
Improving Cache Management Policies Using Dynamic Reuse Distances

Nam Duong†, Dali Zhao†, Taesu Kim†, Rosario Cammarota†,
Mateo Valero§ and Alexander V. Veidenbaum†

†University of California, Irvine §Universitat Politecnica de Catalunya,
Barcelona Supercomputing Center

{nlduong, daliz, tkim15, rcammaro, alexv}@ics.uci.edu, mateo.valero@bsc.es

Abstract

Cache management policies such as replacement, bypass, or
shared cache partitioning have been relying on data reuse behavior
to predict the future. This paper proposes a new way to use dynamic
reuse distances to further improve such policies. A new replace-
ment policy is proposed which prevents replacing a cache line until
a certain number of accesses to its cache set, called a Protecting
Distance (PD). The policy protects a cache line long enough for it
to be reused, but not beyond that to avoid cache pollution. This can
be combined with a bypass mechanism that also relies on dynamic
reuse analysis to bypass lines with less expected reuse. A miss fetch
is bypassed if there are no unprotected lines. A hit rate model based
on dynamic reuse history is proposed and the PD that maximizes the
hit rate is dynamically computed. The PD is recomputed periodi-
cally to track a program’s memory access behavior and phases.

Next, a new multi-core cache partitioning policy is proposed us-
ing the concept of protection. It manages lifetimes of lines from
different cores (threads) in such a way that the overall hit rate is
maximized. The average per-thread lifetime is reduced by decreas-
ing the thread’s PD.

The single-core PD-based replacement policy with bypass
achieves an average speedup of 4.2% over the DIP policy, while the
average speedups over DIP are 1.5% for dynamic RRIP (DRRIP)
and 1.6% for sampling dead-block prediction (SDP). The 16-core
PD-based partitioning policy improves the average weighted IPC by
5.2%, throughput by 6.4% and fairness by 9.9% over thread-aware
DRRIP (TA-DRRIP). The required hardware is evaluated and the
overhead is shown to be manageable.

1 INTRODUCTION
Reduction in cache miss rates continues to be an important issue

in processor design, especially at the last level cache (LLC). Cache

management policies such as replacement, bypass or shared cache

partitioning, have been relying – directly or indirectly – on the data

reuse behavior to improve cache performance. The future reuse is

predicted based on past behavior and thus may not necessarily be

accurate. In addition, such policies do not define an accurate cache

performance model based on the reuse information and thus cannot

achieve their full performance potential. This paper proposes a way

to address these issues for the above-mentioned cache management

policies and focuses on the LLC.
Let us start with the replacement policy. Many such policies have

been proposed for the LLC [1, 6, 14, 18, 19, 20, 24, 31] aiming to

improve over the LRU replacement policy, the most widely used re-

placement policy, which has been shown [33, 29, 24] to have anoma-

lous behavior for applications whose working set is larger than the

LLC. The newer policies are often adaptive and use heuristics based

on predicted future memory reference behavior for cache line re-

placement. A widely used estimate of the future behavior is the

observed reuse distance.
Many ways of reuse distance prediction and its use by replace-

ment heuristics have been proposed. For instance, EELRU [29] ac-

curately measures the reuse (stack) distance but uses a probabilistic

model to predict which cache line should be evicted on a cache miss.

RRIP [14] approximates the reuse distances as near, long or distant

future and tries not to replace lines which are predicted to be reused

sooner. IGDR [31] builds an accurate reuse distance distribution but

replacement is based on a “weight” function, with a line of smallest

weight replaced. However, the weight function does not necessarily

reflect future behavior of a line. The counter-based algorithm [19]

uses a counter matrix to predict when lines are reused. The approach

in [17] predicts reuse distances using program counters and evicts

lines with the longest remaining distance (more in Sec. 7).
A more precise knowledge of reuse would allow a replacement

policy (1) not to evict lines too early, before their next reuse point,

and at the same time (2) not to keep the lines in the cache for too

long to avoid cache pollution. A better “balance” between (1) and

(2) can improve the policy performance. Sec. 2.1 presents a case

study of this phenomenon, and the replacement policy proposed in

this paper indeed achieves such balance.
The reuse distance (RD) used in this paper is defined as the num-

ber of accesses to a cache set between two accesses to the same

cache line (Sec. 7 compares this definition to others). A reuse dis-
tance distribution (RDD) is a distribution of RDs observed in a pro-

gram at a given time. It is a unique signature of a program or a

phase for a given cache configuration. Fig. 1 shows the RDDs of

several SPEC CPU2006 benchmarks (see Sec. 5 for our measure-

ment methodology). As RDs can be very large, this paper limits

the maximum measured distance dmax to 256. The fraction of RDs

below the dmax is shown as a bar on the right of each figure.
Using the RDD to direct prediction, lines can be kept only until a

desired level of reuse is achieved and cache pollution is minimized.

For example, in Fig. 1, in 436.cactusADM enough lines are reused at

or below the RD of 64, increasing the RD beyond 64 leads to cache

pollution. The problem, however, is how to find an RD balancing

reuse vs. pollution and how to use it to manage replacement. This

paper proposes a way to solve this problem.
Similar to prior work [19, 31], this paper measures the RDs in

execution and builds the RDD dynamically. The RDD is used to

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.43

389

403.gcc

0 64 128 192 256

436.cactusADM

0 64 128 192 256

450.soplex

0 64 128 192 256

464.h264ref

0 64 128 192 256

482.sphinx3

0 64 128 192 256

Figure 1. Distribution of reuse distances for selected benchmarks.

compute an RD that maximizes the cache hit rate, i.e., the RD that

balances the opportunity for reuse with timely eviction. This RD

is called a Protecting Distance (PD) and our replacement algorithm

“protects” a line for this many accesses to its set before it can be

evicted. This policy is thus called the Protecting Distance based
Policy (PDP).

It can be said that the LRU policy protects a line for W unique ac-

cesses before eviction, where W is the cache associativity. However,

W may not be the RD that maximizes the hit rate. PDP achieves the

same effect for protecting distances PD ≤ W , i.e. in LRU-friendly

benchmarks. But the PDP also works for PDs > W using the same

algorithm. Thus PDP does not need to switch between LRU and

another algorithm as has been done in prior work [29, 24, 14, 17].

Note also that EELRU [29] can be said to “protect” the late eviction

point by evicting any “older” lines first, if present (see Sec. 7).

The RDD can also be used to manage a cache bypass policy in

non-inclusive or exclusive caches. Typically, the bypass is used to

place a line in an upper level cache and avoid duplicated use of stor-

age in the lower level cache. However, it may be better to store a

line with a lot of reuses in the lower level. A bypass policy that

makes such a choice intelligently can, in fact, have a better perfor-

mance than a strictly inclusive cache. The PDP can be combined

with the bypass policy to enhance the replacement policy by pro-

tecting cache lines from early eviction. The non-inclusive and ex-

clusive caches are already used in commercial products, such as the

AMD processors [8], and several policies to support bypass have

been proposed [6, 13, 18, 19, 5]. The work in [10] proposed a policy

to achieve performance similar to bypass in an inclusive cache, and

the algorithms in [6] are developed specifically for exclusive caches.

Finally, this paper describes a PD-based shared cache partition-

ing policy that is based on the measured RDDs of different threads

and a selection of PDs for the threads such that the shared cache hit

rate is maximized.

The paper discusses the hardware support required to measure

the reuse distance, compute the RDD dynamically, determine the hit

rate and find the PD. The hardware was synthesized to evaluate the

overheads and is shown to be feasible.

In summary, the main contributions of this paper are:

1. The concept of protecting distance PD and a policy for pro-

tecting cache lines, which is adaptive to changes in program

phases and memory access behavior.

2. A hit rate model for a single-core processor as a function of

reuse distances, which is shown to accurately predict the cache

behavior of an application.

3. A method and a hardware design to compute the PD that max-

imizes the hit rate.

4. A bypass policy that guarantees a desired level of reuse in the

LLC and is integrated with the replacement policy.

5. A multi-core shared LLC hit rate model that is a function of

PDs of individual threads.

