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ABSTRACT
It is difficult to improve the single-thread performance of
a processor in memory-intensive programs because proces-
sors have hit the memory wall, i.e., the large speed discrep-
ancy between the processors and the main memory. Exploit-
ing memory-level parallelism (MLP) is an effective way to
overcome this problem. One scheme for exploiting MLP is
aggressive out-of-order execution. To achieve this, large in-
struction window resources (i.e., the reorder buffer, the issue
queue, and the load/store queue) are required; however, sim-
ply enlarging these resources degrades the clock cycle time.
While pipelining these resources can solve this problem, this
leads to instruction issue delays, which prevents instruction-
level parallelism (ILP) from being exploited effectively. As
a result, the performance of compute-intensive programs is
degraded dramatically.
This paper proposes an adaptive dynamic instruction win-

dow resizing scheme that enlarges and pipelines the win-
dow resources only when MLP is exploitable, and shrinks
and de-pipelines the resources when ILP is exploitable. Our
scheme changes the size of the window resources by predict-
ing whether MLP is exploitable based on the occurrence of
last-level cache misses. Our scheme is very simple and hard-
ware change is accommodated within the existing processor
organization, it is thus very practical. Evaluation results
using the SPEC2006 benchmark programs show that, for all
programs, our dynamic instruction window resizing scheme
achieves performance levels similar to the best performance
achieved with fixed-size resources. On average, our scheme
produces a performance improvement of 21% in comparison
with that of a conventional processor, with an additional
cost of only 6% of the conventional processor core or 3%
of the entire processor chip, thus achieving a significantly
better cost/performance ratio that is far beyond the level
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that can be achieved based on Pollack’s law. The evaluation
results also show an 8% better energy efficiency in terms of
1/EDP (energy-delay product).
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1. INTRODUCTION
In the past, single-thread performance increased accord-

ing to Pollack’s law [21], which states that the performance
improves in proportion to the square-root of the processor
area. For the past few years, however, this has no longer
been the case, and the performance improvement rate has
slowed dramatically, despite ever increasing transistor bud-
gets. New architectural techniques that use the increased
transistor budget effectively are needed.

One of the reasons for this lack of performance improve-
ment is the memory wall, which is the large speed discrep-
ancy between the processors and the main memory. This
severely limits the performance of a computer, because of the
long latency in a load if a last-level cache (LLC) miss occurs.
Conventional solutions to this problem have involved incor-
poration of a large cache and a hardware prefetcher [4, 12].
Unfortunately, a large cache is very expensive and several
megabytes are not enough. Hardware prefetchers are gener-
ally inexpensive and are effective for regular access patterns,
but they are ineffective with irregular access patterns. Al-
though prefetchers for irregular access patterns have been
reported in the literature, they require a very large correla-
tion table comprising multiple megabytes [7].

Aggressive out-of-order execution is an effective alterna-
tive approach to this problem. This method significantly
increases the number of in-flight instructions that are sup-
ported by the processor through extensive instruction win-
dow resources (i.e., reorder buffer (ROB), issue queue (IQ),
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and load/store queue (LSQ)1). This allows parallel mem-
ory accesses by executing the cache-miss-causing loads as
early as possible, and thereby reducing the effective mem-
ory latency. This type of parallelism is called memory-level
parallelism (MLP).
One advantage of this approach is that data fetch is car-

ried out by instruction execution, and not by prediction like
a hardware prefetch, and thus the data fetch is accurate. An-
other advantage is that it can be implemented by applying
a simple extension to a conventional superscalar processor.
However, the downside is that the large resources adversely
affect the clock cycle time. Although this can be solved by
pipelining the resources, it prevents instruction-level paral-
lelism (ILP) from being exploited effectively, mainly because
of the enlarged IQ. Specifically, pipelining of the IQ makes it
impossible to issue dependent instructions back-to-back, be-
cause the wakeup-select issue loop takes more than a single
cycle to complete.
As explained above, there is a tradeoff involved in en-

larging and pipelining the window resources for exploitation
of ILP and MLP. In other words, large pipelined resources
are effective for exploiting MLP, and are thus beneficial for
memory-intensive programs or execution phases. However,
they are harmful when exploiting ILP, which offers high per-
formance in compute-intensive programs or phases.
To solve this tradeoff, we propose dynamic instruction

window resizing, which adapts the window size to the avail-
able parallelism (ILP or MLP). In this adaptation, as more
exploitable MLP is predicted, the window resources are en-
larged further, while the pipeline depth has increased at the
same time. Conversely, if the prediction indicates that less
MLP should be exploited, i.e., that ILP is more valuable for
better performance, the window resources are shrunk, while
simultaneously decreasing the pipeline depth. A larger win-
dow allows more MLP to be exploited, whereas a smaller
window allows more ILP to be exploited. We can predict
when MLP is exploitable by the occurrence of an LLC miss.
Specifically, if an LLC miss occurs once, we predict that
MLP can be exploited for a while thereafter. The ratio-
nale of this prediction is that the LLC misses are typically
clustered with respect to time, and thus if one miss occurs,
more misses are expected to occur soon afterwards. Con-
versely, we predict that MLP will not be exploitable once
the memory latency has lapsed after the last LLC miss.
The remainder of this paper is organized as follows. Sec-

tion 2 gives an overview of MLP, while Section 3 explains
the tradeoffs in the instruction window size. Our dynamic
instruction window resizing scheme is proposed in Section 4
and the evaluation results are presented in Section 5. Re-
lated work is described in Section 6 and our conclusions are
given in Section 7.

2. OVERVIEW OF MEMORY-LEVEL PAR-
ALLELISM

Memory-level parallelism (MLP) is the type of parallelism
that is associated with main memory accesses. Use of MLP
reduces the total main memory access time that is included

1
We assume an Intel P6-type architecture [11] in this study, where

each ROB entry has a physical register and the IQ holds operands
read from either the ROB or the architectural register file. We also
assume that the processor has a map table that translates a logical
register into a physical register field in the ROB to implement the
ROB with a RAM organization.
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Figure 1: Time sequence of sequential and parallel
main memory accesses.

in the total execution time of a program. Because the time
for a single memory access is at present a few hundred pro-
cessor cycles, this saving is highly significant in memory-
intensive programs.

