
Large Pages and Lightweight Memory Management in
Virtualized Environments: Can You Have it Both Ways?

Binh Pham§ Ján Veselý§ Gabriel H. Loh† Abhishek Bhattacharjee§

§ Department of Computer Science † AMD Research
Rutgers University Advanced Micro Devices, Inc.

{binhpham, jan.vesely, abhib}@cs.rutgers.edu gabriel.loh@amd.com

ABSTRACT
Large pages have long been used to mitigate address
translation overheads on big-memory systems, particu-
larly in virtualized environments where TLB miss over-
heads are severe. We show, however, that far from being
a panacea, large pages are used sparingly by modern vir-
tualization software. This is because large pages often
preclude lightweight memory management, which can
outweigh their Translation Lookaside Buffer (TLB) ben-
efits. For example, they reduce opportunities to dedu-
plicate memory among virtual machines in overcommit-
ted systems, interfere with lightweight memory moni-
toring, and hamper the agility of virtual machine (VM)
migrations. While many of these problems are particu-
larly severe in overcommitted systems with scarce mem-
ory resources, they can (and often do) exist generally in
cloud deployments. In response, virtualization software
often (though it doesn’t have to) splinters guest operat-
ing system (OS) large pages into small system physical
pages, sacrificing address translation performance for
overall system-level benefits. We introduce simple hard-
ware that bridges this fundamental conflict, using spec-
ulative techniques to group contiguous, aligned small
page translations such that they approach the address
translation performance of large pages. Our General-
ized Large-page Utilization Enhancements (GLUE) al-
low system hypervisors to splinter large pages for agile
memory management, while retaining almost all of the
TLB performance of unsplintered large pages.

Categories and Subject Descriptors
C.1.0 [Processor Architectures]: General

Keywords
Virtual Memory, Virtualization, TLB, Speculation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO 2015 Waikiki, Hawaii USA
Copyright 2015 ACM 978-1-4503-4034-2/15/12 ...$15.00.
DOI: http://dx.doi.org/10.1145/2830772.2830773

1. INTRODUCTION
With cloud computing, virtualization technologies (e.g.,

KVM, Xen, ESX, Docker, HyperV and others) are ag-
gressively employed by companies like Amazon or Rack-
space to consolidate diverse workloads (encapsulated in
virtual machines or VMs) to ensure high utilization of
physical systems while achieving good performance.

The judicious use of large pages [26,38,39] is particu-
larly critical to the performance of cloud environments.
Large pages can boost address translation performance
in hypervisor-based virtualization and containers [11].
Specifically, in hypervisor-based virtualization, the hy-
pervisor and guests maintain separate page tables, and
therefore require high-latency two-dimensional page ta-
ble walks on Translation Lookaside Buffer (TLB) misses.
Past work has shown that this is often the primary con-
tributor to the performance difference between virtual-
ized and bare-metal performance [15, 18]. Large pages
(e.g., 2MB pages instead of baseline 4KB pages in x86-
64) counter these overheads by dramatically reducing
the number of page table entries (PTEs), increasing
TLB hit rates and reducing miss latencies. Even con-
tainers (which do not require two-dimensional page ta-
ble walks) are dependent on large pages to improve TLB
reach, which is otherwise inadequate to address the hun-
dreds of GB to several TB of memory present on the
systems containers are often deployed in [18].

Unfortunately however, the coarser granularity of large
pages can curtail lightweight and agile system memory
management. For example, large pages can reduce con-
solidation in real-world cloud deployments where mem-
ory resources are over-committed by precluding oppor-
tunities for page sharing [20,42]. They can also interfere
with a hypervisor’s ability to perform lightweight guest
memory usage monitoring, its ability to effectively al-
locate and place data in non-uniform memory access
systems [19, 44], and can hamper operations like agile
VM migration [41]. As a result, virtualization software
often (though it doesn’t have) chooses to splinter or
break large pages into smaller baseline pages. While
these decisions may be appropriate for overall perfor-
mance as they improve consolidation ratios and mem-
ory management, they do present a lost opportunity in
terms of reducing address translation overheads.

This paper proposes hardware that bridges this fun-
damental conflict to reclaim the address translation per-
formance opportunity lost by large page splintering.

1

Specifically, we observe that the act of splintering a
large page is usually performed to achieve finer-grained
memory management rather than to fundamentally al-
ter virtual or physical address spaces. Therefore, the
vast majority of constituent small pages retain the orig-
inal contiguity and alignment in both virtual and phys-
ical address spaces that allowed them to be merged
into large pages in the first place. In response, we
propose Generalized Large-page Utilization En-
hancements (GLUE) to identify splintered large page-
sized memory regions. GLUE augments standard TLBs
to store information that identifies these contiguous,
aligned, but splintered regions. GLUE then uses TLB
speculation to identify the constituent translations. Small
system physical pages are speculated by interpolating
around the information stored about a single specula-
tive large-page translation in the TLB. Speculations are
verified by page table walks, now removed from the pro-
cessor’s critical path of execution, effectively convert-
ing the performance of correct speculations into TLB
hits. GLUE accurate, software-transparent, readily-
implementable, and allows large pages to be compatible,
rather than at odds, with lightweight memory manage-
ment. Specifically, our contributions are:

• We characterize the prevalence of page splintering
in virtualized environments. We find that large
pages are conflicted with lightweight memory man-
agement across a range of hypervisors (e.g., ESX,
KVM) across architectures (e.g., ARM, x86-64)
and container-based technologies.

