
Efficiently Scaling Out-of-Order Cores for Simultaneous Multithreading

Faissal M. Sleiman and Thomas F. Wenisch

Computer Engineering Laboratory
EECS Department, University of Michigan

Ann Arbor, Michigan, USA
{sleimanf, twenisch}@umich.edu

Abstract—Simultaneous multithreading (SMT) out-of-order
cores waste a significant portion of structural out-of-order core
resources on instructions that do not need them. These re-
sources eliminate false ordering dependences. However, because
thread interleaving spreads dependent instructions, nearly half
of instructions dynamically issue in program order after all
false dependences have resolved. These in-sequence instructions
interleave with other reordered instructions at a fine granularity
within the instruction window. We develop a technique to
efficiently scale in-flight instructions through a hybrid out-
of-order/in-order microarchitecture, which can dispatch in-
structions to efficient in-order scheduling mechanisms—using
a FIFO issue queue called the shelf—on an instruction-by-
instruction basis. Instructions dispatched to the shelf do not
allocate out-of-order core resources in the reorder buffer, issue
queue, physical registers, or load-store queues. We measure
opportunity for such hybrid microarchitectures and design and
evaluate a practical dispatch mechanism targeted at 4-threaded
cores. Adding a shelf to a baseline 4-thread system with 64-
entry ROB improves normalized system throughput by 11.5%
(up to 19.2% at best) and energy-delay product by 10.9% (up
to 17.5% at best).

Keywords-microarchitecture; in-sequence; reorder

I. INTRODUCTION

Modern processors use a variety of microarchitectural

techniques to enhance application performance. Out-of-

order (OOO) execution and simultaneous multithreading [1]

(SMT) are two such techniques, which seek to utilize su-

perscalar execution resources by increasing single-threaded

instruction-level parallelism and thread-level parallelism, re-

spectively. By incorporating both OOO and SMT hardware,

some designs seek to balance single-threaded performance

and throughput. This combination comes at an efficiency

cost, as OOO and SMT mechanisms compete to fill the

same functional units using different types of parallelism.

As such, prior work finds that the throughput of an in-order

(INO) core approaches that of an OOO core as the number

of SMT threads is increased [2].

OOO hardware enables early issue of instructions that

encounter false dependences, for which INO cores must stall.

However, in SMT cores, the last-arriving input operand (true

dependence) for a significant fraction of instructions arrives

after all false dependences have resolved. Such instructions,

which we call in-sequence, do not stall in INO cores and

naturally issue after all elder instructions (i.e., in program

Figure 1: Fraction of instructions wasting OOO resources.

order) in OOO cores. Conversely, we refer to instructions

that naturally issue out of program order as reordered. We

find that having more SMT threads increases the fraction

of in-sequence instructions observed in a particular OOO

instruction window. Figure 1 illustrates the extent of this

effect; as the number of threads in a 128-entry OOO

instruction window is increased, the fraction of in-sequence

instructions more than doubles to more than 50% on average.

In-sequence instructions gain no benefit from the OOO

microarchitecture structures they occupy. In fact, these in-

structions can be safely executed on schedule without al-

locating in OOO structures, including the reorder buffer,

issue queue, load-store queue, and physical register file.

However, in-sequence instructions interleave at fine gran-

ularity with reordered instructions. We find that groups

of consecutive in-sequence or reordered instructions aver-

age 5 to 20 instructions per group. So, existing hybrid

INO/OOO microarchitectures [3], [4], which switch at 1000-

instruction (or higher) granularity, cannot exploit the in-

sequence phenomenon without sacrificing performance on

reordered instructions.

Instead, we propose a microarchitecture where in-

sequence instructions occupy an energy-efficient FIFO

queue, which we call the shelf 1, from which instructions

may issue only in sequence (reordered instructions occupy

a conventional, unordered issue queue). By shifting in-

1 We borrow the naming concept for the shelf from the Metaflow
architecture [5], as our structure is based on the principle of shelving
deferred instructions.

2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture

1063-6897/16 $31.00 © 2016 IEEE

DOI 10.1109/ISCA.2016.45

431

sequence instruction occupancy to the inexpensive shelf, ca-

pacity in OOO structures is freed for reordered instructions.

As Figure 1 shows that more than half of instructions are in-

sequence in a 4-thread SMT, we aim to double the effective

instruction scheduling window simply with the allocation of

FIFO queues.

This paper makes contributions in three areas. First, we

report on the correlation between in-sequence instructions

and the effectiveness of OOO hardware—in-sequence in-

structions gain no benefit from OOO mechanisms. Second,

we leverage that insight to design a microarchitecture that

integrates a shelf into an SMT-enabled out-of-order core. To

our knowledge, this is the first design that enables a modern

dynamically scheduled instruction window, with instruc-

tion reordering and register renaming, to contain statically

scheduled, unreordered instructions, which reuse the same

registers, chosen at instruction granularity. We evaluate the

opportunity for such microarchitectures to improve energy-

delay product under an oracle dispatch mechanism. Finally,

we design a simple hardware steering mechanism that de-

termines whether instructions must be steered to the shelf

based on whether they are predicted to be in-sequence or

reordered in the future schedule. With this practical steering

mechanism, a 64-entry shelf improves normalized system

throughput (a metric that considers both performance and

fairness across threads [6]) by 11.5% (up to 19.2% at best)

and energy-delay-product by 10.9% (up to 17.5% at best)

over a baseline 4-thread OOO core with a 64-entry ROB.

II. BACKGROUND AND DESIGN OVERVIEW

OOO cores dispatch instructions into a dynamic schedul-

ing window where they can be selected to issue to functional

units out of program order. On the other hand, a simple INO

core stalls at the issue stage until all ordering dependences

resolve. We identify three such dependences that cause

simple INO cores to stall, but do not stall OOO cores.

These are data, speculation, and structural dependences.

We consider an instruction to be reordered if it issues to

functional units before all three types of dependences are

resolved, otherwise the instruction is in-sequence.

Data dependences govern the order in which register

reads and writes must be performed. These comprise the

well-known Read-After-Write (RAW) or true dependence,

as well as the Write-After-Write (WAW) and Write-After-

Read (WAR) false dependences. The simple INO core stalls

for true and false data dependences by issuing instructions in

program order, which takes care of WAR hazards, and with

the use of a register ready bit-vector, which can detect RAW

and WAW dependences. Speculation dependences involve

speculative execution of instructions, including processor

speculation on control flow, such as after a branch or

excepting instruction, or on values, such as those returned

by loads executed early in memory order. We consider that

speculation is bounded by a known maximum latency that

Figure 2: Weighted cumulative distribution of consecutive

in-sequence and reordered instruction series lengths.

is a function of the pipeline, especially for relaxed memory

models (Section III-D). Speculation dependences can be

handled at the issue stage using Smith and Pleszkun’s result

shift register [7]. Structural dependences represent resource

constraints that prevent instructions from proceeding to the

next stage, as in pipeline stalls in an INO core, or a tem-

porary shortage of functional units for a particular type of

operation. Structural dependences are honored automatically

by the FIFO nature of the INO issue stage.

Thus, all instructions in a simple INO core are in-

sequence, while OOO cores allow some instructions to issue

sooner (relative to other instructions) than they would have

in an INO core. OOO achieve this dynamic scheduling

window by provisioning a number of hardware structures,

including a reorder buffer (ROB), issue queue (IQ), load-

store queue (LSQ), and physical register file (PRF). These

structures alleviate data, speculation, and structural depen-

dences by implementing register renaming, instruction re-

ordering, and associative wakeup. Larger OOO cores scale

all structures in a balanced fashion so that no single structure

is a dominant bottleneck.