We explain how the execution time is reduced by exploit-
ing MLP by referring to Figure 1, which shows the time se-
quence of the events in which two distantly separate loads,
load1 and load2, cause cache misses. Note that the light
and dark lines (shown as green and red lines, respectively, in
the color print) show the computation and the main memory
accesses, respectively.

Figure 1(a) illustrates the case where two memory accesses
occur sequentially. In this case, the time required for the
two memory accesses simply extends the execution time of
the program. Conversely, Figure 1(b) shows that load1 and
load2 are executed in parallel. In this case, the two memory
accesses occur in parallel, thereby saving one memory access
time.

For example, if two-thirds of a program’s execution time
is used to perform main memory accesses, always paralleliz-
ing these two memory accesses (i.e., doubling the MLP) can
decrease the overall execution time to two-thirds of the orig-
inal time (= computation time+memory access time/2 =
1/3 + (2/3)/2), resulting in a speedup of 50%. In this way,
if more cache-miss-causing loads can be executed within a
short period, then the additional memory accesses can be
parallelized, thus further reducing the execution time of the
program.

One method to move the execution timing of multiple
long-distant loads closer, as shown in Figure 1(b), is to in-
crease the instruction window size. Because the instructions
in the instruction window can be reordered, multiple loads
can potentially be executed within a short period. The win-
dow size is determined by the resources of the ROB, IQ, and
LSQ.

3. TRADEOFFS IN THE INSTRUCTION WIN-
DOW SIZE

As described in Section 1, there is the following trade-
off with regard to the size of the instruction window when
exploiting ILP and MLP.

(1) A large and pipelined instruction window resource is
beneficial for exploiting MLP in memory-intensive pro-
grams. However, pipelining the IQ means that it is un-
able to issue dependent instructions back-to-back, thereby
causing a reduction in ILP. This results in performance
degradation in compute-intensive programs.
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(a) libquantum (memory-
intensive)

(b) gcc (compute-intensive)

Figure 2: IPC for varying instruction window re-
source levels (i.e., resource size, pipeline depth).

(2) Conversely, a small and non-pipelined instruction win-
dow resource is beneficial for exploiting ILP in compute-
intensive programs. However, this makes it difficult
to overlap the memory accesses of cache-miss-causing
loads, resulting in a deterioration in MLP. This means
that the performance of memory-intensive programs is
hardly improved.

Figure 2 shows the performance (IPC) for libquantum (a
memory-intensive program) and gcc (a compute-intensive
program) as an example to illustrate this tradeoff. The hor-
izontal axis represents the instruction window resource level,
which represents the size and the pipeline-depth of the var-
ious window resources as defined in Section 4. As the level
increases, the size also increases and the pipeline depth in-
creases or remains the same. The specific values for each
level are listed in Table 2, while the configuration of the
evaluated processor is given in Table 1. The bars represent
the IPCs relative to those of the processor at level 1 (con-
ventional processor), when the instruction window resource
level was varied. The lines represent the relative IPC of an
ideal processor, in which the window resources are enlarged
but are not pipelined.
The bars in the two figures show the tradeoff, i.e. that

the large window resources are beneficial for libquantum, a
memory-intensive program, whereas they are harmful for
gcc, a compute-intensive program.
The following two points should also be noted. The first is

that the deterioration of ILP in the large window resources,
which is caused by the pipelining of these resources, hardly
affects the performance of libquantum, because the memory-
access time dominates the execution time. As shown in Fig-
ure 2(a), although the non-pipelined ideal processor does not
reduce ILP exploitation, the IPC difference for the pipelined
processor is very small.
The second point to be noted is that enlarging the window

resources is not particularly beneficial for compute-intensive
programs. As shown in Figure 2(b), enlarging the window
resources does little to increase IPC, even when the adverse
effects of pipelining are removed (see the IPC for the ideal
processor). That means that a small window size (the size
of the IQ and the LSQ are 64, while that of the ROB is
128 at instruction window resource level 1) is sufficient for
exploiting ILP.
Detailed evaluation results that highlight this tradeoff are

presented in Section 5.3.
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Figure 3: Resizing resources by changing the level.

Figure 4: Histogram of L2 cache miss occurrences
for miss intervals (soplex).

4. MLP-AWARE DYNAMIC INSTRUCTION
WINDOW RESIZING

This section proposes dynamic instruction window resiz-
ing. In this study, we assume the Intel P6-type architecture
to be the base architecture, where the instruction window re-
sources are the ROB, IQ, and LSQ. All these resources have
a FIFO structure. Therefore, when at a particular time the
region from the head to a particular entry is used, resiz-
ing is carried out by moving the boundaries of the used and
unused regions as shown in Figure 3. How the circuit of a re-
source is pipelined depends on the circuit. In the Appendix,
we present an example of how the IQ is pipelined. Other
resources, including the IQ with different implementations,
can also be pipelined easily. In addition, to prevent an in-
crease in the delay and suppress the power consumed by the
circuits in the unused region, the signals propagated to the
unused region are gated, and precharging of the dynamic
circuits in the unused region is disabled. It takes several
cycles to resize resources. We assume 10 cycles are required
for the evaluation presented in Section 5. This transition
cycle penalty has little effect on performance, according to
our evaluation (only 1.3% slowdown, even if the penalty in-
creases to 30 cycles).

Here, we define an instruction window resource level (hence-
forth simply referred to as a resource level or level, de-
pending on the context) as comprising values of the size
and pipeline depth of the resource (level = {size, pipeline-
depth}). As the level number increases, then the correspond-
ing size also increases. Each resource with a particular size
is pipelined so that it does not increase the clock cycle time.