6. A shared cache partitioning policy based on reuse distances,

which computes a set of PDs, one per thread, to maximizes the

overall hit rate.

The proposed policies were evaluated and compared to a number

of prior policies. For single-core replacement PDP was compared

to DIP, DRRIP, EELRU and sampling dead-block prediction (SDP).

Shared cache partitioning for multi-core processors was compared

to TA-DRRIP, UCP and PIPP.
The rest of the paper is organized as follows. The PD concept

is defined in Sec. 2 together with a hit rate model to quantitatively

relate the PD and the RDD. The hardware design is in Sec. 3. The hit

rate model for multi-core cache partitioning is defined in Sec. 4. The

experimental methodology is in Sec. 5. The experimental results are

in Sec. 6. Prior work is discussed in Sec. 7. Appendix A reports

results for SPEC CPU2006 benchmarks.

2 SINGLE-CORE PROTECTING DISTANCE
This section defines the protecting distance PD for a single-core

processor. A replacement policy using the PD and a combined re-

placement and bypass policy are presented. A hit rate model for the

policy is also described.

2.1 Protection – A Case Study
Let us start with a case study using RRIP policy [14], which was

recently proposed to improve the performance of applications with

a working set which is larger than the LLC. RRIP is able to preserve

a portion of the working set in the cache. It tackles the thrashing

and scanning issues by predicting that most of the inserted lines are

re-referenced (reused) in a distant future, the rest inserted lines in a

long future, and the reused lines in a near future.
Now consider RRIP from the perspective of protection. The re-

reference future of lines is predicted using a parameter, ε. This is

the probability that inserted lines are predicted to be reused in a long

future. In RRIP, ε is experimentally set to 1/32. This means that an

inserted line which is classified as being reused in the long future can

be protected for 32 misses. In RRIP with 2-bit storage per line, on

average a reused line can be protected for as long as 32×(22−1) =
96 misses (and an even larger number of accesses)1.

Fig. 2 shows the behavior of dynamic RRIP (DRRIP) as a

function of ε for four benchmarks (483.xalancbmk.3 is a certain

window of execution, see Sec. 5 for details). ε is varied from

1/128 to 1/4 and two trends can be observed. For 436.cactusADM

and 483.xalancbmk.3 decreasing ε increases the number of misses.

However, for 403.gcc and 464.h264ref a higher ε can reduce misses.

This means that, in the latter two benchmarks, lines should not be

1These numbers vary during runtime depending on access behavior.

390

0.9

1.0

1.1

1.2

N
o

rm
a

li
z
e

d
 M

P
K

I
(l

o
w

e
r

is
 b

e
tt

e
r)

403.gcc

436.cactusADM

464.h264ref

l b k

0.8

1/4 1/8 1/16 1/32 1/64 1/128

N

Epsilon

483.xalancbmk.3

Figure 2. DRRIP misses as a function of Epsilon ε.

0 6 5 2

0 4 6 3 6 3 5 2

1 4 6 3 0 3 5 2

1 4 6 3 0 3 5 6

1 4 6 3 0 63 2

1 4 6 3

Inserted line Reused line

(a) Hit

(b) Replace unprotected line

(c) Replace inserted line (inclusive cache)

(d) Replace reused line (inclusive cache)

(e) Bypass (non-inclusive cache)

Before After

Figure 3. Example of the PDP cache operation.

protected too long if they are not reused. Yielding cache space to

new lines improves performance. Sec. 2.3 will analyze these bench-

marks in more detail.

2.2 The Protecting Distance
The protecting distance PD is a reuse distance that “covers” a

majority of lines in the cache, that is they are reused at this or smaller

distance. It is a single value used for all lines inserted in the cache.

The PD is the number of accesses to a cache set that a line is pro-

tected for, i.e. the line cannot be evicted until after PD accesses.

The PD is used as follows. Each cache line is assigned a value to

represent its remaining PD (RPD), which is the number of accesses

it remains protected for. This distance is set to the PD when a line

is inserted or promoted. After each access to a set, the RPD of each

line in the set is decremented (saturating at 0). A line is protected

only if its RPD is larger than 0. An unprotected line is chosen as

the victim. Victim selection when there are no unprotected lines is

different for inclusive and non-inclusive caches.
In an inclusive cache a line with the highest RPD, i.e. the

youngest inserted or promoted line, is chosen in order to protect

older lines. Similar to DIP and RRIP, the fact that inserted lines are

less likely to be hit than reused lines is utilized. An inserted line with

the highest RPD is replaced or, if there are no such lines, a reused

line with the highest RPD is chosen. This requires a “reuse bit” to

distinguish between inserted and reused lines.
For a non-inclusive cache, the cache is bypassed if no unpro-

tected lines are found. This is based on the prediction that the pro-

tected lines are more likely to be reused in a the nearer future than the

missed lines. Note that the bypassed lines are inserted in a higher-

level cache. Here the bypass policy and the replacement policy work

together to further protect lines as opposed to only the replacement

policy in the inclusive cache. The reuse bit is not required here.
The example in Fig. 3 illustrates the PDP policy in a cache set

with four lines. Let us assume that the current predicted PD is 7.

In the figure, the number inside each box is the RPD of the corre-

sponding cache line. There are 5 possible scenarios in this example.

20%

40%

60%

80%

100%

436.cactusADM

0%

%

Acc Ocpy Acc Ocpy Acc Ocpy

DRRIP SPDP-NB SPDP-B

Hit Bypass Evict, <= 16 Evict, > 16

80%

85%

90%

95%

100%

464.h264ref

75%

Acc Ocpy Acc Ocpy Acc Ocpy

DRRIP SPDP-NB SPDP-B

Hit Bypass Evict, <= 16 Evict, > 16

(a) Breakdown of accesses (Acc) and occupancy (Ocpy).

483.xalancbmk.1

483.xalancbmk.2

483.xalancbmk.3

0 32 64 96 128

83 a a cb 3

(b) RDDs in 3 windows of 483.xalancbmk.

Figure 5. Case studies.

For each scenario, RPDs before and after the access are shown. In

Fig. 3a, the access results in a hit to the second line. In the other

4 cases, the access results in a miss leading to victim selection. In

Fig. 3b, the victim is the unprotected line. Fig. 3c and 3d are for

a cache without bypass. In Fig. 3c, the inserted line with the high-

est RPD is evicted, while in Fig. 3d there are no inserted lines and

the reused line with highest RPD is evicted. Fig. 3e is for the cache

with bypass, where the cache is bypassed as there are no unprotected

lines. In all cases, the RPD of the promoted or inserted line is set to

7, and the RPDs of all lines, including the new line, are decremented.

2.3 Evaluation of the Static PDP
The static PDP (SPDP) uses a constant PD throughout program

execution. The SPEC CPU2006 benchmarks were simulated with

static PDs between 16 (the associativity) and dmax = 256. The PD

which minimizes misses per 1K instructions (MPKI) varies from

benchmark to benchmark. Even in the three simulation windows

of 483.xalancbmk, the best PDs are different (see Appendix A for

details). Fig. 4 compares the static PDP with the best PD for non-

bypass (SPDP-NB) and bypass (SPDP-B) policies to DRRIP with

the best ε (as described in Sec. 2.1).
First, better DRRIP performance can be achieved with a “dy-

namic” ε. It is significant for 403.gcc, 450.soplex and 464.h264ref.

Second, both SPDP-NB and SPDP-B can further reduce misses over

DRRIP, by as much as 20% for SPDP-NB and by 30% in SPDP-B

in 464.h264ref. Third, SPDP-NB and SPDP-B have different behav-

iors in different benchmarks. For example, in 436.cactusADM the

miss reduction is similar, whereas for 483.xalancbmk.3 SPDP-B has

a significantly higher reduction than SPDP-NB. In general, SPDP-B

achieves a higher miss reduction than SPDP-NB and both perform

better than DRRIP.
The PDP aims to protect cache lines long enough to be reused,

but not for too long to avoid pollution. Let us define the occupancy
of a line as the number of accesses to its cache set between an inser-

tion or a promotion and the eviction or the next promotion and ana-

lyze accesses and occupancy for two benchmarks, 436.cactusADM

and 464.h264ref. The accesses and occupancy are shown in Fig. 5a,

each broken into promoted lines and evicted lines. The latter is fur-

ther divided into lines which are evicted before 16 accesses and all

the rest The fraction of bypassing for SPDP-B is also shown. The

391

0%

5%

10%

15%

20%

25%

30%

ti
o

n
 o

v
e

r
D

R
R

IP
 w

it
h

p

s
il

o
n

=
1

/3
2

DRRIP with best Epsilon SPDP-NB SPDP-B

-5%

M
is

s
 r

e
d

u
c

t
E

p

Figure 4. Comparing RRIP and static PDP.