In-sequence and reordered instructions interleave at fine

granularity in an OOO core. Figure 2 depicts the cumulative

distribution of consecutive in-sequence and reordered series

lengths, weighted by the number of instructions in the

series (the series length). The plot shows the geometric

mean across benchmarks, as well as their range of behavior,

for single-threaded benchmarks. We find that 99% of in-

sequence instructions occur in series with 30 instructions

or fewer, while a series of reordered instructions is bound

by the ROB size (128 entries in this case). SMT workload

mixes with 2, 4 and 8 threads generally produce similar

distributions.

Our main observation is that in-sequence instructions do

not need costly OOO structures to execute correctly on

schedule. We demonstrate in the coming sections a practical

OOO microarchitecture wherein in-sequence instructions

432

Stall for
false hazards

Shelf
(FIFO)

WakeupFrontend
steer

decision

to
 S

he
lf

to
 IQ

Allocated in-order
hardware

Saved out-of-order
hardware

Load
Store

Queue

Issue
Queue

Reorder Bu�er

Physical
Register

File

Functional
Units

Se
le

ct

Figure 3: Design overview with FIFO shelf.

can be selected on an instruction-by-instruction basis and

skip allocation in OOO structures, while still executing
correctly in the same schedule as a conventional OOO core.

Nevertheless, in-sequence instructions must still be

buffered so as to extend the OOO instruction window. We

provide this buffering via a per-thread in-order issue queue,

which we call a shelf. A shelf is a FIFO buffer that holds

instructions in between the dispatch and issue stages much

like the (fully associative) IQ. It serves to unblock the

dispatch stage to allow reordered instructions to proceed

past stalled in-sequence instructions. Shelf instructions are

not allocated a new PRF or ROB entry. As such, shelf issue

logic must detect and handle false dependences by stalling.

Ideally, instructions steered to the Shelf are in-sequence

instructions, which do not incur additional stalls for false

dependences. We discuss steering instructions to the shelf

or IQ in Section IV.

Figure 3 illustrates the shelf within a generic OOO

pipeline. It depicts incoming instructions from the dispatch

stage as steered to the shelf or to the IQ. The steering

mechanism may interleave shelf and IQ instructions on

an instruction-by-instruction basis. Once instructions have

dispatched to the shelf and IQ, the microarchitecture must

correctly and quickly resolve true and false dependences

across the two queues to prevent unnecessary stalls. Prior

hybrid INO/OOO microarchitectures [3], [4] cannot exploit

such fine-grain interleaving, while our design can. As the

average series length of in-sequence or reordered is on

the order of 10 instructions, the instruction window will

simultaneously contain multiple series that interdepend. The

next section focuses on the details of our mechanism.

III. A HYBRID INSTRUCTION WINDOW

The FIFO shelf is designed to avoid costly associative

operations like the tag comparison in the IQ as well as store-

to-load forwarding and memory order violation detection

in the LSQ. We implement the shelf as a circular buffer

ShelfIQ

select

...

Update
head pointer

1
0

0

1
0

1

1

...

...

rdy? rdy?rdy?

ROB
idx

ROB
idx

ROB
idx

...

tags tagstags ...
rdy? prev. ROB idx ...
rdy? prev. ROB idx ...

rdy? prev. ROB idx ...

ta
g

br
oa

dc
as

t

<

Is
su

e-
tr

ac
ki

ng
 b

itv
ec

to
r

(b
y

R
O

B
 id

x)

Figure 4: In-order issue of shelf instructions.

with head and tail pointers, much like the ROB. All shelf

instructions will block behind a stalled head instruction even

if they are ready to issue. Each instruction at the head of

the shelf will check for false and true dependences before

issuing to the functional units.

Ideally, the shelf would only require mechanisms like

the simple INO core to ensure that instructions issue in-

sequence. However, in-order issue is complicated by the

dynicamically-scheduled OOO instruction window. To de-

tect false dependences inexpensively, we maintain the in-

variant that instructions issue from the shelf in program

order. The main implication of INO shelf issue is that

shelf instructions must issue after preceding IQ instructions,

which we describe in Section III-A. We also modify the

stalling mechanisms for speculation (Section III-B) and data

dependences (Section III-C). Finally, we discuss memory

ordering in Section III-D.

A. Issuing from the Shelf in Program Order

By virtue of the shelf being a FIFO buffer, its instructions

are already ordered with respect to each other. So, an

instruction at the head of the shelf need only stall for

unissued instructions from the immediately preceding series

of IQ instructions (earlier series of IQ instructions must have

already issued for the shelf instruction to reach the head). For

this reason, we designate that a new run of instructions starts

when an IQ instruction is steered immediately following a

shelf instruction from the same thread. One run consists of

a series of IQ instructions followed by a series of shelf

instructions. An instruction at the head of the shelf that

issues after all IQ instructions in the same run is guaranteed

to issue in program order.

Since IQ instructions are dynamically scheduled, the first

instruction to dispatch is not necessarily the first one to issue.

Additionally, consecutive instructions are generally not allo-

cated adjacent entries in an IQ. To track the issue order of IQ

instructions, we allocate a per-thread issue-tracking bitvector

with one bit per ROB entry, which represents whether the

corresponding instruction has yet to issue (see Figure 4). The

bit corresponding to an instruction is cleared upon dispatch,

433

and set upon issue. A head pointer is maintained to track

the oldest unissued IQ instruction, similarly to how the

ROB tracks the oldest instruction that has not retired. To

be eligible for issue, a shelf instruction must ensure that the

head pointer has moved past the last IQ instruction in its run.

So, as an instruction is dispatched to the shelf, it records the

ROB index of the last preceding IQ instruction (i.e., the tail

pointer of the ROB/issue-tracking bitvector for its thread).

Once the head pointer advances past this index, the shelf

head is the eldest unissued instruction and can proceed to

issue in program order.

Critical Path Considerations. In a superscalar machine,

we may desire to issue a shelf instruction in the same cycle

as the last older IQ instruction. We consider the circuit-level

critical path challenges associated with same-cycle issue.

An issue cycle consists of selecting a number of ready

instructions, followed by waking up their dependents to mark

them ready for the next cycle. To determine if the head of

the shelf is eligible for issue, the issue-tracking bitvector

must be updated to reflect the elder IQ instructions selected

for issue this cycle. Same-cycle issue of an IQ instruction

and subsequent shelf instructions requires this combinational

logic to be placed on the critical path of wakeup and select.

In OOO cores with relatively small issue queues, this ad-

ditional logic may not affect the processor clock frequency.

However, in larger OOO designs, issue logic is often already

among the longest paths. Hence, we propose the design

depicted in Figure 4, which does not bypass issue-tracking

bitvector updates, removing these updates from the wakeup-

select critical path. As the shelf extends the instruction

window, it effectively competes against larger OOO cores

with longer critical paths. We evaluate various OOO sizes

under the same clock frequency to isolate microarchitectural

effects; nevertheless, we assume that small critical path

overheads induced by our shelf design compare favorably

to the critical paths in larger, slower designs.

B. Handling Speculation

The ROB is the conventional OOO structure that enables

misspeculation recovery by maintaining the program order

retirement of architectural state. If an instruction misspecu-

lates, the implementation is able to recover the architectural

state prior to that instruction, squashing younger instructions

in the process. The PRF buffers the alternative versions of

register state needed for this recovery process, and typically

scales with the OOO instruction window. An instruction is

considered committed once it can no longer be squashed,

and any state it overwrites is no longer needed for recovery.