4.1 Overview of Enlarging and Shrinking Win-
dow Resources

In this study, we assume the L2 cache to be the LLC. In
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1: cycle = 0; // current clock cycle
2: level = 1; // instruction window resource level
3: shrink_timing = -1; // timing of shrinking
4: do_shrink = 0; // flag instructing the shrinking of resources
5:
6: foreach cycle {
7: if (L2_miss) {
8: level = min(level + 1, max_level); // enlarge the resources
9: shrink_timing = cycle + memory_latency;
10: do_shrink = 0;
11: } else if (cycle == shrink_timing) {
12: do_shrink = 1;
13: }
14: if (level > 1 && do_shrink) {
15: // check if the regions of ROB, IQ, and LSQ to be removed by shrinking are vacant
16: if (is_shinkable(level)) {
17: level = level - 1; // shrink the resources
18: shrink_timing = cycle + memory_latency;
19: do_shrink = 0;
20: } else {
21: stop_alloc(); // stop resource allocation to increase the vacancies in resources
22: }
23: }
24: }

Figure 5: Algorithm for dynamic resource resizing.

general, L2 cache misses tend to be clustered with respect to
time. This is because there is a moment when the degree of
locality of the memory accesses decreases because of a phase
change in the program execution. Figure 4 (previous page)
shows the histograms of the L2 cache miss occurrences for
the miss intervals in soplex with a bin size of 8 cycles (see
the processor configuration in Table 1), as an example. As
shown in the figures, the vast majority of the L2 cache misses
occur within a short interval, although the average interval
in instructions is 147. Also, note that there is another peak
at around 300 cycles; this is because the memory latency is
300 cycles in this evaluation. The pipeline stalls during this
period because it runs out of instruction window resources
after an L2 miss occurs. Then, once that miss has been
resolved, another cluster of misses occurs. Thus, if we en-
large the instruction window, this peak will move to the left
on the x-axis, causing nearby occurrences of more L2 cache
misses.
Based on this, our scheme predicts that once one L2 cache

miss has occurred, further misses will occur continuously for
a while, and thus the window resources are enlarged. Specifi-
cally, when an L2 cache miss occurs, the level of each window
resource increases by one (if it is already at its maximum, it
does not change).
In contrast, our scheme shrinks the window resources once

the main memory latency has lapsed from the time at which
the last L2 cache miss occurred. Specifically, the level of
each window resource is reduced by one (if it is currently at
level 1, the level does not change). Note that the shrinking
of the window resources is delayed until the regions of the
ROB, IQ, and LSQ that are to be removed by shrinking
simultaneously become vacant.

4.2 Algorithm
The algorithm for our dynamic instruction window resiz-

ing scheme is summarized using pseudo code in Figure 5.
In a cycle when an L2 cache miss occurs, the window re-

sources are enlarged. This means that the instruction win-

dow resource level is increased by one (if it is already at its
maximum, it does not change)(line 8). Then, the timing for
shrinking the resources, shrink_timing, is set to the cur-
rent cycle plus the memory latency to subsequently find the
timing of shrinking (line 9). Also, do_shrink, the flag that
instructs the shrinking of the resources, is cleared (line 10).

If the cycle reaches shrink_timing without an L2 cache
miss occurring, then the flag do_shrink is set to allow the
resources to be shrunk in this cycle or in a later cycle (line
12).

If the current resource level is greater than 1 and flag
do_shrink is set (line 14), then the algorithm checks whether
all the instruction window resources (i.e., ROB, IQ, and
LSQ) can be shrunk simultaneously by checking whether
the regions that must be removed are all vacant (line 16).

• If vacant, the resources are shrunk. In other words,
the resource level is decreased by one (line 17). Then,
shrink_timing is set to the current cycle plus the
memory latency for the next shrink (line 18), and the
flag do_shrink is cleared (line 19).

• If not vacant, shrinking is not performed in this cycle,
but is postponed until a later cycle. To wait for the
instructions in the resources to move forward and for
the regions that need to be removed to become vacant,
resource allocation at the front-end is stopped (line
21).

Although the processor stalls for a while (we assume a
period of 10 cycles in the evaluation presented in Section 5)
at the level transition, we omit this from the description of
the algorithm for simplicity.

Figure 6 illustrates how the resource level transition oc-
curs, with the maximum level being 3. At time t0, an L2
cache miss occurs, and thus the level is increased by one.
Similarly, at time t1, another L2 cache miss occurs, and
thus the level is again increased by one to 3. At time t2,
an L2 cache miss occurs again, but this time the level is not
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Figure 6: Resource level transitions with L2 cache
miss occurrences.

increased, because it is already at the maximum. At time
t4, the memory latency lapses after the last L2 miss at time
t2. The level should now be decreased by one, but this is
postponed until t5 because the mechanism must wait for
the regions to be removed to become vacant by halting the
resource allocation. Another memory latency subsequently
lapses, and the level is decreased further by one at time t6.
At this time, the regions to be removed are vacant, and thus
the resources are immediately shrunk. Note that MLP is
exploited from time t1 to t3 (the memory accesses overlap
during this period), while ILP is exploited before t0 and
after t6.

5. EVALUATION
We first describe the assumption of the size and the pipeline

depth of the instruction window resources for several re-
source levels in Section 5.1. Then, we evaluate the perfor-
mance when we introduce dynamic instruction window re-
sizing in Sections 5.2 and 5.3, where the configuration of the
base processor used in our evaluation is given in Table 1.
Note that we introduced a stride prefetcher based on the
prefetcher proposed in [4]. We chose the stride prefetcher
as a data prefetcher because commercial processors (e.g.,
IBM Power 5, 6, and 7, Intel Sandy Bridge, and AMD
Opteron) use a stream or stride prefetcher. In Sections 5.4
and 5.5, the energy efficiency and the cost/performance ra-
tio are evaluated. We then discuss cache pollution because
of deep speculation that may be caused by the large win-
dow in Section 5.6. Finally, in Section 5.7, we compare the
performance of the proposed dynamic instruction window
resizing method with runahead execution, which is a scheme
that effectively exploits both ILP and MLP, and is used in
commercial processors (the Sun Rock processor [6] and the
IBM Power6 [13]).