• We propose interpolation-based TLB speculation
to leverage splintered but well-aligned system phys-
ical page allocation to improve performance by an
average of 14% across our workloads. This repre-
sents almost all the address translation overheads
in the virtualized systems we study.

• We investigate design trade-offs and splintering char-
acteristics to explain the benefits of GLUE. We
show the robustness of GLUE, which improves per-
formance in every single workload considered.

2. BACKGROUND
Virtualization and TLB overheads: In hypervisor-
based virtualized systems with two-dimensional page
table support, guests maintain page tables mapping guest
virtual pages (GVPs) to guest physical pages (GPPs),
which are then converted by the hypervisor to system
physical pages (SPPs) via a nested or extended page ta-
ble [11]. TLBs cache frequently used GVP to SPP map-
pings; on TLB misses, the hardware page table walker
performs a two-dimensional traversal of the page tables
to identify the SPP. In x86-64 systems, because both
guest and hypervisor use four-level radix-tree page ta-
bles, accessing each level of the guest’s page table re-
quires a corresponding traversal of the nested page ta-
ble. Therefore, while native page table walks require
four memory references, two-dimensional page table walks
require twenty-four [11], significantly degrading system
performance. Beyond hypervisors, container-based tech-
nologies also suffer from address translation overheads

 0.0

 0.1

 0.2

 0.3

 0.4

Gem
sF

DTD

sw
 te

sti
ng

g
an

aly
tic

s

gr
ap

h5
00

om
ne

tp
p

m
um

m
er

ca
nn

ea
l

xa
lan

cb
m

k

d
ca

ch
ing tig

r
as

ta
r
gu

ps

ca
ctu

sA
DM

m
cf

av
er

ag
e

F
ra

ct
io

n
of

 r
un

tim
e

Figure 1: Percent of execution time for address transla-
tion, for applications on a Linux VM on VMware’s ESX
server, running on an x86-64 architecture. Overheads
are 18% on average despite the fact that the OS uses
both 4KB and 2MB pages.

(even though they use standard one-dimensional page
table walks), primarily because TLB reach is unable to
match main memory capacities.

Our work focuses on hypervisor-based virtualization
as it presents the greater challenge on address transla-
tion. However, we have also characterized page splin-
tering on containers and present these results.

Large pages and address translation: To counter
increased TLB overheads in virtual servers, virtualiza-
tion vendors encourage using large pages aggressively [15].
OSes construct large pages by allocating a sufficient
number of baseline contiguous virtual page frames to
contiguous physical page frames, aligned at boundaries
determined by the size of the large page [4]. For ex-
ample, x86-64 2MB large pages require 512 contiguous
4KB baseline pages, aligned at 2MB boundaries. Large
pages replace multiple baseline TLB entries with a sin-
gle large page entry (increasing capacity), and reduce
the number of levels in the page table (reducing miss
penalty).

In hypervisor-based virtualization, these benefits are
magnified as they are applied to two page tables. While
a large page reduces the number of page table walk
memory references from four to three in native cases,
the reduction is from twenty-four to fifteen for virtual
machines. However, because TLBs cache guest virtual
to system physical translations directly, a “true” large
page is one that is large in both the guest and the hy-
pervisor page table.

3. MOTIVATION AND OUR APPROACH
Real-system virtualization overheads: We begin
by profiling address translation overheads on hypervisor-
based virtualization technologies. Figure 1 quantifies
address translation overheads (normalized to total run-
time) when running a Ubuntu 12.04 server (3.8 kernel)
as the guest operating system and VMware’s ESX 5.5
as the hypervisor on an Intel Sandybridge architecture.
Although omitted here for space reasons, we have also
assessed these overheads running KVM on an x86-64
system, KVM on an ARM CortexTMA15 system, and
we observed the same trends. We use SPECcpu R©, PAR-
SEC [14], and CloudSuite [17] workloads and all mea-
surements use on-chip performance counters.

The data show that two-dimensional page table walks
degrade performance, consuming almost 20% of run-
time on average. Overheads vary, with graph analyt-

ics from CloudSuite and graph500 suffering 10% over-

2

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

ESX/x8
6

KVM
/x8

6

KVM
/A

RMF
ra

ct
io

n
of

 T
LB

 m
is

se
s

(a)

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

Gem
sF

DTD

sw
 te

sti
ng

g
an

aly
tic

s

gr
ap

h5
00

om
ne

tp
p

m
um

m
er

ca
nn

ea
l

xa
lan

cb
m

k

d
ca

ch
ingtig

r
as

ta
r
gu

ps

ca
ctu

sA
DM

m
cf

av
er

ag
e

(b)

GSmall-HSmall
GSmall-HLarge

GLarge-HSmall
GLarge-HLarge

Figure 2: Fraction of TLB misses serviced from SPPs
backed by a small page in guest and hypervisor (GSmall-
HSmall), small in guest and large in hypervisor (GSmall-
HLarge), large in guest and small in hypervisor (GLarge-
HSmall), and large in both (GLarge-HLarge).

heads while mcf and cactusADM suffer well over 30%
overheads. Our results corroborate past work [15] that
identified TLB overheads as a significant performance
bottleneck in virtualized servers.