RDDs of three execution windows for 483.xalancbmk are shown in

(Fig. 5b).
436.cactusADM. 28% of the accesses in DRRIP are hits and the

rest are misses, leading to replacement. Most of the missed lines are

evicted early, before 16 accesses, with only 3% evicted after that.

However, the total occupancy of the latter lines is as high as 16%,

whereas for early evicted lines, it is only 8%. In fact, our results

show that a number of lines occupy the cache for more than 256

accesses without reuse.
The occupancy of evicted lines is smaller for both PDP poli-

cies, 8% for SPDP-NB and 5% for SPDP-B, and much smaller for

long eviction distance lines. Neither has lines with occupancy above

90 accesses. Also, the small difference between the occupancy of

evicted lines in SPDP-NB and SPDP-B leads to the small difference

between their performance – SPDP-B reduces 1% more misses than

SPDP-NB compared to DRRIP (Fig. 4). The values of PD are 76

(SPDP-NB) and 72 (SPDP-B), respectively, which cover the highest

peak of the RDD.
464.h264ref. Both static PDP policies result in a smaller occu-

pancy fraction for lines evicted after more than 16 accesses. SPDP-

B is better than SPDP-NB due to a high bypass rate (89% of the

misses), hence protecting more lines and leading to higher miss re-

duction. This shows that the bypass plays an important role in this

and several other benchmarks.
483.xalancbmk. Fig. 4 shows that the three windows of execu-

tion within the same benchmark have different performance for both

static PDP policies. The best PD for each window are also differ-

ent in SPDP-B – 100, 88 and 124, respectively (see Appendix A).

This difference is due to different RDDs of these windows, as seen

in Fig. 5b. The peaks are at different reuse distances and even the

shapes of RDDs are not quite the same. This implies that a periodic

dynamic computation of the PD would perform even better.
In summary, replacement based on protecting distance reduces

cache pollution. A combination of replacement and bypass further

improves reuse and reduces pollution. The rest of the paper thus

targets non-inclusive caches with bypass.

2.4 The Hit Rate Model for a Non-Inclusive Cache
The definition of the protecting distance PD is not very helpful

in finding the optimal PD, static or dynamic. This section develops

a quantitative model relating the RDD, the PD and the cache hit rate

for a non-inclusive cache. The RDD or its approximation can be

built dynamically and the model then used to find the PD maximiz-

ing the hit rate. The model takes into account both replacement and

bypass policies.
The following notation is used in this section: dp is a value of

the PD, Ni is the hit count for reuse distance i, and Nt is the total

number of cache accesses. W is the set associativity. A line with an

RD larger than dp is called a long line and NL is the number of long
lines.

A function E(dp) approximating the hit rate is derived as fol-

lowing. Given a set of counters {Ni} representing the RDD and Nt,

NL = Nt −
dp∑
i=1

Ni.

Let us use the concept of occupancy defined in Sec. 2.3. A line

with an RD of i, i ≤ dp, has an occupancy of i and the line is hit

after i accesses. The total occupancy Li of all lines with RD of i in

the cache is Li = Ni ∗ i.
The total occupancy of the long lines is LL = NL ∗ (dp + de).

The additional term de accounts for the fact that a line may not be

immediately evicted after becoming unprotected. This may happen

due to the presence of an invalid or another unprotected line during

victim selection or when an access to a set is a hit on another line.

The total occupancy of all lines is therefore LT =
dp∑
i=1

Li + LL.

The number of hits contributed by all lines is Hits(dp) =
dp∑
i=1

Ni + HL, where HL is the number of hits contributed by long

lines. For dp ≥W the number of hits from long lines is quite small

compared to that from protected lines. And the computed PD is

greater than W (see below). Therefore, the following approxima-

tion is used Hits(dp) ≈
dp∑
i=1

Ni.

One access to a set with W lines increases the occupancy of each

line in the set by 1 unit, thus W units for the whole set. The total

number of accesses, therefore, is Accesses(dp) = LT /W and the

hit rate is HR(dp) = Hits(dp)/Accesses(dp).
To eliminate the dependence on cache organization (W) let us

define E(dp) = HR(dp)/W . Here E(dp) is proportional to the

hit rate and will be used to compute the protecting distance PD that

maximizes the hit rate.
Substituting the expressions for Li and LL in the equation for

E(dp) results in

E (dp) ≈

dp∑
i=1

Ni

dp∑
i=1

(Ni ∗ i) +
(
Nt −

dp∑
i=1

Ni

)
∗ (dp + de)

(1)

Finally, the de is a function of cache associativity and program

behavior. It has an impact on E(dp) only when the dp is small. It

392

LLC

Access

address

RD

PD

RDD

Higher

level

Main

memory

PD Compute

Logic

RD Counter

Array
RD Sampler

Figure 7. The PDP cache organization.

has been experimentally determined that it can be set to a constant

equal to W . This is another reason why E(dp) is an approximation

of the hit rate.
Fig. 6 shows the E(dp) and the actual hit rate as a function of

static dp < 256 for four SPEC CPU2006 benchmarks (Appendix A

shows the complete suite). The RDD is also shown. The model can

be seen to approximate the actual hit rate well, especially around the

PD which maximizes hit rate.
Eq. 1 (with de = W) is used to find the optimal PD, i.e. the

PD achieving the highest hit rate. The search algorithm computes

E(dp) for all dp < 256 and finds the maximum E(). Not that this

search is only performed periodically and that E(dp + 1) can be

computed from E(dp) to significantly reduce the search time.

3 PDP CACHE ORGANIZATION
This section describes the cache operation and the additional

hardware required for dynamic computation of the optimal PD.

Fig. 7 shows a block diagram of the PDP cache. The additional

blocks include an RD sampler to measure the reuse distances (RDs),

an array of RD counters which track the number of hits at each reuse

distance (i.e. the RDD), and logic to find the PD using Eq. 1.
The RD sampler. The RD sampler monitors access to a small

number of cache sets to collect the reuse distances observed. It uses

a per-set FIFO of addresses which accessed the set. A new access

to a sampled set has its address compared the set’s FIFO entries.

The FIFO position of the most recent match, if any, is the reuse

distance RD. Its corresponding reuse counter in the counter array is

incremented. An RD as large as dmax needs to be detected.
It has been shown in [24, 14] that sampling just 1/64 of the total

sets is sufficient to capture the behavior of an application. A reduced

FIFO insertion rate may be used to allow smaller FIFO size (note

that cache tag check is still performed for each access). In this case

a new entry is only inserted on every M th access to the set, with

a sampling counter counting up to M . The reuse distance RD is

now computed as RD = n×M + t, where n is the FIFO position

of the hit, t is the value of of the sampling counter on the sampler

hit. An entry is marked invalid on such a hit to reduce error in RD

measurement. Similar to the work in [18], a FIFO entry uses 16 bits

to store a tag. The total number of bits per sampled set is dmax
M

∗
16 + log2 M .

The array of RD counters. The RD counter array stores the

RDD {Ni}. The ith counter is the number of accesses with the RD

of i. An RD arrives from the RD sampler and the corresponding

counter is incremented. An additional counter is used for the total

number of accesses Nt. These are saturating counters and, when a

counter saturates, all other counters are frozen to maintain the RDD

shape.
A space optimization for the array is to store hit counts for a con-

secutive range of RDs in one counter. The range extent is called a

PROM

Decode

RegFile

R0-R7: 8-bit

R8-R15: 32-bit

ALU

RD Counter

Array

A

B

OP

PC

IR

ACC

Figure 8. A “PD compute logic" special-purpose
processor.

step counter, (Sc). For instance, if Sc = 4 then the first counter is

incremented for RDs from 1 to 4, the next one for the RDs from 5 to

8, and so on. The number of counters can thus be reduced to dmax
Sc

.