5.1 Size and Pipeline Depth of Window Re-
sources

In the following evaluation, we assume that a processor
physically has window resources that are four times larger
than those in the base processor, and that three levels can be
selected with our dynamic window resizing scheme, as shown
in Table 2. The physical sizes that we assume here are not
unrealistic, when considering current LSI technology; the
increased area is only 3% of the area of an entire processor
chip of the Intel Sandy Bridge as presented in Section 5.5.
With regard to the pipeline depth of the IQ, we deter-

mined it by evaluating the delay by an HSPICE circuit sim-
ulation after drawing the layout, based on a study in the

Table 1: Configuration of base processor.
Pipeline width 4-instruction wide for each of

fetch, decode, issue, and commit
ROB 128 entries
Issue queue 64 entries
LSQ 64 entries
Branch prediction 16-bit history 64K-entry PHT gshare,

2K-set 4-way BTB,
10-cycle misprediction penalty

Function unit 4 iALU, 2 iMULT/DIV, 2 Ld/St,
4 fpALU, 2 fpMULT/DIV/SQRT

L1 I-cache 64KB, 2-way, 32B line
L1 D-cache 64KB, 2-way, 32B line, 2 ports,

2-cycle hit latency, non-blocking
L2 cache 2MB, 4-way, 64B line,

12-cycle hit latency
Main memory 300-cycle min. latency,

8B/cycle bandwidth
Data prefetcher stride-based, 4K-entry, 4-way table,

16-data prefetch to L2 cache on miss

Table 2: Number of entries and pipeline depths of
window resources at each level and the assumption
of a cycle penalty at the level transition.

levelresource parameter
1 2 3

entries 64 160 256IQ
pipeline depth 1 2 2
entries 128 320 512ROB
pipeline depth 1 2 2
entries 64 160 256LSQ
pipeline depth 1 2 2

Level transition penalty 10 cycles

literature [25]. In this simulation, we assumed MOSIS de-
sign rules [1] for 32nm LSI technology, and used the pre-
dictive transistor model [2] developed by the Nanoscale In-
tegration and Modeling Group of Arizona State University
for HSPICE. We assumed that the clock cycle time was de-
termined by the delay of the IQ in the base processor (64
entries). An IQ with a particular size is pipelined so that
the clock cycle time does not increase. If we let the delay of
the IQ at level L be D(L), and then the pipeline depth of

the IQ at level L is derived by
⌈

D(L)
D(1)

⌉
. Note that, as listed

in Table 2, the IQ pipeline depths at levels 2 and 3 are the
same (2 stages).

The pipeline depth of the ROB is not a concern with re-
gard to allocating and committing, because this does not
affect the IPC. However, the pipeline depth for reading the
register fields does affect the IPC, because it changes the
branch misprediction penalty. We obtained the delay of the
register field read using CACTI 6.5 [16], and then deter-
mined the pipeline depth.

The pipeline depth of the LSQ is simply set to be iden-
tical to that of the IQ at each level. Although this is not
entirely accurate, we consider it to be acceptable for our
experiments.

In Table 2, we also add the assumption of the penalty at
the level transition. This transition cycle penalty has little
effect on the performance according to our evaluation (only
1.3% slowdown, even if the penalty increases to 30 cycles).

5.2 Environment for Performance Evaluation
We built a simulator based on the SimpleScalar Tool Set

version 3.0a [23] to evaluate the performance. The instruc-
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Table 3: Benchmark programs and their load la-
tency.

program type
average load

category
latency (cycles)

hmmer int 15
libquantum int 247
mcf int 52
omnetpp int 42
xalancbmk int 74 memory-
GemsFDTD fp 32 intensive
lbm fp 14
leslie3d fp 72
milc fp 12
soplex fp 36
sphinx3 fp 51
astar int 7
bzip2 int 3
gcc int 6
gobmk int 3
h264ref int 3
perlbench int 4
sjeng int 2
bwaves fp 2 compute-
cactusADM fp 5 intensive
calculix fp 6
dealII fp 2
gamess fp 2
gromacs fp 5
namd fp 3
povray fp 2
tonto fp 2
zeusmp fp 6

tion set used is the Alpha ISA. We used all programs from
the SPECint2006 benchmark suite and 16 programs from
the SPECfp2006 benchmark suite (only wrf is excluded be-
cause it does not run correctly on our simulator at present).
The programs were compiled using gcc ver.4.5.3 with option
-O3. The benchmark programs and their average load la-
tency are listed in Table 3. The fourth column categorizes
the programs in terms of whether they are memory-intensive
or compute-intensive, when the threshold of the average load
latency is 10 cycles. This category is used to show the fol-
lowing evaluation results. We simulated 100M instructions
after the first 16G instructions were skipped with the ref
inputs.
In the following sections, we only show the results of se-

lected programs (eight of the memory-intensive programs
and six of the compute-intensive programs) to save space.
We also show the“GM mem”, the “GM comp”, and the “GM
all”, which are the geometric means of all memory-intensive
programs, all compute-intensive programs, and all programs
listed in Table 3, including the non-selected programs.

5.3 Performance
We evaluated the performances of the following three mod-

els:

• Fixed size model: The size of the window resources
is fixed during execution and the resources are pipelined,
as shown in Table 2. Instruction issues from the IQ and
the LSQ take multiple cycles of pipelining. Also, an
extra branch misprediction penalty is imposed for the
extra delay from the enlarged IQ and from reading the
enlarged ROB.

• Dynamic resizing model: Each of the window re-
sources has a physical maximum size (i.e., the size at

resource level 3), but is resized dynamically using our
scheme. Both the issue delay and the extra branch mis-
prediction penalty are imposed, as per the fixed model,
depending on the pipeline depth of the resources.