The prevalence of page splintering: Figure 2(a)
quantifies the prevalence of splintering across different
hypervisors and architectures, showing the generality of
this problem. We profile splintering for ESX and KVM
on x86-64 architectures, and KVM on ARM architec-
tures. In all cases, we run four VMs, each with the
workload shown. For each configuration’s TLB misses,
we plot the fraction eventually serviced from splintered
large pages (large pages in the guest and small pages in
the host), small pages in both dimensions, large pages
in both dimensions, and small pages in the guest and
large pages in the host (which is typically rare). Our
results show that guest VMs construct and use large
pages aggressively (on average, almost all TLB misses
are to regions with large guest pages). However, the
vast majority of these references are to guest large pages
that are splintered (GLarge-HSmall), regardless of the
specific hypervisor or architecture used.

Figure 2(b) sheds light on the per-benchmark char-
acteristics of page splintering. We find that guest OSes,
when running workloads like graph analytics, can-
neal, and mcf, are able to more aggressively use large
pages (usually because they allocate large data struc-
tures at once) but the hypervisor still chooses to splin-
ter many pages for overall lightweight memory manage-
ment. Going beyond hypervisor-based virtualization,
we have also profiled page splintering in containers, us-
ing Linux containers with kernel same-page merging
(KSM) [5] extensions to encourage high consolidation
ratios. Similar to several real-world deployments [23]
and we see that containers also suffer from large page
splintering. This occurs because KSM shares pages
among containers to consolidate as many workloads as
possible with over 85% of TLB misses to splintered re-
gions. The tension between large page address transla-
tion benefits and fine-grained memory management is
regrettable because modern OSes work hard to create
large pages.

Our high-level approach with GLUE: We illus-
trate GLUE’s operation using hypervisor-based virtu-
alization though it is also applicable to containers. We
observe that page splintering usually splits large page

Figure 3: Guest large page GVP4-7 is splintered, but
SPPs are conducive to interpolation. A speculative TLB
maps the page table in two entries (using a speculative
entry for GVP4-7) instead of four entries (like a conven-
tional TLB).

sized regions into smaller pages for finer-grained man-
agement and monitoring, without relocating most small
pages. Therefore, the contiguous memory alignment re-
quired to generate large pages likely remains; GVPs and
SPPs are aligned within 2MB memory regions corre-
sponding to the alignment they would have had in an
unsplintered page. GLUE exploits these cases where
GVPs and SPPs share their 9 least significant bits (for
4KB baseline pages and 2MB large pages). We have
profiled page tables in many real-world deployments and
in every case, we have found that over 82% (average of
97%) of the 4KB pages have GVPs and SPPs sharing
their bottom 9 bits. These numbers foreshadow the po-
tential for careful interpolation-based TLB speculation.

Figure 3 shows GLUE’s operation. For illustrative
purposes we assume that four contiguous PTEs make
a large page, hence the guest page table can combine
PTEs for GVP 0-3 into a single large page (the same
for PTEs for GVP 4-7). The hypervisor does indeed
back GVP 0-3 with its own large page (corresponding
to the PTEs for GPP 0-3). Unfortunately, it splinters
the guest large page for GVP 4-7 because GPP 6 (and
SPP 6) are unallocated. A conventional TLB requires
one large page entry and three baseline entries to fully
cover this splintered large page. GLUE, on the other
hand, observes that the SPPs corresponding to GVP 4-7
are still aligned in the way they would be had they actu-
ally been allocated a large page. Consequently, GLUE
requires just two TLB entries to cover the page table,
with one entry devoted to a speculative 2MB region
(italicized and in bold). On requests to GVP 4-7, this
entry can be used to interpolate the desired SPP; thus,
speculative TLBs achieve higher capacity.

Overall, GLUE achieves performance benefits by lever-
aging one-dimensional large pages in the guest to ap-
proach the benefits of true, unsplintered, two-dimensional
large pages. Speculation removes two-dimensional page
table walks from a program’s critical path, boosting per-
formance. All enhancements are hardware-only so that
any software and hypervisor may exploit them trans-
parently, making it robust across the range of real-world
splintering scenarios.