This also reduces the computation time to select the protecting dis-

tance PD. However, this also means that the PD belongs to a range

rather than being a single value. The proposed PDP implementation

uses 16-bit Ni counters and a 32-bit Nt counter. Total number of

bits required for the counter array is dmax
Sc

× 16 + 32.

Logic to compute the PD. The PD is recomputed infrequently

and thus its computation is not time critical. The logic to find the

optimal PD can thus be implement it as a special-purpose “proces-

sor”. A possible 4-stage pipelined architecture is shown in Fig. 8. It

uses a 32-bit ALU, eight 32-bit registers and eight 8-bit wide. The

processor uses the RD counter array as input and outputs the opti-

mal PD. It executes one algorithm using sixteen integer instructions:

add/sub, logical, move, branch, mult8 and div32. The mult8 mul-

tiplies a 32-bit register by an 8-bit register and is performed using

shift-add. The div32 is a division of two 32-bit numbers and is per-

formed as shift subtract/add non-restoring division (33 cycles). The

processor takes 64 cycles to compute E(dp) for one dp in Eq. 1.

Thus the total time to compute the optimal PD, 64 × 256 cycles, is

negligible compared to the number of cycles between two PD com-

putations (512K accesses to the LLC in this paper). The processor

can be put in low-power sleep mode when not in use. The processor

was synthesized using a 65nm technology library and required 10K

NAND gates operating at 500MHz clock frequency.

Cache tag overhead. The computed PD is used by the cache

to set the initial value of remaining PD, RPD (see Sec. 2.2 for the

definition), for inserted or promoted lines. Storing the RPD that

can range up to dmax = 256 requires nc = 8 bits per line. This

overhead can be reduced by using an increment, the Distance Step
Sd. An update of RPDs is done once every Sd accesses to the set

using a per-set counter (and counting bypasses). An access causing

the counter to reach Sd − 1 triggers the decrement of all RPDs in

the set. This does not have to be done in parallel but can be done

sequentially to reduce complexity. The maximum value of Sd is
dmax
2nc .

The PDP parameters. A number of hardware parameters are

used in the PDP: (1) the RD sampler size, (2) the Sc counter used

in the counter array, (3) the number of bits to store the PD nc, and

(4) the maximum distance dmax (Sec. 1). The choice of these pa-

rameter values impacts both the hardware overhead and the cache

performance. Sec. 6.1 presents a design space exploration of these

parameters.

393

E

Hit rate

0 64 128 192 256

403.gcc

RDD

0 64 128 192 256

436.cactusADM

464.h264ref

0 64 128 192 256

482.sphinx3

0 64 128 192 256

483.xalancbmk.2

0 64 128 192 256

Figure 6. E(dp) vs the actual hit rate.

4 A PD-BASED CACHE PARTITIONING POL-
ICY

All high-performance multi-core processors today use a shared

LLC. The shared LLC can benefit significantly from (cooperative)

cache partitioning. This section defines a new multi-core partition-

ing policy based on the concept of protecting distance. The key

insight is that decreasing a thread’s PD leads to a faster replacement

of its lines and thus shrinks its partition. Increasing the PD has the

opposite effect. The proposed policy defines a per-thread protecting

distance and computes a set of PDs that partitions the cache to max-

imize hit rate. The computation is based on a new shared LLC hit

rate model that is a function of a set of PDs.
The numerator and denominator in Eq. (1) are H(dp), the

number of hits, and A(dp)/W , the number of accesses. They

need to be computed per thread when multiple threads access the

shared cache. A thread t has Ht(d
(t)
p) hits and At(d

(t)
p)/W ac-

cesses for a protecting distance of d
(t)
p . The total number of hits

and accesses for T threads are Hits(d
(t)
p) =

T−1∑
t=0

Ht

(
d
(t)
p

)
and

Accesses(d
(t)
p) =

T−1∑
t=0

At

(
d
(t)
p

)
/W , respectively. The multi-core

function Em is Em = Hits/(Accesses ∗ W). Using a vector−→
dp =

[
d
(0)
p , ..., d

(T−1)
p

]
to denote an ordered set of d

(t)
p , the multi-

core hit rate approximation as a function of
−→
dp is:

Em

(−→
dp
)
=

T−1∑
t=0

Ht

(
d
(t)
p

)
T−1∑
t=0

At

(
d
(t)
p

) (2)

A vector
−−→
PD =

[
PD(0), ..., PD(T−1)

]
that maximizes

Em(
−−→
PD) defines the protecting distances PD(t) of each thread.

A heuristic is used to find the vector
−−→
PD instead of an an exhaus-

tive search. It is based on three observations. First, a thread with a

high single-core E will also make a high contribution to the multi-

core Em. Second, a computed multi-core PD for a given thread

is likely to be near one of the “peaks” in its single-core E. And

third, the number of “important” peaks in an application is quite

small. The heuristic thus builds
−−→
PD by adding a thread at a time

and searches for the added thread’s PD near one of its peaks only.
The multi-core partitioning policy requires a counter array per

thread but still uses the single-core PD computing logic to generate

the “high peaks” for each thread . The heuristic first sorts the threads

by their E’s, then adds the thread with the “highest E” to the vector.

The next highest thread is processed next, each of its peaks (com-

puted using the single-core E) is considered in combination with

Pipeline Depth 8

Processor Width 4

Instruction Window 128

DCache 32KB, 8-way, 64B, 2 cycles

ICache 32KB, 4-way, 64B, 2 cycles

L2Cache 256KB, 8-way, 64B, 10 cycles

L3Cache (LLC) 2MB, 16-way, 64B, 30 cycles

Memory latency 200 cycles

Table 1. The single-core processor.

peaks of the thread already in the vector. A search algorithm is used

to find the peak of the combination that maximizes Em. The process

is repeated for each remaining thread.
It has been experimentally determined that considering just three

peaks per thread is sufficient. For each thread combination, the

search algorithm has the complexity of O (T × S), where S is the

number of single-thread E re-computations. Given that the number

of combinations is a linear function of T , the complexity of Em is

O
(
T 2 × S

)
. The complexity is similar to that of UCP [25]. The

processor described in the previous section can be easily extended

to execute this heuristic. The latency of the PD vector search is still

negligible compared to the PD recomputation interval.

5 EXPERIMENTAL METHODOLOGY
The proposed single- and multi-core management policies at the

LLC were evaluated. A memory hierarchy with three levels of cache

is modeled which is similar to the Intel Nehalem processor. An out-

of-order core is modeled with the CMP$im [11] simulator. The core

and the memory hierarchy parameters are described in Table 1. The

L1 and L2 caches use the LRU policy. A multi-core processor with

a shared LLC is also modeled with CMP$im. The shared LLC size

is the single-core LLC size times p, where p is the number of cores.
The following SPEC CPU2006 benchmarks were used

for the single-core evaluation: 403.gcc, 429.mcf, 433.milc,

434.zeusmp, 436.cactusADM, 437.leslie3d, 450.soplex, 456.hm-

mer, 459.GemsFDTD, 462.libquantum, 464.h264ref, 470.lbm,

471.omnetpp, 473.astar, 482.sphinx3 and 483.xalancbmk. Other

benchmarks in the suite were not considered because they do not

stress the LLC, e.g. their MPKI is less than 1 for the baseline DIP

policy. A window of 1 billion consecutive instructions per individual

benchmark was simulated. To see how each policy reacts to phase

change within an application, three different 1B instruction windows

were studied for 483.xalancbmk to observe the phase changes, with

results denoted as 483.xalancbmk.X, where X is the window num-

ber. A subset of benchmarks which demonstrate significant phase

changes were simulated with a window of 10 billion instructions.
Multi-core, shared LLC simulations used workloads generated

394

by combining the individual benchmarks described above. Bench-

mark duplication was allowed in a workload. 80 workloads were

generated using random selection for the 4-core and 16-core config-

urations. A workload completes execution when each of its threads

completes the execution of its 1B instructions. A thread complet-

ing before other threads “rewinds” and continues its execution from

the first instruction of its window. Per-thread statistics are collected

when a thread finishes its first one billion instructions.
Single-core performance metrics are misses per thousand in-

structions (MPKI) and the IPC. Multi-core performance metrics

are the weighted IPC (W =
∑ IPCi

IPCSinglei
), the throughput

(T =
∑

IPCi), and the harmonic mean of normalized IPC (H =

N/
∑ IPCSinglei

IPCi
). IPCi above is the IPC of a thread i in multi-

core, multi-programmed execution for a given replacement policy.