• Ideal model: The size of each window resource is
identical to the corresponding resource in the fixed size
model, but it is not pipelined. Thus, no extra issue
delay or branch misprediction penalty is imposed. We
also assume that there is no adverse effect on the clock
cycle time.

Figure 7 shows the evaluated IPC relative to that of the
base model. The three bars on the left of each graph show
the relative IPCs for resource levels 1 to 3 in the fixed size
model (labeled “Fix”). The bar on the right shows the rel-
ative IPC for the dynamic resizing model (labeled “Res”).
The line shows the relative IPCs of the ideal model. The first
eight graphs from (a) to (h) show the relative IPCs for the se-
lected memory-intensive programs, and the six graphs from
(j) to (o) show those for the selected compute-intensive pro-
grams. As described before, “GM mem”(i), “GM comp” (p),
and“GM all”(q) present the geometric means in all memory-
intensive programs, all compute-intensive programs, and all
programs of SPEC2006 that we evaluated, respectively, in-
cluding the non-selected programs.

The fixed size model achieves the best performance at
level 3 for the memory-intensive programs. MLP is exploited
aggressively with the large window resources and there is
a significant improvement in performance as the resource
levels increase.

Conversely, for the compute-intensive programs, the per-
formance of the fixed size model is not so sensitive to the
level, and even decreases as the level increases in several pro-
grams. The deterioration in ILP caused by pipelining of the
resources is more severe than the benefits of greater MLP
exploitation.

Although the best resource level differs in the fixed size
model, depending on the program, the dynamic resizing
model achieves a performance that is as good as the best
performance for levels 1 to 3 of the fixed size model. This
implies good adaptability in our dynamic instruction win-
dow resizing scheme. In terms of the geometric mean, the
speedup over the base is 48% (GM mem), 4% (GM comp),
and 21% (GM all) for all memory-intensive, all compute-
intensive, and all programs, respectively.

Compared with the best performance for levels 1 to 3 of
the ideal model, which has no drawbacks because of enlarge-
ment, there is no significant degradation in the performance
of the dynamic resizing model for any program, as we con-
firmed in Figure 7. In terms of the geometric mean, the
dynamic resizing model is inferior to the ideal model by
only 3% for the memory-intensive programs, the compute-
intensive programs, and for all programs. This further indi-
cates that our dynamic resizing scheme is highly adaptable.

Figure 8 shows the percentages of the cycles where the
window resources were configured to particular levels in the
dynamic resizing model. Unsurprisingly, resource level 1 is
generally selected most in the compute-intensive programs,
whereas resource level 3 is generally selected most in the
memory-intensive programs.

In contrast to such typical programs, omnetpp is excep-
tional and very interesting. This program is memory-intensive,
and its best performance is achieved at level 3 in the fixed
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(a) libquantum (b) omnetpp (c) GemsFDTD (d) lbm (e) leslie3d (f) milc

(g) soplex (h) sphinx3 (i) GM mem (j) bwaves (k) gcc (l) gobmk

(m) sjeng (n) dealII (o) tonto (p) GM comp (q) GM all

Figure 7: IPC normalized by the base.

Figure 8: Percentages of cycles where the window
resources were configured to particular levels.

size model. However, the dynamic resizing model outper-
forms this model by 5%. This is because, in this program,
the compute-intensive and memory-intensive phases are mixed
well, and the dynamic resizing works well and reacts adap-
tively to these phases, exploiting both MLP and ILP.

5.4 Energy Efficiency
This section evaluates the energy efficiency, i.e., the per-

formance per energy (which is proportional to 1/EDP (energy-
delay product)), using the McPAT [15] and assuming 32nm
LSI technology and a temperature of 350K. Figure 9 shows
the results. The vertical axis is the IPC per energy normal-
ized based on that of the base processor.
As observed in the figure, dynamic resizing performs sig-

nificantly better than the base for the memory-intensive pro-
grams. This is because although the large window resources
consume more power, the performance is significantly im-

Figure 9: Energy efficiency (1/EDP).

proved, as shown in Figure 7. In particular, the improve-
ment is dramatic in libquantum (423%).

On the other hand, the energy efficiency for dynamic resiz-
ing is mostly equivalent to that for the base in the compute-
intensive programs. This is unsurprising, because level 1 is
mostly selected in these programs, as shown in Figure 8.

The average improvements are 36%, −8%, and 8% for
the memory-intensive programs, the compute-intensive pro-
grams, and for all programs, respectively.

5.5 Cost/Performance Ratio
In this section, we evaluate the cost/performance ratio of

our scheme. The cost is estimated using the McPAT and
assuming 32nm LSI technology. Table 4 lists the estimated
additional costs along with the speedup. The rows labeled
“vs. base core,” “vs. SB core,” and “vs. SB chip” for addi-
tional costs give the ratios of the additional costs to the area
of the base core, to that of a single core, and to that of an

43



Table 4: Additional cost vs. speedup (*1: based on
the area of the base processor).

value 1.6mm2

additional vs. base core 6%
cost vs. SB core 8%

vs. SB chip 3%
achieved 21%

speedup expected by Pollack’s law∗1 3%
augmented L2 cache 1%

Figure 10: Comparison with the enlarged L2 cache
model.

entire Intel Sandy Bridge chip [26], respectively. The areas
of the base core, a single core of the Sandy Bridge, and the
entire Sandy Bridge chip are 25mm2, 19mm2, and 216mm2,
respectively. Note that the Sandy Bridge has four cores and
is fabricated using 32nm LSI technology. In the calculations
of the additional costs to the Sandy Bridge chip, we assumed
that our scheme would be used with these four cores.
As listed in the table, the additional costs compared with

our base core and the Sandy Bridge core are 6% and 8%,
respectively. The main reason why the ratio to the Sandy
Bridge core is larger is that it includes only a 256KB L2
cache, while our base core includes 2MB. Compared with
the entire Sandy Bridge chip, the additional cost is only
3%. Considering the significant speedup (21%) achieved
over the base, the proposed architecture achieves a good
cost/performance ratio that far exceeds that based on Pol-
lack’s law. This indicates that our scheme is significantly
effective in its use of the increased transistor budget. Ac-
cording to Pollack’s law, a 6% cost increase relative to the
base core should yield a speedup of only 3%.
The question then arises of whether it is better to enlarge

the L2 cache, using the same additional cost. To answer this
question, we evaluated the performance of the base processor
with an enlarged 2.5MB, 5-way L2 cache. Because the area
of the 2MB, 4-way cache (the base configuration) is 8.6mm2