GLUE’s relationship with prior work: GLUE’s
mechanisms are partly inspired by SpecTLB [9], which
speculatively interpolates physical pages for operating
systems using reservation-based large pages. Our work
differs in a few key ways. First, the SpecTLB work

3

discusses the possibility of using TLB speculation to
improve TLB miss latencies when guests and hosts use
large pages, and to let hypervisors use very large (e.g.,
1GB) pages while allowing guests to trap to special re-
gions of memory for I/O. We are the first, however, to
identify page splintering as a serious problem – and the
first to propose and implement interpolation-based TLB
speculation hardware mitigate page splintering. Sec-
ond, we do not require separate, dedicated hardware
structures for TLB speculation, unlike SpecTLB (al-
though we propose some small modifications to existing
structures). GLUE distinguishes baseline PTE entries,
regular large page PTE entries, and speculative large
page PTE entries. Third, we go beyond SpecTLB to
propose enhancements to basic TLB speculation that
mitigate performance degradation from incorrect spec-
ulation (e.g., pipeline flush and refetch) via intelligent
PTE prefetching, which reduce the need to perform
page table walks to verify a subset of the speculations.
In addition, GLUE is also related to recent work on gap-
tolerant sequential mappings (GTSM) which promotes
superpages in non-contiguous memory [16]. Though
there are some similarities with our work, GTSM is
applicable to each dimension separately, unlike GLUE.
Furthermore, GTSM requires complex software changes
for new page table structures; whereas GLUE supports
existing software. Further, GTSM’s new page table for-
mat is unsuitable for one of the most important sources
of page splintering – page sharing: Shared pages can be
located anywhere in system memory, but GTSM only
handles holes within 4MB memory regions.

4. SOURCES OF PAGE SPLINTERING
Despite their ability to lower address translation over-

heads, large pages impede other lightweight memory
management operations. We discuss some of these rea-
sons below and their influence on page splintering.

Page sharing: Memory deduplication or page sharing,
an important source of page splintering, is implemented
in commercial hypervisors (e.g., ESX, Xen, KVM) and
is used with containers (LXC, Docker) to consolidate as
many virtual machines as possible on the same physi-
cal resources [7, 20,43]. Memory deduplication requires
software to scan physical memory to identify memory
pages with the same content and eliminate redundant
copies. While effective at increasing consolidation ra-
tios, our experiments and past work has found that page
sharing leads to aggressive page splintering for two rea-
sons [20]. First, baseline pages are much more likely to
have equivalent content than large pages. We ran ex-
periments to compare deduplication opportunities when
considering baseline 4KB versus large 2MB pages. We
found that using small 4KB pages allowed us to dedu-
plicate 4-10× more physical memory than when using
large pages, corroborating past results [20]. Second, the
overheads of performing a word-by-word comparison for
a 2MB page is much higher than that for a smaller, 4KB
page [7]. Hence, when consolidation is targeted, large
pages are rapidly splintered.

Hypervisors like ESX and KVM use page sharing ag-
gressively both between and within VMs. This is partic-

ularly useful in real-world cloud deployments like Ama-
zon’s EC2, Oracle Cloud, and IBM Softlayer, which
provide technical support for a limited number of OSes
(e.g., Linux, Windows, and Solaris) commonly running
VMs from one “template” [34]. In these environments,
the workloads have great scope for memory deduplica-
tion. In fact, recent industry research has noted this
trend and is advocating proactive and aggressive splin-
tering of large pages in anticipation of the need for page
sharing [20]. While effective at boosting consolidation,
address translation performance is sacrificed.

Non-uniform memory: Past work has shown that
large pages may fail to deliver benefits, and can actu-
ally degrade performance, on today’s multi-socket, non-
uniform memory access systems (NUMA) [19]. Because
NUMA memory is spread across several physical nodes,
large pages may contribute to imbalance in the distri-
bution of memory controller requests, reduce locality
of accesses, and increase memory latencies. The OS
may therefore splinter large pages, with 4KB chunks
migrated among the memory nodes to increase local-
ity [19]. This problem will become even more preva-
lent with the impending adoption of even more com-
plex, non-uniform heterogeneous memory architectures
that balance the access latency, bandwidth, and power
needs of heterogeneous processing elements consisting of
CPUs, GPUs, and other accelerators [29]. Recent ad-
vances in technologies like phase-change, ferroelectric,
magnetic, and memristor based RAM, allied with die
stacking [6, 25, 44] suggest that intelligent page place-
ment and movement among multiple memories will de-
termine system performance and energy; page splinter-
ing will likely increase in these scenarios considerably.

Working set sampling: Hypervisors typically require
some mechanisms to estimate the working set sizes of
guest OSs. For example, VMware’s ESX uses a sta-
tistical sampling approach to estimate virtual machine
working set size without guest involvement [41]. For
each sampling period, the hypervisor intentionally in-
validates several randomly selected guest physical pages
and monitors guest accesses to them. After a sampling
period (usually a few minutes), the fraction of invali-
dated pages re-accessed by the guest is checked. This
fraction is used to infer a VM’s working set size. If a
randomly chosen 4KB region falls within a large 2MB
page, the hypervisor splinters the large page.