IPCSinglei is the IPC of the thread i executed stand-alone on the

multi-core and using the LRU policy. LRU is used as the baseline

here for consistentency with prior work [25]. The results for each

metric for a given replacement policy are are shown normalized to

the shared cache DIP.
The single-core PDP is compared with DIP [24], DRRIP [14],

a variant of EELRU [29] and the sampling dead block predictor

(SDP) [18]. DIP and DRRIP used the dynamic policy. The ε = 1/32
was used for BIP and BRRIP except when evaluating the impact of

ε. An SDM with 32 sets and a 10-bit PSEL counter was used for DIP

and DRRIP. Writebacks were excluded in updating PSEL counters

in these policies. The hardware overhead for SDP was made 3 times

as large as that reported in the original work in order to maximize

the performance.
Each cache set for EELRU evaluation was augmented with a re-

cency queue to measure the number of hits at a stack position. Two

global counter arrays were used to count the number early hits and

total hits for each pair of early eviction point e and late eviction point

l over all sets. The parameters e and l were chosen aggressively to

make sure that EELRU achieves its best possible performance. The

maximum value of l is set to dmax = 256 to be compatible with

PDP.
Three thread-aware shared cache partitioning policies were

compared with PDP: the UCP [25], the PIPP [36] and the TA-

DRRIP [14]. The lookahead algorithm was used to compute the

ways for UCP and PIPP. Thirty two sampling sets were used for

UCP and PIPP. pprom = 3
4

, pstream = 1
128

, θm ≥ 4095, and

θmr = 1
8

were used for PIPP, per original work. The implementa-

tions of DIP, RRIP and TA-DRRIP were verified against the source

code from the author’s website.

6 EVALUATION AND ANALYSIS

The performance of PDP depends on a number of parameters.

Thus we start with a parameter space design exploration for the

single-core PDP. The parameters can be chosen to balance overhead

and performance. Once most of the parameters are selected, this sec-

tion presents and compares results for the single-core replacement

and bypass policies, as well as the PDP shared cache partitioning

policy.

6.1 A PDP Parameter Space Exploration
The performance and hardware overhead of the PDP are a func-

tion of the maximum PD allowed, sampler and FIFO sizes, and the

number of bits to store the remaining PD per line. Fig. 9 shows the

effect of two PDP parameters: the RD sampler size and the counter

Range of PD 16-32 33-64 65-128 129-256

of benchmarks 4 5 4 3

Table 2. The PD distribution of SPEC CPU2006
benchmarks.

step Sc. The Full configuration uses a FIFO per LLC line. The Real
configuration uses a 32-entry RD sampler (32 FIFOs, each with 32

entries). The impact of the counter step Sc is shown for the Real
configuration. The specific PDs of each configuration can be found

in Appendix A.

The results show that the RDDs obtained using the 32-entry RD

sampler are basically identical to those obtained without sampling.

An even smaller sampler size can be used, but it will take longer to

warm up and to build a good-quality RDD. Therefore, the rest of the

paper uses the Real configuration of the RD sampler.

Varying the counter step Sc from 1 to 8, the Sc = 2 has mostly

no difference with the Sc = 1. Two benchmarks, 456.hmmer and

470.lbm, show a noticeable change for higher values of Sc. This is

due to the rounding errors in the PD computation. The Sc = 4 is

selected for the rest of the paper in a trade-off between performance

and hardware overhead,

A third parameter, the maximum protecting distance dmax, is

chosen based on results in Table 2. The table shows the distribu-

tion of optimal PD for the sixteen SPEC CPU2006 benchmarks used

and the Full sampler configuration. None of the benchmarks has a

PD larger than 256, even if dmax is set to be larger. Therefore the

dmax = 256 is used in the rest of the paper. The table also shows

that a smaller dmax can also be used, but with some impact on per-

formance. For example, the dmax = 128 results in lower perfor-

mance for three benchmarks.

A fourth parameter, the number of bits per cache tag, is evaluated

in the next section.

6.2 The Single-core PDP
Fig. 10 shows the performance of PDP and three prior policies:

DRRIP [14], EELRU and SDP [18]. The static SPDP-B is also

shown. All the results are normalized to the DIP [24] pollcy. The

evaluated metrics are the miss reduction, IPC improvement, and the

fraction of accesses bypassed. Three different PDP configurations

are shown varying the number of extra bits per cache tag nc (e.g,

PDP-3 has nc = 3).

First, let us compare prior replacement policies. DRRIP has

several benchmarks which improve over DIP, significantly in the

450.soplex, 456.hmmer, and 483.xalancbmk.3. The benchmark

464.h264ref shows degradation over DIP. This benchmark was an-

alyzed in Sec. 2.1. In fact, DRRIP achieves similar performance to

DIP with ε = 1/4 for 464.h264ref. On average, DRRIP reduces the

misses by 1.8%, leading to a 1.5% improvement in IPC over DIP.

This is consistent with results for the SPEC CPU2006 suite reported

in the DRRIP work [14]. The EELRU is shown to have a significant

degradation compared to DIP in several benchmarks. This is due

to the fact that a majority of cache lines are evicted before reaching

their reuse point, hence they pollute the cache without contribut-

ing to hits. In fact, it was previously reported that DIP outperforms

EELRU [24].

Second, let us compare the miss reduction for the static PDP

(SPDP-B) and the dynamic PDP (PDP-8). Recall that the dynamic

PDP uses the hit rate model to find the PD which maximizes the

395

0.9

1

1.1

N
o

rm
a
li
z
e
d

 M
P

K
I

Full, Sc = 1

Real, Sc = 1

Real, Sc = 2

Real, Sc = 4

Real, Sc = 8

Figure 9. Comparing PDP parameters.

hit rate. The upper bound for short traces (1B instructions) is the

static PDP and the results show that in most cases the dynamic PDP

is close to this bound. However, there is a significant difference in

the case of 429.mcf and 456.hmmer. Appendix A also shows that

these two benchmarks have the best static PD which is quite differ-

ent from the computed PD. On average, SPDP-B eliminates 1.4%

more misses than PDP-8.

Third, consider the impact of nc. PDP-8 has a 1.5% and 0.5%

higher miss reduction, respectively, compared to PDP-2 and PDP-

3. This results in a 2.0% and 0.5% higher improvement in IPC,

respectively. But PDP-2 and PDP-3 have significantly less overhead.

Thus the nc parameter can be used to reduce the overhead with a

small performance impact. But for 436.cactusADM PDP-2 leads to

a significant performance reduction due to the approximation errors

eviction of many lines before reuse. Sometimes though, benchmarks

get a improvement with smaller nc, such as 429.mcf and 473.astar,

although the impact is less significant for the latter. 462.libquantum

has a big performance loss for nc < 8, because its PD is 256, equal

to the chosen dmax, and all lines are evicted before this PD. A larger

dmax will be able to avoid this loss.

Note that the three different execution windows of

483.xalancbmk have different performance. The second win-

dow sees a miss reduction of up to 21%, with a 21% improvement

in IPC (over DIP) which is higher than in the other two windows.

The results from only one window, with medium improvement, are

used in computing all the averages, for a fair comparison among

policies.