By orchestrating the in-sequence completion of shelf instruc-

tions, we find we are able to forego allocation of ROB entries

and overwrite previously allocated PRF entries. Shelf in-

structions must be delayed at issue until they are guaranteed

to be committed. We discuss the shelf delay mechanisms

below, then discuss how to squash shelf instructions and

prevent them from writing back on a misspeculation. Finally

we consider coordinating the ROB retire order with shelf

instructions.

Delaying Shelf Instructions for Speculation. We first

describe the simplest method to delay shelf instruction

writeback correctly. This method is based on the result shift

register proposed by Smith and Pleszkun in the context

of in-order cores with varying but deterministic instruction

execution latencies [7]. We introduce a speculation shift
register (SSR) per thread, which tracks the maximum re-

maining resolution cycles for any in-flight instruction. As

each speculative instruction issues, it sets the SSR to the

maximum of its resolution delay and the current SSR value.

Since shelf instructions issue in program order, when the

instruction at the head of the shelf is eligible for issue, the

SSR will have been updated by all older instructions. A shelf

instruction can only issue once its minimum execution delay

compares greater than or equal to the value in the SSR. Any

earlier and it becomes unsafe to issue the shelf head (i.e., it

could overwrite the value in its destination register, which

is later needed for recovery).

Although the mechanism we have described thus far

maintains precise state, it can unnecessarily delay shelf

instructions due to speculative execution of younger re-

ordered instructions; such younger instructions may issue

early, merging their resolution time into the SSR. In patho-

logical cases, the shelf head may be the eldest incomplete

instruction and yet stall indefinitely, until the issue of all

younger instructions becomes blocked due to dependences

on the shelf. (This pathology could not arise in Smith and

Pleszkun’s setting, where issue is in-order [7].) To avoid this

pathology, we provision additional SSRs. We could enforce

precise speculation stalls by provisioning a separate SSR for

each run; however, the number of in-flight runs varies greatly

over the course of execution. Moreover, to support per-run

SSRs, each IQ instruction would need to track which SSR

it must update.

Instead, we propose a design with only two SSRs, an

IQ SSR and a shelf SSR as shown in Figure 5. All IQ

instructions update only the IQ SSR with their resolution

time as they issue. Shelf instructions refer only to the shelf

SSR to determine if they are safe to issue. Whenever the first

shelf instruction in a particular run becomes eligible for in-

order issue, the IQ SSR is first copied to the shelf SSR. At

this moment, it is guaranteed that all elder IQ instructions

have issued and updated the SSR (as the shelf head is the

eldest unissued instruction). The IQ SSR may include the

resolution delay of younger instructions that issued early,

for which we (unnecessarily, but conservatively) enforce a

delay. However, the starvation pathology described above is

no longer possible, since no more IQ instructions will affect

the shelf SSR until the shelf head issues.

Shelf Retirement and Squashing. Having been delayed

sufficiently, a shelf instruction that arrives at the writeback

434

ShelfIQ

select

...

...

rdy? rdy?rdy?

delay delaydelay

...

rdy? delay ...
rdy? delay ...

rdy? delay ...

11000 0 1...11110 0 1...

max max

>>1 >>1
IQ SSR Shelf SSR

First-in-series (fst?)
and oldest

IQ inst.
delays

Shelf inst.
delays

fst?

fst?

fst?

from issue-tracking
head update

Figure 5: Delaying the shelf for speculation.

stage without being squashed is definitely committed and

can be retired. There can be no readers, writers or recoveries

to the state that it will overwrite (data dependences are

handled in Section III-C). A consequence of this is that shelf

instructions may retire out of program order. We discuss

coordinating the retire order with the ROB in Section III-B.

On a misspeculation, all shelf instructions that need to be

squashed are either unissued or still in-flight in execution

pipelines. These shelf instructions, possibly including the

misspeculating instruction itself, must be prevented from

writing back as they complete.

There may also be elder in-flight shelf instructions mixed

in, which must not be squashed. Hence, a misspeculating

instruction must indicate precisely the index of the first

shelf instruction to be squashed. This shelf squash index
can be used to filter out younger shelf instructions as they

write back. For misspeculating shelf instructions, identifying

the shelf squash index is trivial: it is the misspeculating

instruction’s own index. For IQ instructions, we store during

dispatch the index that the next shelf instruction will be

assigned, indicated by the shelf tail pointer.

A consequence of this recovery design is that a shelf index

may not be recycled for use by another instruction until its

first assignee writes back. In contrast, IQ entries may be

recycled immediately once the instruction occupying them

issues. A simple solution is to release shelf entries only upon

writeback. However, this approach greatly increases shelf

occupancy; as our goal is to squeeze the most efficiency out

of as little hardware as possible, the increased occupancy

is undesirable. We discuss an alternative that decouples the

shelf index (which cannot be reused) from the shelf entry

(which may then be used by another instruction) below.

ROB Retirement. For IQ instructions, the ROB ensures

in-order retirement with respect to other IQ instructions;

however, the ROB must also coordinate with the out-of-order

retirement of shelf instructions to ensure precise state in the

event of a misspeculation—ROB instructions may not retire

before older shelf instructions. We address this by tracking

shelf instruction retirement in a shelf retire bitvector, much

like the completion bit associated with each ROB entry.

Similar to the head pointer of the ROB, a shelf retire pointer

advances over this bitvector, always pointing to the eldest

unretired shelf index. Each ROB entry tracks the index of

the next shelf instruction to follow it in program order (recall

that this is the shelf squash index, discussed above, which

we must already track for misspeculation recovery). Once

the shelf retire pointer matches or exceeds the stored shelf

index, the ROB can retire the next IQ instruction.

Whereas this design ensures correct ordering of ROB

retirement with respect to shelf instructions, shelf indices

must now be reserved until they are no longer referenced

by the ROB. The shelf squash index at the head of the ROB

is effectively a shelf reservation pointer, preventing a second

shelf instruction from retiring an ambiguous shelf index.

This shares the downside noted previously: shelf entries may

not be recycled for use by a new instruction, in this case until

elder ROB entries retire.

We solve this potential resource shortage by decoupling

the allocation and deallocation of the (comparatively) ex-

pensive shelf entry from that of the shelf index (a virtual

resource). We assume the size of the shelf is a power of

two, and allow the shelf index to span a range double

the shelf size. The shelf retire and reservation pointers

now track shelf indexes in this larger index space, but the

most significant bit of the shelf index is not used when

accessing shelf entries. Shelf entries may now be reused as

soon as the corresponding shelf instruction issues. A single

shelf tail pointer is used to allocate a shelf index and the

corresponding entry (i.e., ignoring the most significant bit).

C. Handling Data Hazards

To handle data hazards, shelf instructions must stall at is-

sue until it is guaranteed that data dependences are resolved,

similar to the simple INO core. Once all data dependences

are resolved, in-sequence instructions from the shelf may

correctly overwrite the previous value for their destination

register. Our strategy, then, is to reuse the previous physical

register allocated to the logical identifier for each shelf

instruction’s destination. We do not allocate new physical

registers for shelf instructions, thus reducing the occupancy

of the PRF.

Both shelf and IQ instructions translate their source reg-

ister identifiers in the rename stage to pick up the physical

register identifiers (PRI). They also pick up the existing

destination register translation; the shelf simply uses it as

a destination physical register, while the IQ will retire the

identifier back onto the free list as it replaces the translation

with a newly allocated physical register mapping. Figure 6

illustrates the life cycle of a PRI. A physical register is

first allocated and written by an IQ instruction, and then

overwritten by any number of shelf instructions until the next

435

�� �� �� �� ����� �	 �
 �� ��

������

�������������
����������� �� �� �� �� �� �� �� �� �� ��

�����������

��

��

��

��

��

��

��

�	

�

��

��

����������! �������������"

�������#$�����"
�����������

Figure 6: Life-cycle of register alias.

