanan et al., “Scalable stochastic processors,” in
DATE, 2010.

[17] L. Renganarayana et al., “Programming with relaxed synchro-
nization,” in RACES, 2012.

[18] M. Samadi et al., “SAGE: Self-tuning approximation for
graphics engines,” in MICRO, 2013.

[19] A. Sampson et al., “EnerJ: approximate data types for safe
and general low-power consumption,” in PLDI, 2011.

[20] A. Sampson et al., “Approximate storage in solid-state mem-
ories,” in Proc. Int. Symp. Microarchitecture, 2013.

[21] J. San Miguel et al., “Doppelganger: A cache for approximate
computing,” in MICRO, 2015.

[22] J. San Miguel et al., “Load value approximation,” in MICRO,
2014.

[23] J. San Miguel et al., “A systolic approach to deriving any-
time algorithms for approximate computing,” IBM Research
Report RC25600, Tech. Rep., 2016.

[24] S. Sidiroglou-Douskos et al., “Managing performance vs.
accuracy trade-offs with loop perforation,” in FSE, 2011.

[25] A. Sinha and A. Chandrakasan, “Energy efficient filtering
using adaptive precision and variable voltage,” in ASIC/SOC,
1999.

[26] R. St. Amant et al., “General-purpose code acceleration with
limited-precision analog computation,” in ISCA, 2014.

[27] M. Sutherland et al., “Texture cache approximation on gpus,”
in WAX, 2015.

[28] J. Y. F. Tong et al., “Reducing power by optimizing the
necessary precision/range of floating-point arithmetic,” IEEE
Transactions on VLSI Systems, 2000.

[29] J. W. S. L. W-K. Shih and J.-Y. Chung, “Fast algorithms for
scheduling imprecise computations,” in RTSS, 1989.

[30] S. White, “Applications of distributed arithmetic to digital
signal processing: a tutorial review,” IEEE ASSP, 1989.

[31] A. Yazdanbakhsh et al., “RFVP: Rollback-free value predic-
tion with safe-to-approximate loads,” TACO, 2016.

[32] T. Yeh et al., “The art of deception: Adaptive precision
reduction for area efficient physics acceleration,” in MICRO,
Dec 2007.

[33] S. Zilberstein, “Operational Rationality through Compilation
of Anytime Algorithms,” Ph.D. dissertation, Technion - Israel
Institute of Technology, 1982.

557