Initially, one may consider “repairing”working set es-
timation in software. This, however, is difficult; for ex-
ample, one might use dirty and access bits in both guest
and hypervisor page tables to detect page accesses in-
stead of invalidating whole translations. Unfortunately,
these bits are not supported by, for example, ARM and
any Intel chips older than Haswell. In particular, ar-
chitectures like ARM that implement relaxed memory
consistency models struggle to accommodate page table
access and dirty bits, which require sequentially consis-
tent reads and writes for correct operation [32]. In ad-
dition, our conversations with hypervisor vendors like
VMware suggest that they quite hesitant to implement
software modules that can only be used on specific ar-
chitectures supporting these bits.

4

Live VM migration: This refers to the process of
moving a running virtual machine between different phys-
ical machines without disconnecting the client or appli-
cation. Hypervisors typically splinter all large pages
into baseline pages in preparation for live migration
to identify pages being written to at 4KB granular-
ity. Once memory state has been shifted to the desti-
nation, the splintered pages are typically reconstituted
into large pages. However, practically, splintering may
remain at the destination node, especially if unfrag-
mented free physical memory space to accommodate
large pages is scarce there.

Limited support for large pages: Large pages re-
quire hardware and software support. In practice, many
systems lack this support in some way. For example, hy-
pervisors may splinter large pages because of limited-
capacity, large-page TLBs. Specifically, if an applica-
tion’s working set is scattered over a wide address space
range, large page TLB thrashing can occur [10,39]. Sys-
tem administrators may therefore disable the hypervi-
sor’s ability to back guest large pages [39].

In general, while large pages mitigate address trans-
lation overheads, they preclude many memory manage-
ment techniques for large-scale software systems. Fun-
damental to this tradeoff is the fact that a large page es-
sentially provides a coarse granularity of memory man-
agement and monitoring; while it reduces metadata in
the form of the number of translation entries needed, it
also greatly reduces the effectiveness of operations like
page sharing and memory monitoring.

5. GLUE MICROARCHITECTURE
This section details GLUE hardware. We describe

our TLB organization,1 and how speculation can be
overlaid on it. We then discuss hardware tradeoffs.

5.1 TLB Organization
We assume a processor organization that includes

per-core two-level TLB hierarchies, as is typical in mod-
ern processors [10, 12, 13]. On a memory reference, two
L1 TLBs are looked up in parallel, one devoted to 4KB
PTEs and another to 2MB PTEs. L1 misses2 prompt
a lookup in the L2 TLB. GLUE detects guest large
pages splintered by the hypervisor. Ordinarily, each
such page’s 512 4KB PTEs are placed in the 4KB L1
and L2 TLBs. GLUE, however, creates a speculative
2MB entry for the large page in one dimension, with
two approaches:

L1-only speculation: Here, speculative 2MB entries
are placed only in the 2MB L1 TLB, permitting specu-
lation only at the first-level of the TLB hierarchy. This
is a minimally-intrusive design as the 4KB L1 and L2
TLBs are left untouched.

L1-L2 speculation: Though L1-only speculation is
effective, it can place a heavy burden on the 2MB L1

1
Our proposal does not depend on this specific TLB organization, but

we describe it to provide a concrete example to explain our technique.
2
As this paper is about TLBs, for brevity we use the term “L1” to

refer to the L1 TLB, and not the IL1 or DL1 cache (and similarly for
“L2”).

Figure 4: Lookup operation on a speculated TLB entry.
A tag match is performed on the bits corresponding to its
2MB frame. On a hit, the 2MB frame in system physical
memory is concatenated with the 4KB offset within it.

TLB, which must now cache PTEs for not only two-
dimensional, unsplintered large pages, but also for spec-
ulative one-dimensional large pages (which, our exper-
iments reveal, there are many of). Therefore, we also
study the benefits of placing speculative 2MB entries in
both the 2MB L1 TLB and the L2 TLB.

In order to cache speculative 2MB entries, the L2
TLB must support multiple page sizes concurrently, but
this is not a problem as modern processors already have
this [21]. In general, there are many ways to accom-
modate concurrent page sizes in TLBs, such as skew-
associativity [27,33,35–37] and hash-rehashing (column-
associativity) [2]. We have evaluated GLUE on L2 TLBs
with both schemes; because the performance numbers
are largely unchanged, we present results from skew-
associative L2 TLBs in this paper. We do note, how-
ever, that GLUE merely leverages already existing tech-
niques to support multiple page sizes concurrently in
the TLB, and is not particularly reliant on skewing or
hash-rehash.

5.2 Speculative TLB Entries
Figure 4 shows a speculated 2MB entry in the L1

2MB TLB. Its structure is identical to a standard 2MB
entry, with only a Spec bit added to distinguish spec-
ulated 2MB entries from standard 2MB entries (neces-
sary to ensure that the L2 TLB and page table walker
are probed to verify speculation correctness). This bit
represents a minor overhead over the ∼60 bits used per
2MB TLB entry. L2 TLB entries are also minimally
changed to support speculation. Once again, a Spec bit
is required to identify speculated 2MB entries.