IQ instruction renames the corresponding logical register and

eventually retires it.

Instructions at the head of the shelf monitor a ready

bitvector for their operand readiness (or may use pipeline

interlocks like INO cores) using a conventional scoreboard.

The same method can be used to stall shelf instructions for

WAW dependences. Nothing additional needs to be done

for WAR dependences as the shelf issues in program order.

Complications arise, however, when an IQ instruction waits

on a true data dependence from an instruction on the shelf;

the IQ cannot distinguish the potentially multiple writes to

the same physical register by different shelf instructions,

which all use the same PRI. In other words, there is an

ambiguity in RAW dependences. Shelf instructions avoid

this problem because they issue in program order. Once

an instruction reaches the head of the shelf, only the last

instruction to write a source operand may be outstanding,

so there is no ambiguity. Dependent IQ instructions, on

the other hand, join a dynamic instruction window, so

they observe tag broadcast for multiple shelf writes to the

same physical register. The rest of this section describes

a mechanism to uniquely identify shelf writes to the same

register for the IQ.

Separation of Tag and Physical Register Index. The

problem at hand is that the PRI no longer uniquely identifies

one instruction in the OOO window, as it does in a conven-

tional PRF-based microarchitecture. Thus, a tag broadcast

from one shelf instruction that writes a physical register

might incorrectly wake up IQ instructions that depend on a

different shelf instruction. To solve this problem while allow-

ing shelf instructions to share a physical register, we must

decouple the two traditional roles of the PRI as a destination

register and as a unique identifier; each instruction acquires

both a PRI and a unique tag from rename. Thus an entry

in the mapping table (MT) will now map an architectural

register identifier to both a PRI and a tag.

Our implementation expands the tag space in a special

way given the life-cycle of an architectural register. For IQ

instructions, we retain the original tag space, where each

����
����
����

���

���	

���

�

�

�

��

�
���

�
�

��

�
��
��
�

��
��

�

��
��
��

���

��

��
��
�

��

�
��
��
�

��
��

�

��
��
��
��

��
��
��
�

� ��

��
��
�

�

���

�

����
��
����	
�����
����������
�������
�
��	������
���������������
 ���!�����������"
������������

Figure 7: Extended tag space and mapping.

tag corresponds to a particular physical register. When an

IQ instruction allocates a new physical register, both its

destination PRI and tag are set to that register’s index.

Shelf instructions allocate a new tag from an extended tag

space without allocating a new register, and only change the

mapping for the tag. We see that IQ instructions draw only

from the original tag space, while shelf instructions draw

only from the extended tag space, as depicted in Figure 7.

We manage these two portions of the tag space on separate

free lists, one physical free list for the original tag space and

one extension free list for the extension.

At rename, IQ instructions read the current mapping for

their source operands, noting both the PRI and tag. The PRI

is used to index into the PRF, and the tag is used to check

readiness and for the wakeup operation. IQ instructions also

pick up the current mapping for their destination registers,

so as to retire the identifiers from the ROB to their respective

free lists. The PRI is retired to the physical free list. If the

current PRI and the tag differ, then the tag must be from the

tag space extension and is retired to the extension free list.

Finally, IQ instructions allocate a new PRI from the physical

free list and set both tag and PRI mappings to it.

Shelf instructions similarly record all current mappings.

At retire, they only return the tag to the extension free list

if it differs from the PRI. Shelf instructions do not retire

the PRI as the register remains in use and no new PRI is

allocated. Only a tag is allocated from the extension free

list, and used to broadcast to the IQ.

Rename Stage. Figure 8 depicts the extended rename

stage. Steering is performed during decode, prior to re-

name, as steering decisions depend only on opcode and the

architectural register names of operands and destinations.

Depending on whether an instruction is steered to the shelf

or to the IQ, its destination register and tag will be different.

Tags from the extended tag space are offered by the extended

free list (Ext. FL) and register alias table (Ext. RAT), while

conventional PRI’s are offered by their physical counterparts.

The steering decision determines which structures are con-

sulted to allocate a tag.

436

Dependency
Checking

Logic

steering decision
from decode

Priority
Mask

dest Tag

Multiplexing
src1 PRI
src2 PRI
prev PRI

Multiplexing
src1 Tag
src2 Tag
prev Tag

Priority

Additional logic
or structures

Phys.
RAT

Ext.
RAT

Phys.
FL

Ext.
FL

Figure 8: Extended rename stage.

D. Memory Accesses and the LSQ

We first describe the ordering of shelf loads and stores

under uniprocessor and relaxed/weak consistency models,

which include the ARM v7 memory model used in our

evaluation. Shelf loads and stores issue in program order,

and thus follow all older loads and stores in the address

calculation pipeline. As such, shelf loads and stores do not

require their own load or store queue entries; instead, they

record the tail pointers of both structures at dispatch to track

their relative order.

Shelf loads associatively scan older IQ stores in the store

queue, all of which have calculated their addresses and

values, and younger IQ loads in the load queue, some of

which may have been reordered and issued early to memory.

(IQ loads perform the same operations as they execute). The

shelf load receives the value from the youngest scanned

instruction with a matching address. In particular, it must

receive a value from a younger matching load to avoid

a memory ordering violation [8]. Loads with no matches

issue to the cache hierarchy. Loads that issue to the cache

wake dependent instructions non-speculatively, resulting in

a minimum 2-cycle load-to-use distance for L1 data cache

hits. Upon a cache miss, loads (whether from the shelf

or IQ) are allocated a miss status holding register, which

arbitrates for writeback and tag wakeup when the cache miss

returns, unblocking the memory execution pipeline. Memory

dependence mispredictions cause a pipeline flush and restart

at the mispredicted instruction.

Shelf stores scan younger load instructions for matching

addresses to perform store-to-load forwarding, or to squash

IQ loads that have speculatively issued early. We use a

“store sets” [9] memory dependence predictor to prevent

frequent squashes. Shelf stores use their store set identifier

to release dependent younger loads, just as IQ stores do.

Finally, since uniprocessors and relaxed consistency models

support coalescing store buffers and do not require ordering

of stores to different addresses, shelf stores scan for the

next older matching store and immediately coalesce into its

store queue or store buffer entry. It is permissible to skip

over older loads in this case because they will have already

received a value from the coalescing buffer and taken their

place in memory order (non-speculatively). Stores that find

no match are released to the cache. We assume memory

barriers synchronize the pipeline at the dispatch stage.

Stricter consistency models, like Total Store Order and

Sequential Consistency, require in-window speculation [10]

for high performance. Amongst other constraints, loads are

speculative until all older loads to any address have at

least completed (obtained a value from memory). As a

consequence, all shelf instructions, including non-memory

instructions, that follow a speculative load are specula-

tive and may not writeback/retire until all preceding loads

become non-speculative—an uncertain time interval (e.g.,

duration of a cache miss). Shelf stores additionally need

to allocate store queue entries, as strong consistency models

often do not permit coalescing in the store buffer. Evaluating

the shelf under these models is beyond the scope of this

paper. We suggest that steering mechanisms could steer

those instructions to the shelf that are predicted to depend

on long-latency misses, similarly to recent latency-tolerant

designs [11], [12], [13].

IV. INSTRUCTION STEERING

Instruction steering determines whether an instruction is

dispatched to the IQ or the shelf, which directly affects the

instruction schedule. Whereas the microarchitecture ensures

correct execution under any steering policy, poor steering

can result in poor performance. If we steer all instructions

to the IQ, then the shelf provides no window size benefit.