Overall, PDP significantly improves performance over DIP

and DRRIP in several benchmarks. 436.cactusADM, 450.soplex,

482.sphinx3 and 483.xalancbmk have more than a 10% improve-

ment over DIP. Other benchmarks do not have a significant improve-

ment. In some the LRU replacement works fine (LRU-friendly),

such as 473.astar. Others are streaming benchmarks with very large

data sets, such as 433.milc, 459.GemsFDTD, 470.lbm. The average

IPC improvement over DIP for PDP-2 and PDP-3 is 2.9% and 4.2%,

respectively, while the DRRIP improvement over DIP is 1.5%.

Next, let us compare PDP with SDP, a bypass policy using the

program counter based dead block prediction. SDP is able to iden-

tify and bypass many “dead-on-arrival” lines, but it does not al-

ways have a good prediction. This happens for 464.h264ref and

483.xalancbmk, where SDP loses significantly to DIP. Note that for

483.xalancbmk SDP still improves over LRU, the baseline policy

it builds upon. A look at the RDDs shows that these benchmarks

do not have many lines whose RDs are large, the target of the SDP

predictor. This explains the difference in performance for SDP and

PDP. Benchmarks where SDP is significantly better than all other

policies are 437.leslie3d and 459.GemsFDTD where the use of the

PC-based prediction is shown to be advantageous. On average, SDP

improves the IPC of 1.6% over DIP.
Bypassing a cache reduces its active power dissipation, an im-

portant issue for large LLCs, by not writing the data into the LLC.

Fig. 10c shows the fraction of bypassed lines normalized to the num-

ber of LLC accesses. Benchmarks which have high miss rates also

have high bypass rates. For nearly 40% of accesses the LLC does

not have to be written.
The results in this section show that PDP-2 or PDP-3 proved a

good balance of overhead and performance. The hardware overhead

of the RD sampler, the array of RD counters, the processor to com-

pute the PD and per-line bits was estimated for a 2MB LLC using

the PDP-2 and PDP-3 policies. Expressed in terms of SRAM bits,

the overhead is 0.6% for PDP-2 and 0.8% for PDP-3 of the total

LLC size. The overheads for DRRIP and DIP are 0.4% and 0.8%,

respectively.

6.3 A Direction to Improve PDP
The analysis above gives some hints to further ways to im-

prove PDP. For example, 429.mcf has a higher performance with

smaller nc while SDP is better than other policies in 437.leslie3d

and 459.GemsFDTD. The common cause in all cases is the inability

to determine how long a line should be protected. For 437.leslie3d

and 459.GemsFDTD this can be solved by using a PC-based pre-

dictor. A variant of PDP was used to better understand the case of

429.mcf. The variant inserts missed lines with the PD = 1 (mostly

unprotected) instead of the computed PD and this result in an 8%

miss reduction over DIP. The reduction for SPDP-B is 3.9% and

5.1% for DRRIP. This means that when the inserted lines are re-

moved faster a higher miss reduction is achieved for this benchmark.
The above suggests that the PDP can be improved by grouping

lines into different classes, each with its own PD, and where most of

the lines are reused. The lines in a class are protected until its PD

only, thus they are not overprotected if they are not reused. In fact,

prior approaches have classified and treated cache lines differently.

A popular way is using the program counters [18, 22, 9]. Another

way is to use a counter matrix to group lines [19]. SHiP [34] pro-

poses to improve RRIP using different ways to group cache lines.

However, the hardware overhead needs to be carefully considered.

6.4 Adaptation to Program Phases
An application phase change may require the PD to be recom-

puted. For instance, the three execution windows of 483.xalancbmk

have different PDs and different behaviors. to detect phase change

The PD needs to be recomputed and the RD counter array reset fre-

quently enough to detect the change. The computed PD is used until

the next recompilation while the counters collect the new RDD.
Five SPEC CPU2006 benchmarks have phase changes in an ex-

396

-20%

-10%

0%

10%

20%

30%

SDP

DRRIP

EELRU

PDP-2

PDP-3

PDP-8

-30%

20%
SPDP-B

-49

(a) Miss reduction vs. DIP

-20%

-10%

0%

10%

20%

30%

SDP

DRRIP

EELRU

PDP-2

PDP-3

PDP-8

-30%

20%
SPDP-B

(b) IPC improvement vs. DIP

0%

20%

40%

60%

80%

100%

SDP

PDP-2

PDP-3

PDP-8

SPDP-B

(c) Cache bypass as a fraction of accesses

Figure 10. Performance of replacement and bypass policies (Results for 483.xalancbmk.1 and 483.xalancbmk.2 are ex-

cluded from averages).

ecution window of 10B instructions. Fig. 11c shows the PD change

over time. Fig. 11a shows the effect of the PD recomputing interval

between 1M and 8M accesses, which can be significant. Fig. 11b

compares different replacement policies for these benchmarks. PDP

is able to adapt to phase changes for these benchmarks.

6.5 The Case for Prefetch-Aware PDP
The PDP policy can be applied in the presence of prefetching.

The RDDs in this case are dependent of a specific prefetching mech-

anism. Note that prefetching techniques often target very long dis-

tance access streams, i.e. lines which have very large RDs. Two

prefetch-aware variants of the PDP were investigated: (1) prefetched

lines are inserted with the PD of 1, and (2) prefetched lines bypass

the LLC.

The initial evaluation using a simple stream prefetcher and

the modified PDP-8 showed the following. First, the prefetch-

unaware PDP had a 3.1% improvement over the prefetch-unaware

DRRIP, which is similar to the results without prefetching. The

two PDP variants further improve the IPC to 4.1% and 5.6%

over prefetch-unaware PDP. Many benchmarks show an improve-

ment of over 20%, including 403.gcc, 450.soplex, 482.sphinx3 and

483.xalancbmk. The improvement is due to the fact that PDP re-

moves prefetched lines fast and even bypasses them, hence they do

not pollute the cache. This shows that the PDP can be easily modi-

fied to work with prefetching.

6.6 The Cache Partitioning Policy
Fig. 12 shows the performance of the multi-core PD-based parti-

tioning together with other thread-aware policies for 4- and 16-core

workloads. Three metrics are reported: the weighted IPC (W), the

throughput (T), and the harmonic mean of normalized IPC (H). The

PD-based partitioning parameters are the same as for the single-core

PDP, except that Sc = 16.
The average W, T, and H on four cores are slightly higher for both

PDP-2 and PDP-3 compared to the TA-DRRIP and are higher than

the UCP and PIPP. The PD-based partitioning is significantly better

than other policies for approximately 30 individual workloads, for

another 20 it has a negligible improvement, and is not as good as the

TA-DRRIP for the rest.
The PD-based partitioning is shown to be more scalable with a

larger improvement on the 16-core workloads. Its performance is

better than that of all other partitioning policies for more than 70 of

the 80 workloads. UCP and PIPP do not scale as well compared to

the other policies. On average, PDP-3 has a 5.2%, 6.4% and 9.9%

improvement in W, T, H, respectively, over the TA-DRRIP.

7 RELATED WORK
Cache line protection. Let us discuss prior policies from the

perspective of line protection, even if they do not use this concept

explicitly. LRU can only guarantee that a line is protected for the

number of unique accesses equal or smaller than associativity. A line

397

0%

10%

20%

30%

40%

WUCP

PIPP

PDP-2

PDP-3

-20%

-10%

0 20 40 60 80

Workload

0%

10%

20%

30%

40%

TUCP

PIPP

PDP-2

PDP-3

-20%

-10%

0 20 40 60 80

Workload

0%

10%

20%

30%

40%

HUCP

PIPP

PDP-2

PDP-3

-20%

-10%

0 20 40 60 80

Workload

0%

5%

10%

W T H

Average

-10%

-5%

UCP PIPP PDP-2 PDP-3

0%

10%

20%

30%

40%

WUCP

PIPP

PDP-2

PDP-3

-20%

-10%

0 20 40 60 80

Workload

0%

10%

20%

30%

40%

TUCP

PIPP

PDP-2

PDP-3

-20%

-10%

0 20 40 60 80

Workload

0%

10%

20%

30%

40%

HUCP

PIPP

PDP-2

PDP-3

-20%

-10%

0 20 40 60 80

Workload

0%

5%

10%

W T H

Average

-10%

-5%

UCP PIPP PDP-2 PDP-3

Figure 12. Cache partitioning policies for 4-core (top) and 16-core (bottom) workloads (normalized to TA-DRRIP).