(calculated by McPAT), the increased cost of a 2.5MB, 5-
way cache is approximately 1.3× greater than the additional
cost when using our scheme. The evaluation results shown
in Figure 10 confirm that the average IPC of a processor
with a 2.5MB, 5-way L2 cache increases by 0.6% over that
of the base processor. Considering that the speedup of our
dynamic resizing model increases by 21%, the area efficiency
of our dynamic resizing scheme is significantly better.

Figure 11: Breakdown of L2 cache lines brought in
terms of touched (useful) or not (normalized based
on the number of L2 cache lines brought in the base
processor).

5.6 Cache Pollution with Deep Speculation
A large window may cause deep speculation. The question

is sometimes asked whether loads on mispredicted wrong
paths bring many useless (i.e., never touched) data into the
L2 cache and, as a result, pollute the cache and waste power
with useless replacements.

Figure 11 shows whether the lines brought into the L2
cache were useful or not for each of the base and dynamic
resizing models. Each bar, which is normalized based on the
number of lines brought by the loads in the base model, is
broken into six classes with combinations of each item in the
following two groups:

• [corrpath |wrongpath | prefetch]: A line was brought by
a load on a correct path, wrong path, or prefetch, re-
spectively.

• [useful | useless]: A line was touched or NOT touched
by a load on a correct path.

First, not many lines are brought by loads on the wrong
path. This is because, in general, the average number of in-
structions between the adjacent mispredicted branches is not
very small when compared with the window size, as listed in
Table 5, especially in the memory-intensive programs. Sec-
ond, although the number of useless lines brought by loads
on wrong paths and prefetch is higher in the dynamic resiz-
ing model than in the base model in several programs, the
ratio in comparison to the total number of lines brought in
is small. Finally, the increase in the total number of lines
brought in the resizing model compared with that in the
base model is very small. In conclusion, the cache pollution
caused by speculation is limited, and the effect on the power
consumption of the useless replacements in the L2 cache is
very small.

Although we do not show the results for the L1 D-cache
for the space limit, the pollution is very small, as in the L2
cache.
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Table 5: Average number of committed instructions
between adjacent mispredcted branches.

mem-intensive # of insts comp-intensive # of insts
libquantum 3703704 gcc 5323
omnetpp 178 gobmk 71
GemsFDTD 10064 sjeng 116
lbm 32830 bwaves 169
leslie3d 1608 dealII 1294
milc 3448276 tonto 423
soplex 154
sphinx3 327

5.7 Comparison with Runahead Execution
In this section, we compare the performance of runahead

execution [18] with that of our scheme. Several performance
enhancing techniques among those proposed in [17] are intro-
duced into our runahead simulator in addition to the basic
scheme for runahead execution.
Runahead execution is a scheme that exploits MLP by

pre-execution. This scheme requires only small instruction
window resources, and thus can also exploit ILP effectively.
To the best of our knowledge, runahead execution is well
known as one of the best schemes for exploiting both ILP
and MLP in terms of performance and of accommodating ex-
isting processor architectures. In fact, it has been adopted in
commercial processors, including the Sun Rock processor [6]
and the IBM Power6 [13].
In this scheme, if an L2 cache miss occurs, normal execu-

tion is halted with the architectural state checkpointed, and
the scheme enters a special mode called runahead. In this
mode, instructions following the missed load are executed
until the triggered miss is resolved. If another L2 cache miss
occurs while in runahead mode, MLP is exploited, overlap-
ping the main memory access with that caused by the runa-
head triggered load. When the cache miss of the triggered
load is resolved, the normal mode is resumed, and execution
restarts from the checkpoint. The re-executed load hits the
cache this time.
Figure 12 compares the performance of our dynamic re-

sizing scheme with that of runahead execution. The ver-
tical axis represents the IPC normalized based on that of
the base processor. The configuration of the runahead exe-
cution processor is the same as that of the base processor,
except that it has two checkpointing register files for integer
and floating-point and a 2-port, 512-byte, 4-way runahead
cache for resolution of the memory dependences during the
runahead mode, with a configuration that is based on that
in [18]. We assume that no cycle penalty is imposed for
checkpointing and resume to the normal mode.
As shown in the figure, although runahead execution is

effective for memory-intensive programs, it is inferior to
the dynamic instruction window resizing scheme on average.
The dynamic instruction window resizing scheme achieves
8% and 1% better performance than runahead execution for
memory-intensive and compute-intensive programs on av-
erage, respectively. This speedup arises from the difference
that runahead execution cannot perform computations while
MLP exploitation in the runahead mode, whereas the large
window scheme does not have this problem. This is not the
case for extremely memory-intensive programs like libquan-
tum, because the computation is almost stalled, but it is true
for most memory-intensive programs. Runahead execution

Figure 12: Performance comparison of the dynamic
resource resizing scheme with runahead execution.

exploits MLP at the expense of abandoning computation
because of the small window. In contrast, the large win-
dow scheme does not have to abandon computation. The
large window accepts the fetched instructions even when
a load causes an L2 miss, and issues other L2 miss loads
while simultaneously executing computational instructions.
In other words, the large window can exploit MLP without
abandoning the computation.