Conversely, if all instructions are steered to the shelf, the

resulting performance will match that of an in-order core.

A. Oracle Steering

To measure the inherent opportunity of a shelf-augmented

microarchitecture, we first study an oracle steering mecha-

nism. Unfortunately, a perfect steering mechanism, which

steers optimally for maximum performance, is a global

optimization requiring complete knowledge of the whole-

program critical path. Although mechanisms to predict in-

struction criticality have been proposed [14], [15], steering

compounds the optimization problem: it adds/removes false

dependence edges, which changes the very shape of the

graph. Hence, even in the context of an offline oracle, perfect

steering is intractable.

Instead, we study an oracle that steers each instruction

according to whether it would issue earlier from the IQ

or the shelf (breaking ties in favor of the shelf). While

this determination is made greedily without regard to future

(younger) instructions, the greedy oracle steering algorithm

requires precise knowledge of the future schedule. Such

a mechanism cannot be implemented in practice, since

these future arrival times are not always known at dispatch.

However, in simulation, we can closely approximate this

future schedule using complete knowledge of instruction

437

Ready
Cycle
Table

r1

rn

r2

earliest-issue
earliest-writeback

Parent
Loads
Table

stalled loads
#

#
#

#
#

...

--

--
--

--
--

......
0 1 0 0

...

0 0 1 0
1 1 0 0

0 0 1 0

...

src1

src2

max +

latency

dependences

issue
writeback

Figure 9: Practical steering.

latencies, dependences, and memory addresses. For memory

operations, we functionally query the cache (atomically,

instantly and not modifying state) to accurately predict

memory latencies.

Note that, because of the complexity of the gem5 sim-

ulation model, even with oracle knowledge, we still steer

an average of 4% of instructions incorrectly. Though it

is highly detailed, our prediction of the future schedule

does not account for all corner cases that arise in the

simulation. So, our oracle algorithm additionally tracks the

actual execution schedule as the simulation progresses to

correct its representation of the schedule and recover from

mispredictions.

B. Practical Steering

As we will show, our oracle opportunity study reveals

relatively limited opportunity for a shelf-augmented mi-

croarchitecture in single-threaded executions; as indicated

in Figure 1, less than 25% of instructions are in-sequence.

In contrast, we demonstrate considerable opportunity as the

number of SMT threads increases. Hence, we design a prac-

tical steering method targeted for four-threaded execution.

The flexibility of the SMT thread fetch policy (ICOUNT

in our design [16]) is synergistic with simple instruction

steering. When instructions are fetched from a slow-moving

thread, they are steered to the shelf, avoiding IQ congestion.

Conversely, when an instruction is mis-steered to the shelf,

stalling execution, other threads benefit from the available

IQ capacity and fill the bubbles with useful execution. This

synergy facilitates a steering design without large and power-

hungry meta-data structures, which would undermine the

energy-efficiency objective of our microarchitecture.

At the heart of steering lies (1) the ability to predict the

future execution schedule, and (2) the ability to recover from

schedule mispredictions. We describe a practical hardware

solution to project instruction completion times and track

dependence chains, and show how these mechanisms can be

used for steering and misprediction recovery, with reference

to Figure 9.

Schedule Prediction. For each architectural register, we

maintain a prediction of its future writeback/ready cycle in

a Ready Cycle Table (RCT). RCT entries are decremented

each cycle to count down how many cycles are left until the

register is predicted to be ready.

If we dispatch an instruction to the IQ, we can predict

its issue cycle as the maximum ready cycle of its source

operands, and its completion cycle as the issue cycle plus

the instruction’s predicted latency. Instruction latencies are

usually available from decode. The prediction ignores struc-

tural hazards, such as issue width, and predicts all loads to

be L1 hits; the resulting schedule errors are handled via the

recovery mechanism. By predicting that all loads hit in L1,

we avoid the need for any prediction table.

An instruction dispatched to the shelf will issue after all

previously dispatched instructions even if its operands are

ready, since the shelf issues in program order. Hence, for the

shelf, we maintain an earliest-allowable issue cycle, which

is the maximum issue cycle of all previous instructions.

Shelf instructions also must stall at writeback while any

preceding instruction is speculative. So, we also track an

earliest-allowable writeback cycle, which is the maximum

speculation resolution cycle for any previous instruction. We

can then predict that, if dispatched to the shelf, an instruction

will issue at the maximum of its operands’ RCT entries and

the earliest-allowable issue cycle. Its completion cycle is

predicted as the maximum of its predicted issue cycle plus

the instruction latency and the earliest-allowable writeback

cycle.

With these estimates, we can then steer an instruction by

comparing its predicted completion cycle for the shelf and

IQ, choosing the earlier of the two and breaking ties in favor

of the shelf. Our design exploration shows that it is sufficient

to track a range of 32 cycles using 5-bit counters per register.

Schedule Recovery. Our schedule prediction mechanism

is approximate; most importantly, it assumes all loads are

hits. As schedule errors accumulate, steering accuracy will

worsen and performance will suffer. So, we correct sched-

ule misprediction errors by observing the actual execution

schedule and using the observed instruction completions to

correct predictions for their dependent instructions.

Once a register’s RCT counter decrements to zero, the

register is predicted to be ready. However, if the instruction

took longer than expected (e.g., an L1 miss), the register

will not be marked ready in the issue dependency checking

logic. In this circumstance, the predicted schedule for all the

instruction’s dependents is also incorrect. We correct these

errors by freezing the decrement of the RCT entry for the

destinations of all these dependents. We thereby push back

the predicted completion time of the entire dependency tree

by one cycle each cycle until the mispredicted instruction

ultimately completes.

Maintaining RCT counters as we have just described

requires tracking the dependency information among all

instructions, which is expensive. Interestingly, we find that

tracking the dependents of only a small sample of in-

structions is sufficient to correct the schedule; a schedule

misprediction for an untracked instruction will rapidly be

detected when one if its dependents is sampled. Since most

438

schedule mispredictions are for loads that miss in L1, we

track dependents for a sample of loads.

We use a simple bit matrix, the Parent Loads Table

(PLT), to track the relationship between sampled loads and

their dependents. As loads are steered, each is assigned a

column of bits in the PLT, if one is available. Rows in the

table correspond to architectural registers; a bit is set if the

architectural register depends directly or indirectly on the

load. When a load is steered, it sets the bit for its assigned

column and destination register row. As further instructions

are decoded, they set the row for their destination to the

superset of their operands’ parent loads (i.e., the bitwise OR

of the operands’ rows). When loads complete, they reset the

bits in their assigned column, freeing the column for reuse.

We find it is sufficient to track 4 loads per thread.

If any register’s ready cycle reaches zero while its parent

loads’ bitvector is non-zero, we simply stall the decrement

operation for all other registers that share those parents. The

register’s bitvector is loaded into a special row, the stalled

loads bitvector, as shown in Figure 9, which is compared to

all rows. Any row with a matching bit (i.e., it is directly or

indirectly dependent on a stalled load) has its RCT counter

stalled.