5.3 TLB Operations
Lookups: Figure 4 shows how GLUE performs a spec-
ulative lookup for 2MB entries. The guest virtual ad-
dress is split into a page number and a page offset (not
shown). The GVP is further split into a field for 2MB
frames (bits 35:9) and the 4KB offset within the 2MB
frames (bits 8:0). A lookup compares the 2MB frame
bits with the TLB entry’s tag bits. A speculative hit
occurs when there is a match and the Spec bit is set.
The matching TLB entry maintains the system physical
page of the 2MB speculated frame (Data SPP(35:9) in
the diagram). This value is interpolated by concatenat-
ing the TLB entry data field with the GVP’s within-
2MB frame offset (GVP(8:0)). The full system physical

5

address is calculated, as usual, by concatenating the
guest virtual page offset bits (bits 11:0) with the spec-
ulative SPP. This value is then returned to the CPU,
which can continue execution while the speculated value
is verified. Speculative lookups therefore require mini-
mal additional logic, with only the Spec bit check and
concatenation operation to generate the SPP.

Fills: GLUE fills speculated 2MB entries into the L1
and L2 TLBs after a page table walk. Suppose a GVP
request misses in both L1 and L2 TLBs. The hardware
page table walker then traverses both guest and hyper-
visor page tables, and identifies 4KB GVPs that map
to a large guest page but small hypervisor page. These
PTEs can be identified from already-existing informa-
tion on page size in the page tables. For these GVPs,
the speculated 2MB frame is calculated by dropping the
bottom 9 bits from the corresponding SPP. Then, the
PTE for the requested 4KB GVP is placed into the 4KB
TLB (as usual), while the speculated 2MB entry is also
placed into the 2MB L1 TLB and L2 TLB. Therefore,
identifying one-dimensional large pages requires no ad-
ditional hardware beyond standard page table walks.

5.4 Speculation Details
We now study various aspects of GLUE, focusing on

L1-L2 speculation as it is a superset of L1-only specula-
tion. Figure 5 details the control and data flow through
the TLBs to support GLUE. Figure 6 illustrates the
timing of events corresponding to different hit/miss and
speculation scenarios.

Correct L1 speculation, verified in the L2 TLB:
Figure 6(a) illustrates the case where GLUE speculates
correctly from the L1 TLB and completes verification
from the L2 TLB. The CPU first checks the two L1
TLBs (4KB and 2MB) ➀; it misses in the 4KB TLB,
finds a speculative entry in the 2MB TLB that results in
a speculation hit ➁. The hit signal and corresponding
speculated SPP are sent to the CPU, which can con-
tinue execution while the speculated SPP is verified in
parallel. Verification proceeds by checking the L2 TLB
➂, which produces a hit on either a matching 4KB entry
or a clustered bitmap corresponding to the speculative
2MB entry ➃ (speculation confirmed). The 4KB entry
is then installed into the L1 4KB TLB, but this occurs
off of the critical path.

Incorrect L1 speculation, verified in the L2 TLB:
This case starts out the same as in the previous scenario,
but when we hit in the L2 TLB, we discover that the
actual SPP is not the same as the interpolated SPP ➄.
This triggers a pipeline flush and refetch as any con-
sumers of the load may have started executing with an
incorrectly loaded value. Figure 6(b) shows the corre-
sponding timing of events.

Correct L1 speculation, verified by a page table
walk: This case is also similar to the first scenario,
except that when the L2 TLB lookup is performed, no
matching entry is found. A page table walk retrieves the
correct translation ➅, which is found to be the same as
the speculated SPP. As shown in Figure 6(c), the page
table walk to verify the SPP occurs in parallel with

the processor pipeline’s continued execution using the
speculative SPP. In this case, the speculation is correct
and so the processor was able to run ahead.

Incorrect L1 speculation, verified by a page ta-
ble walk: This case is similar to the immediate pre-
vious one, except that at the conclusion of the page
table walk ➅, the correct SPP is found to differ from
the interpolated SPP. The processor initiates a pipeline
flush and refetch. For this case, we also insert the 4KB
translation into both L1 and L2 TLBs. The L1 inser-
tion attempts to avoid speculation, and the L2 insertion
attempts to ensure a faster verification process in the
event that we speculate again from the L1 2MB TLB.

L2 speculation: Figure 6(e) and (f) show the cases
where a speculative entry is found in the L2TLB. These
cases parallel the L1 speculation scenarios with the only
difference that the lookup misses in all L1 TLBs and the
verification (whether correct or not) is performed by a
page table walk.

5.5 Mitigating Verification Costs
We now study the tradeoff between capacity and ver-

ification costs of speculative large page translations, fo-
cusing on two questions.

What should we do with requested baseline PTEs
if we were able to correctly speculate on them?
Consider the case where we use a 2MB speculative entry
to correctly ascertain 4KB PTEs. After verification, we
can either place the 4KB PTE in the TLBs, or not insert
it into the TLB hierarchy at all. Both approaches have
merit; insertion into the TLBs reduces the cost of verifi-
cation. Because these PTEs are likely to be used in the
near future, placing them in the L1 TLB obviates the
need for verification-induced L2 TLB lookups, and pos-
sibly full-blown page table walks (on L2 TLB misses).
On the other hand, insertion into the TLBs lowers ef-
fective capacity; true large page entries replace multiple
base page translations (e.g., a 2MB x86-64 PTE covers
512 4KB PTEs).