Note that the IPC for runahead execution is lower than
that of the base in milc. This is caused by useless runahead
occurring, where a few L2 misses occur while in the runahead
mode. This is equivalent to stalling execution without MLP
exploitation. In general, this situation sometimes occurs in
programs where the L2 misses do not occur so frequently
and are not clustered. This situation is also disadvanta-
geous to our dynamic instruction resizing scheme, but the
performance loss is not so high (ILP is lost) when compared
to the significant loss in runahead execution, because the
runahead period is very long (main memory latency of 300
cycles according to our evaluation). We introduced a mecha-
nism in our runahead simulator to eliminate this undesirable
behavior, which uses the runahead cause status table [18] to
predict the usefulness of the transition to the runahead mode
based on the past usefulness of runahead for each L2 missed
load, and suppresses the transition to the runahead mode
if it is predicted to be useless. However, the prediction is
difficult, and useless runahead cannot always be eliminated
very well, depending on the programs. While the perfor-
mance of runahead execution is sensitive to the degree of
L2 miss frequency and clustering, our dynamic instruction
window resizing scheme is rather more tolerant.

6. RELATED WORK
In this section, we first discuss the approach to MLP ex-

ploitation using a large instruction window. We then review
schemes for resource resizing, and finally consider the MLP
exploitation techniques.

6.1 Large Instruction Window
To the best of our knowledge, Cristal et al. were the first

to suggest that the ability to support many in-flight instruc-
tions is very effective in overcoming the memory wall [8].
Unfortunately, they thought (as did many others) that a
simple implementation, based on enlarging the window re-
sources, was impractical because of the delay, area, and
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power overheads. However, the delay issue can be solved by
pipelining, and the pipeline delay has little effect on MLP ex-
ploitation in memory-intensive programs. Although pipelin-
ing causes ILP loss in compute-intensive programs, this can
be solved by adaptive resizing of the window resources us-
ing our scheme. Also, because of the rapidly rising transistor
budget and high levels of integration on processor chips, the
area overhead has now become acceptable; the overhead is
only 3% of the entire processor chip area, as shown in Sec-
tion 5.5. Also, the energy efficiency is not a problem; the
efficiency is 8% better than that of a conventional processor,
as described in Section 5.4.

6.2 Resizing Resources
Albonesi et al. presented a comprehensive survey of stud-

ies on resource resizing to improve power efficiency [3]. How-
ever, our policy for resource resizing is completely different
to that proposed in any previous studies in the literature.
Most policies focus on the demand for resources. On the
other hand, our LLC-miss-driven policy is MLP-aware. In
other words, it focuses on which form of parallelism, i.e.
MLP or ILP, is most effective in improving the performance.
Ponomarev et al. proposed a resizing scheme that focused

on the occupation of the IQ [22]. This scheme shrinks the
IQ if the average number of entries occupied by instructions
in a certain period is smaller than a predetermined value.
Conversely, it enlarges the IQ if the stall cycles caused by
a full IQ exceed a predetermined threshold. This scheme
is potentially suitable for exploiting MLP by enlarging the
IQ, but it lacks a perspective on MLP. In other words, the
scheme views the overflow of the IQ simply as an indication
that IQ enlargement is beneficial. In fact, because it is gen-
erally beneficial for the insertion rate into the IQ to be set
to be greater than the average issue rate, the IQ eventually
become full, even when no LLC miss occurs. As a result,
the scheme enlarges the IQ even in situations where MLP is
not exploitable, thus wasting power.
Folegnani et al. proposed a resizing scheme for the IQ that

deactivates those parts that contribute little to the perfor-
mance [9]. This scheme periodically counts the number of
committed instructions in the last section of a predetermined
size. If the number is less than a predetermined threshold,
the section is deactivated. However, this scheme enlarges
the IQ periodically to check whether enlargement is bene-
ficial. Although this scheme has the advantage of directly
monitoring the contribution of a particular section to the
overall performance, it has no systematic policy for IQ en-
largement. Thus, it is difficult for the scheme to adapt to
rapid changes in the amount of exploitable MLP and enlarge
the IQ in a timely manner.
Petoumenos et al. proposed an IQ resizing scheme that

takes into account MLP [20]. Their scheme basically uses an
ILP-aware resizing scheme like that proposed in [9], but its
resizing decision is overridden by their proposed MLP-aware
scheme. Their MLP-aware scheme first measures MLP-
distance, which is the number of dispatched instructions be-
tween LLC missed instructions, and associates this number
with the instruction trace in the instruction window. If the
trace is fetched again, the scheme obtains the associated
MLP-distance, and resizes the IQ to be large so that in-
structions that are distant with the MLP-distance can be
held simultaneously in the IQ. A difference in comparison
with our study is that their scheme is history-based, but our

scheme takes advantage of the characteristic of LLC miss
occurrences and is consequently simpler and cheaper. The
other difference is that our study spans a very large pipelined
instruction window. In other words, we discussed the trade-
off involved in enlarging and pipelining the instruction win-
dow. However, their study is limited within the conventional
single-cycle instruction window.

6.3 Exploiting MLP
Lebeck et al. proposed a scheme that efficiently uses

the IQ by moving a load causing an LLC miss and the in-
structions that depend directly or indirectly on it to a spe-
cial buffer, called the WIB (waiting instruction buffer) [14].
MLP can be exploited in a small IQ. However, because the
IQ is small, sophisticated compaction logic is required for
the IQ to use the existing sparse vacant entries effectively in
a queue. This compaction logic is extremely complex. Note
that the enlarged IQ either does not require compaction logic
or only requires simple compaction logic. Also, instructions
must move between the IQ and the WIB, adding pressure
to the issue and the dispatch bandwidth.

Srinivasan et al. extended the WIB for the register files
so that they also remain small [24]. In their organization,
called the continual flow pipeline, instructions release the
mapped physical registers when they leave the IQ for the
WIB. The drawback of this organization, besides that stated
with regard to the WIB, is that a large number of physical
registers (#logical registers × #checkpoints) must be re-
served to avoid deadlock when reinserting instructions into
the IQ from the WIB and re-renaming. For example, if
#checkpoints = 8 (i.e., the expected number of instructions
between the mispredicted branches for 512-instruction win-
dow is 64), then the number of reserved registers is 512.
Although reducing the number of checkpoints also reduces
the numbers of reserved physical registers, it also prevents
deep speculation.