V. EVALUATION

We model our design in gem5 [17] and run the SPEC

CPU2006 benchmark suite with the ARM v7 ISA using

system call emulation. We have excluded only dealII of the

29 SPEC benchmarks as it is not functional in our simulation

infrastructure. For SMT workloads, we generate mixes of

28 different SPEC benchmarks, such that each benchmark

appears an equal number of times in each workload, accord-

ing to the “Balanced Random” mix methodology proposed

by Velasquez et al. [18]. We measure performance using

system throughput (STP), a metric proposed by Eyerman and

Eeckhout [6] that considers both performance improvement

and fairness across threads in a multi-threaded mix. STP is

the sum of the ratios of each thread’s clocks-per-instruction

in single-threaded and multi-threaded execution. It reflects

the number of programs completed per unit time. We report

results for the benchmark mix with the maximum, minimum,

and median STP improvement over the baseline, as well

as averages across the random mixes. Using the reference

input set, we fast forward all threads to the highest-weighted

SimPoint [19] within 50 billion instructions of the start of

the benchmark. We warm microarchitectural structures for

100 million instructions on each thread prior to the SimPoint

location.

Table I details our configuration. We assume a 2GHz

clock for all configurations to focus on the microarchitectural

effects of our technique. Unless otherwise stated, our eval-

uation focuses on a 4-thread SMT configuration using the

ICOUNT fetch policy [16]. The ROB, load queue (LQ) and

store queue (SQ) structures are partitioned across threads,

Component Configuration

Core 4-thread SMT OOO @ 2.0 GHz

4-wide OOO with 8-wide fetch

6 cycles fetch-to-dispatch

ROB 64 or 128

IQ, LQ, SQ 32 or 64

Shelf 64

Steering 5-bit RCT entries, 4-load PLT

L1I 32KB, 2-way, 1-cycle

L1D 32KB, 2-way, 2-cycle

L2 2MB, 8-way, 32-cycle

Memory 100ns latency

Table I: System Configuration

based on [20], as are the front-end pipeline buffers and

the shelf to prevent stalled threads from blocking others.

Our baseline core has a 64-entry ROB and 32-entry IQ,

LQ, and SQ. We augment this core with a 64-entry shelf.

We also measure a core where all structures are doubled

(128-entry ROB, 64-entry IQ, LQ, SQ), which represents an

upper bound for the performance improvement the shelf can

provide.

For power, energy, and area analysis, we use the Mc-

PAT framework [21] to model the power breakdown of a

physical register-based OOO design, incorporating changes

from [22]. We extend McPAT to model the shelf, RAT/free

list, rename logic, expanded issue/scheduling logic, spec-

ulation shift registers, dependency tracking, and steering

structures/logic. Our additions to McPAT are consistent with

its models for baseline scheduling and mapping logic and

storage structures. We report on the power consumption of

the core including L1 caches.

A. Performance

We first consider the performance impact of our design

with practical shelf and steering mechanisms. Figure 10

reports the improvement in system throughput over the

baseline 64-entry ROB design. We include results for the

workload mixes with the lowest, median, and highest STP

improvement over the baseline (the axis labels in Figure 11

report the benchmarks in these three mixes). Finally, we

report a geometric mean across all 28 mixes. The rightmost

(dark-blue) bar in each group reflects the STP improvement

of an out-of-order core where all microarchitecture structures

are doubled. This bar represents a theoretical upper bound

for the improvement of the shelf.

The shelf-augmented microarchitectures improve perfor-

mance over the baseline by 8.6% and 11.5% on average and

up to 15.1% and 19.2% for the conservative and optimistic

microarchitecture assumptions, respectively. Our approach

captures almost half of the throughput improvement of the

larger OOO core with substantially less hardware. In partic-

439

Figure 10: Performance of the shelf with conservative and

optimistic microarchitecture assumptions.

Figure 11: Fraction of in-sequence instructions for a selec-

tion of 4-thread benchmark mixes.

ular, the larger design has a 64-entry issue queue, whereas

the scheduling logic in our 64+64 entry design considers

only 32 reordered instructions and the heads of each shelf.

Hence, it is likely the 64+64 design can achieve a higher

clock frequency, which is not reflected in this comparison.

Nevertheless, the shelf is not as flexible as a larger OOO

instruction window. The shelf loses performance when (1)

less than half of all in-flight instructions are in-sequence, (2)

when window requirements are imbalanced across threads

(the shelf is staticly partitioned), (3) the steering heuristic

mis-steers instructions, or (4) when reordered instructions

require more LQ or SQ resources.

Figure 11 shows the fraction of instructions from each

thread that are in-sequence for the three selected mixes,

as well as the arithmetic mean across all benchmarks.

On average, about half of instructions are in-sequence,

but some benchmarks have fewer in-sequence instructions.

The imbalance in in-sequence instructions across workloads

contributes to the gap between the 64+64 entry design and

the theoretical upper bound.

The practical steering mechanism makes numerous sim-

plifying assumptions about the future instruction schedule.

To gauge the degree to which these approximations lead

to mis-steered instructions, we compare oracle and prac-

Figure 12: Performance impact of practical steering.

Figure 13: Energy delay.

tical steering. Figure 12 shows the resulting performance

comparison. Approximately 16% of instructions are steered

incorrectly by the practical mechanism relative to the or-

acle. Nevertheless, the ability of one SMT thread to make

progress while another is stalled hides the brief stalls created

by incorrect steering decisions, allowing even our simple

mechanisms that assumes all memory accesses are L1 cache

hits to nonetheless make effective use of the shelf.

B. Energy and Area Efficiency

We compare the energy efficiency of the 64+64-entry

shelf-augmented design to both the baseline 64-entry and

doubled 128-entry microarchitectures. Figure 13 shows the

energy-delay product (EDP) of each design. Although it

consumes more power, a 128-entry design is more energy-

efficient on the average than a 64-entry design, improving

EDP by 4.9%. However, a 64+64-entry shelf-augmented

design is even more energy efficient. The performance

advantage of the shelf more than compensates for the slight

increase in power consumption, resulting in a net energy-

delay win relative to the 64-entry baseline. Adding a shelf

improves energy-delay product by 8.6% and 10.9% on

average for conservative and optimistic microarchitecture

assumptions, respectively.

Table II reports the area increase of the 64+64 and 128-

entry designs relative to the 64-entry baseline. Excluding

the area of L1 caches, adding a shelf and the associated

440

L1 caches Base+Shelf Base
included 64+64 128

no 3.1% 9.7%

yes 2.1% 6.6%

Table II: Area increase over Base 64.

Figure 14: Opportunity with fewer threads.

scheduling, steering, and tracking structures increases the

core area by 3.1%. In contrast, doubling the capacity of the

IQ, ROB, LQ, SQ, and instruction scheduling logic for the

128-entry design increases area by 9.7%.

C. Fewer Threads

Although in-sequence instructions arise in single-threaded

execution, the interleaving of multiple threads in a SMT

core spreads the issue of dependent instructions apart, sub-

stantially increasing the fraction of in-sequence instructions

(see Figure 1). Hence, we do not expect a shelf to improve

performance in single-threaded execution. Nevertheless, it is

desirable that the shelf not adversely impact performance

or energy-efficiency when an SMT core is running only

a single thread. Figure 14 compares the STP and energy-

delay product of the 64-entry and 64+64-entry designs for

single-threaded and two-threaded executions, averaged over

28 benchmarks/mixes. There is no opportunity for a shelf

in single-threaded execution. With two threads, the shelf

provides a modest improvement in performance and energy

delay. Nevertheless, we find that the shelf does not adversely

affect performance. Note that the shelf can easily be disabled

by steering all instructions to the IQ if it causes pathological

behavior in a particular workload.

VI. RELATED WORK

Hily and Seznec [2] show that the performance of an in-

order core approaches that of an out-of-order core as the

number of SMT threads increases, and argue that OOO cores

are not cost-effective for SMT designs with many threads

(four in their study). At the two extremes, OOO cores are

suited to single-threaded workloads or those with few SMT

threads, while workloads with a high number of threads

favor in-order cores for efficiency. We reason that middle-

range designs, which balance single-threaded performance

and throughput, require a new underlying microarchitecture.