We have compared inserting non-speculative 4KB PTEs
into the L1 TLB (reducing verification of future accesses
to the same entry but penalizing limited L1 TLB ca-
pacity), and into the L2 TLB (promoting speculation
with fast verification from the L2 TLB while saving
L1 TLB capacity). We also consider non-desirable ex-
tremes where we do not insert the non-speculative 4KB
entry into the TLBs at all (maximizing capacity but
severely exacerbating verification costs), and where we
add the non-speculative 4KB PTE in both TLBs (min-
imizing verification but hurting capacity).

In general, we have found (Section 7) that insertion
into only the L1 TLB performs best because only tens of
4KB pages within 2MB speculated regions are typically
used in temporal proximity. This means that capacity
requirements may be relaxed in favor of minimizing the
time taken to verify that speculation was correct. Given
verification energy requirements and potential perfor-
mance loss (from greater L2 TLB port contention and
cache lookups for page table walks), we believe this is a
suitable compromise.

6

Figure 5: The mechanics of
TLB speculation. We show
the case when we speculate
from the 2MB L1 TLB.

Figure 6: Timelines for (a) speculating from the 2MB L1 TLB correctly, and verifying
this in the L2 TLB; (b) mis-speculating from the 2MB L1 TLB, and verifying this in
the L2 TLB; (c) speculating from the 2MB L1 TLB correctly, and verifying with a
page table walk; (d) mis-speculating from the 2MB L1 TLB, and verifying with a page
table walk; (e) speculating from the L2 TLB correctly, and verifying with a page table
walk; and (f) mis-speculating from the L2 TLB, and verifying with a page table walk.

Can we use the extra bits in a speculative large
page entry in the L2 TLB to reduce verifica-
tion costs? Because translations for large pages use
fewer bits to represent virtual and physical page num-
bers, speculative large-page entries maintain many un-
used bits in a monolithic L2 TLB provisioned to concur-
rently handle multiple page sizes. In our example, the
2MB speculative large page entries have 18 unused bits.
We investigate mechanisms to repurpose these 18 bits
to reduce verification costs. Figure 7 shows how we use
these bits to maintain bitmaps that tell us if 4KB PTEs
within a 2MB speculative large page have the contigu-
ity and alignment to permit correct speculations. For
example, Figure 7(a) shows the CPU making a request
for the translation for VPN 4. A speculative large page
entry containing this VPN is discovered in the 2MB L1
TLB, and an interpolated, speculative PPN is sent to
the CPU ➀. While the CPU continues its operation,
the speculative PPN must be verified. The L2 TLB is
therefore probed, and the corresponding 2MB specula-
tive translation is located ➁. This translation is similar
to its counterpart in the L1 TLB but also uses its spare
bits to record information about a cluster of 4KB PTEs
surrounding the most-recently accessed translation in
this speculative 2MB region. We use the unused bits
to maintain a cluster number, and a bitmap indicating
which PTEs in this cluster are aligned and contiguous
(in our page table, all translations aside from the one
for VPN 7 are so). Initially this bitmap is empty, there-
fore it is not able to tell us whether our speculation is
correct and we have to walk the page table to verify
this ➂. We then load the most recently-accessed clus-
ter’s information (cluster 0, which VPN 4 falls in) ➃.
Figure 7(b) shows that loading this bitmap in the L2
TLB allows us, in the future when the CPU speculates
a PPN from the L1 2MB TLB for VPN 6 ➄, to quickly
verify that this is indeed a correct speculation without
the need for an expensive page table walk ➅. Using the
same bitmap, we can also verify quickly if the specula-
tion is incorrect when we speculate a PPN from the L1
2MB TLB for VPN 7.

Through our detailed experiments, we have found
that using the 18 spare bits to store two clusters of

!"#$%

"&'($)&*+(
!""#$$%&'%()*%+',%-(.%/ !""#$$%&'%()*%+',%-(.%0

,-$./0$),0

12(3$,&4'($"&'(

!"#$%56--7$""#$6-.5-%.8$

12(3$,&4'($"&'(

!"#$%56--7$""#$6-.5-%.89

:+;<=(4$%$>!"#$%$? @A9$

:+;<=(4$0B=C&2$ >$$$$$$$$A

,.$),0

D&E

,-$./0$),0

12(3$,&4'($"&'(

!"#$%56--7$""#$6-.5-%.8$

12(3$,&4'($"&'(

!"#$%56--7$""#$6-.5-%.89

:+;<=(4$%$>!"#$%$? @A9$

:+;<=(4$0B=C&2$ >-------%A

,.$),0

D*E

-

.

8

:+;<=(4$%$>!"#$%5@A9

0B=C&2$>-------%A

F

6

G

!"#$-

!"#$@

!"#$F

!"#$.