1.04

1.06

1.08

IP
C

 t
o

 i
n

te
rv

a
l
=

 1
M

403.gcc 429.mcf

450.soplex 482.sphinx3

483.xalancbmk

0.98

1.00

1.02

1M 2M 4M 8MN
o

rm
a

li
z
e
d

 I

Reset inverval

(a) Reset interval

5%

10%

15%

v
e

m
e

n
t

o
v
e

r
D

IP

RRIP PDP-2 PDP-3 PDP-8

-5%

0%

IP
C

 i
m

p
ro

v

(b) Performance

100

150

200

403.gcc

0

50

0 20 40 60

100

150

200

429.mcf

0

50

0 200 400 600

100

150

200

450.soplex

0

50

0 100 200 300

100

150

200

482.sphinx3

0

50

0 30 60 90 120

100

150

200

483.xalancbmk

0

50

0 50 100 150 200

X-axis: 1M accesses

Y-axis: PD

(c) PD change over time

Figure 11. Adaptation to program phases.

with a reuse distance RD larger than associativity can be protected

either by replacing other lines or by explicitly protecting the line.

DIP [24] and RRIP [14] predict the re-reference future of lines and

protect lines which are predicted to be reused sooner. The counter-

based replacement policy [19], using a matrix of counters, protects

lines by not evicting them until they expire. This approach does not

use an explicit protecting distance, but rather predicts how long a

line should be protected by using the past behavior of lines in the

same class. The work in [15] measures Inter Reference Recency

(IRR) which is similar to reuse distance. Based on this IRR infor-

mation, cache lines are classified into 2 categories: high IRR and

low IRR, and low IRR lines are protected over high IRR lines. The

work in [21] uses PC information to identify which lines to protect

and the cache is also divided into two regions: MainWays and Deli-

Ways. The use of DeliWays is to protect cache lines longer. Dead

block prediction [18] uses program counters (PC) to predict which

lines have a very long RD and to bypass them, thus protecting exist-

ing lines in the cache.
The approach in [17] used a PC-based reuse distance predictor

and monitored the distance remaining till reuse. An LRU line or

a line with the largest “distance till reuse” is evicted, whichever is

larger. This can be viewed as “protecting” lines with lower distance

till reuse. The two issues with this policy are: 1) the PC-based reuse

distance prediction is not very accurate and 2) the decision to switch

eviction to an LRU line is an approximation without a model to sup-

port it.
Shepherd cache [26] emulates the Belady [2] policy to estimate

RD and evict lines with a long RD and protect lines with a short

RD. The insertion algorithms in [6], which target an exclusive LLC,

insert a line with a certain age to determine how long the line should

be protected. Similarly, SHiP [34] determines the insertion age of

a line by using information about either the memory region or pro-

gram counters or instruction sequence.
The EELRU [29], or early eviction LRU, was defined for page

replacement using the model in [33] and accurately measured the

reuse distance. It used LRU for part of the set (physical memory) and

switched to early eviction when LRU failed. It can be said to divide

the pages into protected and unprotected regions and to compute the

region boundaries dynamically. The computation used hit counters

and the search process for the best boundary is similar to the search

for the best PD. However, unlike the PDP, the EELRU “protection”

is managed via eviction only (by evicting all older lines first), i.e. all

missed blocks are inserted into the set.
The PDP is different from prior work in that it explicitly esti-

mates how long a line should be protected using the concept of pro-

tecting distance. After this explicit protection, if it is not reused, the

line becomes unprotected and can be replaced.
Distance measurements. Three ways to measure the reuse dis-

tance were defined in prior work. The first one is the stack distance,

used by LRU and its variants, with the time unit defined as the num-

ber of unique accesses [24, 29, 28]. Stack distance can be used to

tell which lines are older, but not its real age. The other two are

non-stack: one uses a cache miss as the time unit [21], and the other

one uses an access as a unit [22, 17, 4]. The former is dependent

398

on the replacement policy. Computing stack distance is more com-

plex. Thus we used access-based distance measurement in this pa-

per. Note that the approach in [17] uses global RDs, while PDP uses

set-based RDs, which significantly reduces overhead.
Cache bypass. There has been a number of studies using by-

pass [6, 18, 20, 16, 32, 19, 5]. The dead block prediction work [18]

bypasses blocks predicted dead. The work in [32] explores bypass

by characterizing data cache behavior for individual load instruc-

tions. The approach in [20] uses a hash table to identify never-

accessed lines. The approach in [16] uses memory addresses to

identify which lines to bypass. Recently, the work in [6] proposed

bypass algorithms that use sampling sets to identify dead and live

blocks. Our approach bypasses a block when existing blocks are still

protected, but without explicitly identifying which lines are likely to

be dead. The bypass mechanism in [19] also bypasses lines if there

are no expired lines in the set.
Cache sampling. Prior work used sampling on a subset of cache

sets [24, 14, 18] and on a fraction of the accesses [18, 22]. Other

approaches use feedback to adjust the cache replacement [3] or par-

titioning [30]. PDP’s only contribution here is a low hardware over-

head.
RDDs and hit rate model. The IGDR policy [31] used the Inter-

Reference Gap Distribution which is similar to the RDD. It used the

concept of Inter-Reference Gap from [23]. IGDR used the distribu-

tion to compute a “weight” of cache lines and evict the line with a

smallest weight. The work in [19] used the distribution implicitly.

The approach in [22] used PCs to compute the RD of a line. PDP

uses the RDD to explicitly compute a global protecting distance.

The PD computation searches for a maximum of E(PD, RDD) and

uses the PD achieving the maximum. EELRU [29] used a similar

search approach to choose the best set {eviction point, probability}.
Prefetch-aware caching policies. Prior work investigated re-

placement policy in the presence of prefetching [7, 35, 6]. PAC-

Man [35] is one such approach showing that RRIP can be modified

to adapt to prefetching. Our preliminary results also show opportu-

nities to improve PDP in the presence of prefetching.
Shared-cache policies. A number of multi-core, shared cache

partitioning policies [25, 36] have been proposed as well as thread

aware insertion or eviction [12, 14]. Recently, Vantage mecha-

nism [27] used an analytical model to enhance partitioning in CMP

and this model can be used with existing policies. Similar to the

work in [12, 14], multi-core PDP does not perform partitioning

among cores explicitly, rather it estimates the needs of each thread

from its PD and chooses a set of PDs, one per thread, that maximize

the hit rate.

8 CONCLUSIONS
Cache management policies such as replacement, bypass, and

shared cache partitioning, have been exploiting – directly or indi-

rectly – the data reuse behavior to improve cache performance. This

paper proposed the novel PDP cache management policy which ex-

plicitly protects a cache line for a predicted reuse distance, the pro-

tecting distance PD. This guarantees a hit if the reuse occurs while

the line is protected. Unprotecting a line speeds up its eviction and

reduces cache pollution, thus freeing the cache space for new lines.

The PDP achieves a good balance between reusing lines and reduc-

ing pollution. A bypass mechanism can be used when all the lines

in a set are protected. A hit rate model as a function of program

behavior and PD is proposed and shown to be accurate. The model

Benchmark SPDP Full Real, Sc =
NB B 1 2 4 8

403.gcc 68 72 63 64 64 64 64

429.mcf 136 152 182 182 180 184 176

433.milc 248 248 216 216 216 216 208

434.zeusmp 16 16 16 16 16 16 16

436.cactusADM 76 72 65 66 66 66 64

437.leslie3d 36 40 40 40 40 40 48

450.soplex 60 52 73 74 72 72 80

456.hmmer 44 176 22 22 24 24 32

459.GemsFDTD 24 24 26 26 28 32 32

462.libquantum 256 256 256 256 256 256 256

464.h264ref 40 40 48 48 48 48 48

470.lbm 52 52 50 50 52 56 64

471.omnetpp 20 20 33 32 32 32 32

473.astar 24 20 16 16 16 16 16

482.sphinx3 84 120 84 84 84 88 80

483.xalancbmk.1 88 100 113 114 116 112 112

483.xalancbmk.2 72 88 56 56 56 56 64

483.xalancbmk.3 96 124 74 74 72 72 80

Table 3. The PDs of SPEC CPU2006 benchmarks.

is used to periodically recompute the PDP to adapt to phase changes

and memory access behavior. A shared-cache hit rate model is also

developed and used by the new PD-based partitioning policy. The

additional hardware is shown to have the overhead similar to exist-

ing replacement policies. The performance evaluation of PDP shows

that it outperforms existing management policies for both single-

core and multi-core configurations.