We borrow the name and concept for the shelf from the

Metaflow architecture [5], which focused on the principle

of shelving instructions to defer their execution, thereby

enabling the out-of-order execution of other instructions.

Ultimately, the Metaflow design was an OOO core centered

on the DRIS structure, a combination of the ROB, IQ and

renaming logic for all instructions. Our shelf physically

separates in-sequence (deferred) instructions into a more

efficient structure, while reordered instructions utilize the

full capabilities of a modern OOO core.

Khubaib et al. rely on the same observations as Hily

and Seznec to propose MorphCore [23], a design wherein

the core can “morph” from an OOO with a low number

of threads (two threads in their work) into an INO core

with many (eight) threads. Whereas MorphCore offers a

coarse-grain switching mechanism, our design enables the

selection of OOO versus INO mechanisms on an instruction-

by-instruction basis. MorphCore and our work target differ-

ent objectives: MorphCore attempts to capture two work-

loads that do not often coincide, single-threaded and highly

threaded, on one core; whereas, our design highlights an area

where neither INO nor OOO cores are an efficient design

point. Similar works provide a set of configurable cores by

morphing, fusing or composing standalone cores [24], [25].

Viewed from another angle, our design attempts to ap-

proach the performance of a larger OOO instruction window

through the use of in-order hardware. [26], [27] relieve

the IQ by redirecting ready-before-dispatch instructions

through energy-efficient functional units. Seng, Tune and

Tullsen [28] advocate reducing power by utilitizing in-order

IQs. Tseng and Patt [29] utilize compiler techniques to

achieve a high performing schedule on in-order hardware,

which approaches the single-threaded performance of OOO

hardware. These designs, however, do not alleviate pressure

on the ROB, LSQ and PRF. McFarlin, Tucker and Zilles [30]

advocate similar designs by showing that OOO performance

can be mostly achieved with static schedules, given the

speculation support needed to permit those schedules. One

such design is the in-order Continual Flow Pipeline (iCFP)

[12], which targets long-latency operations like cache misses

that block in-order cores. Miss-dependent instructions drain

into a slice buffer, including any “side” inputs, to allow

independent younger instructions to execute out-of-order.

Drained instructions are re-executed from the slice buffer

once the miss returns. In contrast, we steer instructions to

OOO/INO up front (one-time execution). To enable correct

out-of-order execution on iCFP, speculation is handled via

checkpointing, which may be undesirable for SMT where

the aggregate architectural state of all threads is much larger.

Our mechanism does not require checkpoints. Several other

latency-tolerant designs [31], [11], [32], [13] similarly rely

on potentially expensive checkpoints; none of these designs

leverage in-order hardware.

The shelf effectively reduces instruction occupancy in

441

OOO structures. Several related works target similar goals

without leveraging in-sequence instructions. Whereas there

are many ways to reduce pressure on OOO structures, we

note here those mechanisms most closely relate to our

contributions. Sembrant et al. [33] park instructions that

are predicted to be non-critical to memory-level parallelism

(MLP) prior to renaming, temporarily reducing pressure

on the IQ and PRF until those instructions are resumed.

Elmoursy and Albonesi [34] reduce pressure on the IQ

via predictive SMT fetch policies. Gonzalez et al. [35]

reduce pressure on the PRF by decoupling tags (virtual reg-

isters) from PRIs (physical registers). Some works leverage

checkpointing to release OOO resources early [36], [37].

Adaptive cores additionally provide the ability to disable

unused structure entries [38], [39], [40].

Clustered microarchitectures divide the monolithic IQ

structure across functional unit clusters to improve cycle

time and scalability. Palacharla, Jouppi and Smith [41] advo-

cate using FIFO queues in this manner to reduce complexity.

Prior work focuses on steering instructions to clusters so

as to minimize inter-cluster forwarding penalties and for

load balancing [15], [42], [43]. Similar to our practical

steering algorithm, these designs make use of dependence

chain information for steering. While we do not cluster our

execution units in this paper, it is a possible dimension for

the shelf and the IQ to belong to different clusters.

Several works examine heterogeneous cores [3] and data-

paths [4]. These works fix a set of heterogeneous hardware

resources, e.g., an OOO and an INO core, and attempt to

schedule threads among them. Note that threads do not si-

multaneously use two heterogeneous components, but rather

switch from one to the other. Scheduling schemes have tar-

geted specific ILP/MLP regions [44], serializing bottlenecks

in parallel code [45], and other indicators [46]. A number of

these works advocate fine-grained switching at hundred- or

thousand-instruction granularity [47], [4] but still fall short

of interleaving in-sequence and reordered instructions in the

same window. Our shelf and IQ datapaths can be seen as

statically provisioned heterogeneous backends, however, a

single-thread context is able to utilize both simultaneously,

which is a central contribution of our microarchitecture.

VII. CONCLUSION

Whereas OOO execution can improve performance for

moderately threaded SMT designs, the resulting hardware

utilization is inefficient, as many instructions are scheduled

in-sequence. We have described a new microarchitecture

that augments an OOO core with an energy-efficient in-

order scheduling mechanism, the shelf, allowing in-sequence

instructions to interleave correctly at fine granularity with

reordered instructions. Adding a shelf to a baseline 4-thread

core with a 64-entry ROB improves performance by 11.5%

(up to 19.2% at best) and energy delay by 10.9% (up to

17.5% at best).

ACKNOWLEDGMENT

The authors thank Scott Mahlke, Ronald Dreslinski,

Reetuparna Das, Shruti Padmanabha, Andrew Lukefahr, and

the anonymous reviewers for their feedback. This work was

partially supported by grants from ARM, Ltd.

REFERENCES

[1] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multi-
threading: Maximizing on-chip parallelism,” in Proc. 22nd Int’l Symp.
on Computer Architecture, Jun 1995.

[2] S. Hily and A. Seznec, “Out-of-order execution may not be cost-
effective on processors featuring simultaneous multithreading,” in
Proc. 5th Int’l Symp. on High-Performance Computer Architecture,
Jan 1999.

[3] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.
Tullsen, “Single-isa heterogeneous multi-core architectures: The po-
tential for processor power reduction,” in Proc. 36th Int’l Symp. on
Microarchitecture, Dec 2003.

[4] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski,
T. F. Wenisch, and S. Mahlke, “Composite cores: Pushing heterogene-
ity into a core,” in Proc. 45th Int’l Symp. on Microarchitecture, Dec
2012.

[5] V. Popescu, M. Schultz, J. Spracklen, G. Gibson, B. Lightner, and
D. Isaman, “The metaflow architecture,” IEEE Micro, vol. 11, no. 3,
June 1991.

[6] S. Eyerman and L. Eeckhout, “System-level performance metrics for
multiprogram workloads,” IEEE Micro, vol. 28, no. 3, May 2008.

[7] J. E. Smith and A. R. Pleszkun, “Implementation of precise interrupts
in pipelined processors,” in Proc. 12th Int’l Symp. on Computer
Architecture, Jun 1985.

[8] I. Park, C. L. Ooi, and T. N. Vijaykumar, “Reducing design complex-
ity of the load/store queue,” in Proc. 36th Int’l Symp. on Microarchi-
tecture, Dec 2003.

[9] G. Z. Chrysos and J. S. Emer, “Memory dependence prediction using
store sets,” in Proc. 25th Int’l Symp. on Computer Architecture, Jun
1998.

[10] K. Gharachorloo, A. Gupta, and J. L. Hennessy, “Two techniques to
enhance the performance of memory consistency models,” in Proc.
20th Int’l Conf. on Parallel Processing, Aug 1991.