Brekelbaum et al. proposed a hierarchical IQ with a large
pipelined queue and a small non-pipelined queue [5]. In-
structions that become ready to be issued in the large queue
are issued with a pipeline delay, while older instructions
that are not ready but that are expected to be critical to
program execution are moved to the small queue and is-
sued later without any extra delay. The issue of the young
non-critical instructions contributes to MLP exploitation,
while that of the old critical instructions contributes to ILP.
The first drawback of this scheme is that the logic required
to move the unready old instructions to the small queue is
complex. A second drawback is that the large queue does
not contribute to the performance of compute-intensive pro-
grams, and also wastes power.

Mutlu et al. proposed a scheme called runahead execu-
tion [18]. Because this has been discussed in Section 5.7,
the explanation is not repeated here. However, we would
like to emphasize that runahead execution is only a partial
alternative to the large instruction windows; it can strictly
exclusively exploit ILP or MLP because of the small instruc-
tion window.

7. CONCLUSION
In this paper, we proposed a dynamic instruction win-

dow resizing scheme that exploits ILP and MLP adaptively
during execution, based on prediction of the available paral-
lelism based on the occurrence of LLC misses. Our scheme is
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very simple and accommodates existing processor architec-
tures, and is thus very practical. The results of our evalua-
tions show that our scheme is highly adaptive, and achieves
performance that is as good or better than the best per-
formance achieved in a processor with fixed size resources.
According to the results, our scheme achieves 21% better
performance, with an extra area cost of only 6% of a pro-
cessor core, or only 3% of the entire processor chip area,
compared to that of a conventional processor, thus achiev-
ing a significantly better cost/performance ratio to far ex-
ceed that based on Pollack’s law. Our scheme also achieves
better energy efficiency (1/EDP).
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Figure 13: Critical path of issue queue.

APPENDIX
A. PIPELINING ISSUE QUEUE
This section describes how the issue queue is pipelined.
In this study, we assume an IQ with a CAM organiza-

tion [19]. The IQ comprises the wakeup logic, selection logic,
tag RAM, and payload RAM. The wakeup logic is a one-
dimensional array, where each entry holds the tags of two
source operands and ready flags that indicate a data depen-
dence state (resolved or not) for a corresponding instruction.
If both data dependences are resolved, an issue request is
sent to the selection logic. The selection logic grants certain
requests after considering resource constraints. The grant
signals are sent to the payload RAM, which outputs infor-
mation regarding the issued instructions. The signals are
also sent to the tag RAM and the destination tags are read.
These tags are broadcast to the wakeup logic to update the
ready flags.

A.1 Circuit of Issue Queue
We explain the circuit of the wakeup logic, selection logic,

and tag RAM shortly. See [25] for the details.
Each entry of the wakeup logic is composed of 1) SRAM

cells that hold source operand tags, 2) comparators of the
issue width that compare each source operand tag with a
destination operand tag broadcast, 3) OR gates that OR
the output of the comparators, 4) SR flip-flops (FFs) for
ready bits that hold the output of the OR gate, and 5) an
AND gate that ANDs two ready bits and outputs the issue
request to the selection logic.
The selection logic we assume is implemented by prefix-

sum logic, which calculates the cumulative sum of issue
requests [10]. If the (i − 1)-th output is less than the is-
sue width and the i-th issue request is true, the request is
granted. The adder used in the prefix-sum logic is not nor-
mal, but is specialized for the selection logic to reduce the
delay. The selection logic outputs grant signals of the issue
width to the tag RAM.
The tag RAM consists of SRAM without the address de-

coder. It has multiple ports of the issue width, with grant
lines of the issue width per entry from the selection logic
directly connected to the wordlines.

A.2 Pipelining
The critical path of the IQ starts at the wakeup logic and

proceeds via the selection logic to the tag RAM before re-
turning to the wakeup logic. As shown in Figure 13, the
critical path traverses the following path: 1) it starts from
the FF denoted as R, which holds the ready bit in the last
entry; 2) an issue request signal is sent to the selection logic;
3) an issue grant signal is sent to the tag RAM via the se-
lection logic (mark (1)); 4) a destination tag is read through
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Figure 15: Circuit of D2.

the bitline of the tag RAM (mark (2)); 5) it is driven from
the first to the last entry of the wakeup logic (mark (3)); 6)
tag comparison is carried out in the last entry (mark (4));
and 7) the signal reaches the FF with the ready bit.

Figure 14 shows where pipeline registers (D1 and D2 ) are
inserted for the IQ with 256 entries, the size at the level
3, where the IQ is pipelined with two stages. As shown in
the figure, the pipeline registers are inserted at the end of
the grant signals (immediately before the signals are input
to the tag RAM). Here, the FF denoted as D1 used in the
level 2 or 3 region is a normal D-FF, but the FF denoted as
D2 used in the level 1 region is a D-FF with a multiplexer,
of which organization is explained later. According to our
HSPICE circuit simulation, assuming MOSIS design rules
for 32nm LSI technology, and used the predictive transistor
model [2], the delays of the two paths, R to D1 and D1 to
R, which collectively constitute the critical path in the non-
pipelined IQ, are 0.78 and 0.96 times the clock cycle time,
respectively. Note that the clock cycle time is assumed to
be determined by the delay of the IQ with 64 entries, the
size at level 1.

As previously described, the D2 is a D-FF with a multi-
plexer. This organization is required because the D2 must
work as a D-FF when the instruction window resource level
is 2 or 3 (i.e., the pipeline depth is two), but it must work
as merely a wire logically when the level is 1 to operate in
a single cycle. To be able to configure the circuit between
these two modes, the D2 is organized as shown in Figure 15.
If the control signal bypass is 0, the D2 works as a D-FF; if
it is 1, the input signal skips the D-FF and just goes to the
output.
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