A RESULTS FOR SPEC CPU2006 BENCH-
MARKS

Table 3 shows the PDs of the benchmarks used in this paper.

The first two columns are for the static PDP (see Sec. 2) with and

without bypass (B and NB). The third column shows the PDs of the

dynamic PDP with a full RD sampler (see Sec. 6.1). The last four

columns are the PDs with a real RD sampler and different values of

Sc (see Sec. 6.1). These results were collected at the end of the 1B

instruction execution window.

Fig. 13 shows the RD distribution for all benchmarks and win-

dows, the modeled hit rates (E) and the static hit rates as described

in Sec. 2. Each is normalized to its highest peak.

ACKNOWLEDGMENTS
This work is supported in part by NSF grant CISE-SHF 1118047

and by the Ministry of Science and Technology of Spain and the Eu-

ropean Union (FEDER funds) under contract TIN2007-60625. Nam

Duong is also supported by the Dean’s Fellowship, Donald Bren

School of Information and Computer Sciences, UC Irvine. The au-

thors would like to thank the anonymous reviewers for their useful

feedback and Drs. G. Loh and M. Qureshi for their shepherding

help.

REFERENCES
[1] A. Basu, N. Kirman, M. Kirman, M. Chaudhuri, and J. Martinez. Scav-

enger: A new last level cache architecture with global block priority.
In MICRO’07.

[2] L. A. Belady. A study of replacement algorithms for a virtual-storage
computer. IBM Systems Journal, 1966.

399

E

Hit rate

0 64 128 192 256

403.gcc

RDD

429.mcf

0 64 128 192 256

433.milc

0 64 128 192 256

434.zeusmp

0 64 128 192 256 0 64 128 192 256

436.cactusADM
437 l li 3d

0 64 128 192 256

437.leslie3d

450.soplex

0 64 128 192 256

456.hmmer

0 64 128 192 256

459.GemsFDTD

0 64 128 192 256

462.libquantum

0 64 128 192 256

464.h264ref

0 64 128 192 256

470.lbm

0 64 128 192 256

471.omnetpp

0 64 128 192 256

473 t

0 64 128 192 256

473.astar

482.sphinx3

0 64 128 192 256

483.xalancbmk.1

0 64 128 192 256

483.xalancbmk.2

0 64 128 192 256

483.xalancbmk.3

0 64 128 192 256

Figure 13. The RDDs, modeled and actual hit rates of SPEC CPU2006 benchmarks.

[3] N. Duong, R. Cammarota, D. Zhao, T. Kim, and A. Vendenbaum.
SCORE: A score-based memory cache replacement policy. In
JWAC’10.

[4] M. Feng, C. Tian, C. Lin, and R. Gupta. Dynamic access distance
driven cache replacement. ACM Transactions on Architecture and
Code Optimization, 2011.

[5] H. Gao and C. Wilkerson. A dueling segmented LRU replacement
algorithm with adaptive bypassing. In JWAC’10.

[6] J. Gaur, M. Chaudhuri, and S. Subramoney. Bypass and insertion al-
gorithms for exclusive last-level caches. In ISCA’11.

[7] B. S. Gill and D. S. Modha. SARC: sequential prefetching in adaptive
replacement cache. In ATEC’05.

[8] D. Hackenberg, D. Molka, and W. E. Nagel. Comparing cache archi-
tectures and coherency protocols on x86-64 multicore SMP systems.
In MICRO’09.

[9] M. Hayenga, A. Nere, and M. Lipasti. MadCache: A PC-aware cache
insertion policy. In JWAC’10.

[10] A. Jaleel, E. Borch, M. Bhandaru, S. C. Steely Jr., and J. Emer. Achiev-
ing non-inclusive cache performance with inclusive caches: Temporal
locality aware (TLA) cache management policies. In MICRO’10.

[11] A. Jaleel, R. S. Cohn, C. keung Luk, and B. Jacob. CMP$im: A pin-
based on-the-fly multi-core cache simulator. In MoBS’08.

[12] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and
J. Emer. Adaptive insertion policies for managing shared caches. In
PACT’08.

[13] A. Jaleel, H. H. Najaf-abadi, S. Subramaniam, S. C. Steely, and
J. Emer. CRUISE: cache replacement and utility-aware scheduling.
In ASPLOS’12.

[14] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer. High
performance cache replacement using re-reference interval prediction
(RRIP). In ISCA’10.

[15] S. Jiang and X. Zhang. LIRS: an efficient low inter-reference recency
set replacement policy to improve buffer cache performance. In SIG-
METRICS’02.

[16] T. Johnson, D. Connors, M. Merten, and W.-M. Hwu. Run-time cache
bypassing. IEEE Transactions on Computers, 1999.

[17] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache replacement
based on reuse-distance prediction. In ICCD’07.

[18] S. M. Khan, Y. Tian, and D. A. Jimenez. Sampling dead block predic-
tion for last-level caches. In MICRO’10.

[19] M. Kharbutli and Y. Solihin. Counter-based cache replacement and
bypassing algorithms. IEEE Transactions on Computers, 2008.

[20] H. Liu, M. Ferdman, J. Huh, and D. Burger. Cache bursts: A new
approach for eliminating dead blocks and increasing cache efficiency.
In MICRO’08.

[21] R. Manikantan, K. Rajan, and R. Govindarajan. NUCache: An ef-
ficient multicore cache organization based on next-use distance. In
HPCA’11.

[22] P. Petoumenos, G. Keramidas, and S. Kaxiras. Instruction-based reuse-
distance prediction for effective cache management. In SAMOS’09.

[23] V. Phalke and B. Gopinath. An inter-reference gap model for temporal
locality in program behavior. In SIGMETRICS’95.

[24] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer. Adaptive
insertion policies for high performance caching. In ISCA’07.

[25] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared
caches. In MICRO’06.

[26] K. Rajan and G. Ramaswamy. Emulating optimal replacement with a
shepherd cache. In MICRO’07.

[27] D. Sanchez and C. Kozyrakis. Vantage: scalable and efficient fine-
grain cache partitioning. In ISCA’11.

[28] D. L. Schuff, M. Kulkarni, and V. S. Pai. Accelerating multicore reuse
distance analysis with sampling and parallelization. In PACT’10.

[29] Y. Smaragdakis, S. Kaplan, and P. Wilson. EELRU: simple and effec-
tive adaptive page replacement. In SIGMETRICS’99.

[30] S. Srikantaiah, M. Kandemir, and Q. Wang. SHARP control: con-
trolled shared cache management in chip multiprocessors. In MI-
CRO’09.

[31] M. Takagi and K. Hiraki. Inter-reference gap distribution replace-
ment: an improved replacement algorithm for set-associative caches.
In ICS’04.

[32] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun. A modified
approach to data cache management. In MICRO’95.

[33] C. Wood, E. B. Fernandez, and T. Lang. Minimization of demand
paging for the LRU stack model of program behavior. Information
Processing Letters, 1983.

[34] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. Steely, and
J. Emer. SHiP: Signature-based hit predictor for high performance
caching. In MICRO’11.

[35] C.-J. Wu, A. Jaleel, M. Martonosi, S. C. Steely, Jr., and J. Emer.
PACMan: prefetch-aware cache management for high performance
caching. In MICRO’11.

[36] Y. Xie and G. H. Loh. PIPP: promotion/insertion pseudo-partitioning
of multi-core shared caches. In ISCA’09.

400