[11] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton,
“Continual flow pipelines,” in Proc. 11th Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems, Oct
2004.

[12] A. Hilton, S. Nagarakatte, and A. Roth, “icfp: Tolerating all-level
cache misses in in-order processors,” in Proc. 15th Int’l Symp. on
High Performance Computer Architecture, Feb 2009.

[13] A. Hilton and A. Roth, “Bolt: Energy-efficient out-of-order latency-
tolerant execution,” in Proc. 16th Int’l Symp. on High Performance
Computer Architecture, Jan 2010.

[14] B. Fields, S. Rubin, and R. Bodı́k, “Focusing processor policies
via critical-path prediction,” in Proc. 28th Int’l Symp. on Computer
Architecture, May 2001.

[15] P. Salverda and C. Zilles, “A criticality analysis of clustering in su-
perscalar processors,” in Proc. 38th Int’l Symp. on Microarchitecture,
Nov 2005.

[16] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and
R. L. Stamm, “Exploiting choice: Instruction fetch and issue on an
implementable simultaneous multithreading processor,” in Proc. 23rd
Int’l Symp. on Computer Architecture, May 1996.

[17] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2,
Aug 2011.

442

[18] R. Velasquez, P. Michaud, and A. Seznec, “Selecting benchmark
combinations for the evaluation of multicore throughput,” in Proc.
Int’l Symp. on Performance Analysis of Systems and Software, Apr
2013.

[19] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proc. 10th Int’l Conf.
on Architectural Support for Programming Languages and Operating
Systems, Oct 2002.

[20] D. Koufaty and D. Marr, “Hyperthreading technology in the netburst
microarchitecture,” IEEE Micro, vol. 23, no. 2, March 2003.

[21] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. 42nd
Int’l Symp. on Microarchitecture, Dec 2009.

[22] S. Likun Xi, H. Jacobson, P. Bose, G.-Y. Wei, and D. Brooks,
“Quantifying sources of error in mcpat and potential impacts on
architectural studies,” in Proc. 21st Int’l Symp. on High Performance
Computer Architecture, Feb 2015.

[23] K. Khubaib, M. Suleman, M. Hashemi, C. Wilkerson, and Y. Patt,
“Morphcore: An energy-efficient microarchitecture for high perfor-
mance ilp and high throughput tlp,” in Proc. 45th Int’l Symp. on
Microarchitecture, Dec 2012.

[24] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan,
D. Gulati, D. Burger, and S. W. Keckler, “Composable lightweight
processors,” in Proc. 40th Int’l Symp. on Microarchitecture, Dec 2007.

[25] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, “Core fusion:
Accommodating software diversity in chip multiprocessors,” in Proc.
34th Int’l Symp. on Computer Architecture, Jun 2007.

[26] H. Vandierendonck, P. Manet, T. Delavallee, I. Loiselle, and J.-D.
Legat, “By-passing the out-of-order execution pipeline to increase
energy-efficiency,” in Proc. 4th Int’l Conf. on Computing Frontiers,
May 2007.

[27] R. Shioya, M. Goshima, and H. Ando, “A front-end execution
architecture for high energy efficiency,” in Proc. 47th Int’l Symp. on
Microarchitecture, Dec 2014.

[28] J. S. Seng, E. S. Tune, and D. M. Tullsen, “Reducing power with
dynamic critical path information,” in Proc. 34th Int’l Symp. on
Microarchitecture, Dec 2001.

[29] F. Tseng and Y. Patt, “Achieving out-of-order performance with
almost in-order complexity,” in Proc. 35th Int’l Symp. on Computer
Architecture, Jun 2008.

[30] D. S. McFarlin, C. Tucker, and C. Zilles, “Discerning the dominant
out-of-order performance advantage: Is it speculation or dynamism?”
in Proc. 18th Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems, Mar 2013.

[31] A. Cristal, O. J. Santana, M. Valero, and J. F. Martı́nez, “Toward
kilo-instruction processors,” ACM Trans. Architecture and Code Op-
timiztion, vol. 1, no. 4, Dec 2004.

[32] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip,
H. Zeffer, and M. Tremblay, “Rock: A high-performance sparc cmt
processor,” IEEE Micro, vol. 29, no. 2, March 2009.

[33] A. Sembrant, T. Carlson, E. Hagersten, D. Black-Shaffer, A. Perais,

A. Seznec, and P. Michaud, “Long term parking (ltp): Criticality-
aware resource allocation in ooo processors,” in Proc. 48th Int’l Symp.
on Microarchitecture, Dec 2015.

[34] A. El-Moursy and D. Albonesi, “Front-end policies for improved
issue efficiency in smt processors,” in Proc. 9th Int’l Symp. on High-
Performance Computer Architecture, Feb 2003.

[35] A. Gonzalez, J. Gonzalez, and M. Valero, “Virtual-physical registers,”
in Proc. 4th Int’l Symp. on High Performance Computer Architecture,
Feb 1998.

[36] J. F. Martı́nez, J. Renau, M. C. Huang, M. Prvulovic, and J. Torrellas,
“Cherry: Checkpointed early resource recycling in out-of-order mi-
croprocessors,” in Proc. 35th Int’l Symp. on Microarchitecture, Dec
2002.

[37] A. Cristal, D. Ortega, J. Llosa, and M. Valero, “Out-of-order commit
processors,” in Proc. 10th Int’l Symp. on High-Performance Computer
Architecture, Feb 2004.

[38] D. H. Albonesi, R. Balasubramonian, S. G. Dropsho, S. Dwarkadas,
E. G. Friedman, M. C. Huang, V. Kursun, G. Magklis, M. L. Scott,
G. Semeraro, P. Bose, A. Buyuktosunoglu, P. W. Cook, and S. E.
Schuster, “Dynamically tuning processor resources with adaptive
processing,” IEEE Computer, vol. 36, no. 12, Dec 2003.

[39] D. Ponomarev, G. Kucuk, and K. Ghose, “Reducing power re-
quirements of instruction scheduling through dynamic allocation of
multiple datapath resources,” in Proc. 34th Int’l Symp. on Microar-
chitecture, Dec 2001.

[40] A. Buyuktosunoglu, D. Albonesi, S. Schuster, D. Brooks, P. Bose, and
P. Cook, “A circuit level implementation of an adaptive issue queue
for power-aware microprocessors,” in Proc. 11th Great Lakes Symp.
on VLSI, Mar 2001.

[41] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective
superscalar processors,” in Proc. 24th Int’l Symp. on Computer
Architecture, May 1997.

[42] R. Balasubramonian, S. Dwarkadas, and D. Albonesi, “Dynamically
managing the communication-parallelism trade-off in future clustered
processors,” in Proc. 30th Int’l Symp. on Computer Architecture, Jun
2003.

[43] A. Baniasadi and A. Moshovos, “Instruction distribution heuristics
for quad-cluster, dynamically-scheduled, superscalar processors,” in
Proc. 33rd Int’l Symp. on Microarchitecture, Dec 2000.

[44] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance impact
estimation (pie),” in Proc. 39th Int’l Symp. on Computer Architecture,
Jun 2012.

[45] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, “Bottleneck
identification and scheduling in multithreaded applications,” in Proc.
17th Int’l Conf. on Architectural Support for Programming Languages
and Operating Systems, Mar 2012.

[46] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in hetero-
geneous multi-core architectures,” in Proc. 5th European Conf. on
Computer Systems, Apr 2010.

[47] H. Najaf-abadi and E. Rotenberg, “Architectural contesting,” in Proc.
15th Int’l Symp. on High Performance Computer Architecture, Feb
2009.

443