!"#$8

!"#$G

!"#$6

""#$6-.

""#$6.-

H

""#$6-8

""#$6-G

""#$6-F

""#$6-@

""#$6-6

""#$6-I

!"#$I

!"#$J

""#$8.

""#$6.%

Figure 7: Storing clusters of bits (in otherwise wasted
L2 TLB entry bits) to eliminate the need for verification-
induced page table walks.

8 bits eliminates verification with only 2 additional bits
per TLB entry.Furthermore, since typical 64-byte cache
lines maintain eight 8-byte PTEs, we use simple combi-
national logic proposed in recent work [30,31] to set the
bitmap after a page table walk without any additional
memory references for the walk.

5.6 Mitigating Mis-speculation Overheads
Our real-systemmeasurements showed that loads that

miss in the TLBs typically then also miss in the cache
hierarchy (90% go to the L3, and 55% to main memory).
This is intuitive because PTEs that miss in the TLBs
have not been accessed recently; therefore the memory
pages they point to are also likely cold. At the point of
misspeculation detection, the SPP is now known and a
prefetch of the address into the DL1 can be started in
parallel with the pipeline flush process. For our work-
loads, it turns out that the TLB speculation rate is
sufficiently high such that mitigating the rare flushing
event has only a minor impact on overall performance,
but this mechanism can provide a more robust solution
in the face of less speculation-friendly workloads.

6. EXPERIMENTAL METHODOLOGY
To evaluate functional, behavioral, and performance

effects, we examine systems running multiple real OSs

7

and hypervisors. Our proposal also includes microar-
chitectural modifications that cannot be evaluated on
real systems, while current cycle-level simulators do not
support multiple VMs and OSes in full-system simula-
tion modes. For these reasons, like most recent work on
TLBs [9,10,13,18,30,31], we use a combination of tech-
niques including tracing and performance counter mea-
surements on real machines, functional cache-hierarchy
and TLB simulators, and analytical modeling to esti-
mate the overall impact on program execution time.

6.1 Workloads
We set up our virtualization environment on a host

machine with 8 CPUs and 24GB RAM. We deploy 8
VMs, each has 3GB of RAM for BioBench and SPEC-
cpu workloads, and 4VMs, each with 4GB of RAM for
Cloudsuite workloads. The host uses VMware ESXi
server to manage VMs. All VMs have Ubuntu 12.04
server, and large pages are enabled using Transparent
Hugepage Support (THS) [4]. In addition, to show-
case the generality of our observations across hypervi-
sors and architectures, we evaluate KVM on the same
hardware and KVM on an ARM system with four Cor-
tex A15 cores. Finally, we use perfmon2 to read per-
formance counter values in the VMs. We use a wide
set of benchmarks, from SPECcpu 2006, BioBench [3],
and CloudSuite [17] that have non-negligible TLB miss
overheads. We present results on workloads sensitive to
TLB activity. For our container-based studies, we use
linux containers (LXC) with KSM [5].

6.2 Trace Collection
We use Pin [24] to collect guest memory traces for

our workloads. The original pintool only provides vir-
tual addresses, hence we extend the Linux pagemap to
include physical addresses and intermediate page table
entries (PTE) to be read by our pintool. For each
workload, we select a PinPoint region of one billion
instructions [28], and we validate the MPKI of the trace
with performance counter measurements to ensure that
the sampled region is representative of the benchmark.

We use VMware VProbes scripts [40] to collect hy-
pervisor memory traces, which contain guest and sys-
tem physical addresses. We rely on guest physical ad-
dresses, which are seen in both guest and hypervisor
traces to get a complete trace of guest virtual, guest
physical, and system physical addresses for our simula-
tor. We also extend the tracing utility to VMs on KVM
hypervisor to get similar information.

6.3 Functional simulator
To determine the hit-rate impact of the different TLB

structures, we make use of a functional simulator that
models multi-level TLBs, the hardware page-table walker,
and the conventional cache hierarchy. The TLBs in-
clude a 64-entry, 4-way DTLB for 4KB pages; a 32-
entry, fully-associative DTLB for 2MB pages; and a
512-entry, 4-way level-two TLB (L2TLB) with concur-
rent support for 4KB and 2MB pages, similar to Intel’s
Haswell cores. Our L2 TLB uses a skewed-associative
organization [36] for multiple page size support (we have
also modeled hash-rehash approaches, which negligibly

changes performance benefits). The modeled TLB hi-
erarchy also includes page walk caches that can accel-
erate the TLB miss latency by caching intermediate
entries of a nested page table walk [8, 13]. The sim-
ulator has a three-level cache hierarchy (32KB, 8-way
DL1; 256KB, 8-way L2; 8MB, 16-way L3 with stride
prefetcher), which the modeled hardware page table
walker uses on TLB misses.

6.4 Analytical Performance Model
For each application, we use the real-system perfor-

mance counter measurements (on full-program execu-
tions) to determine the total number of cycles CPU_CYCLES
(execution time), the total number of page-walk cycles
PWC (translation overhead, not including TLB access la-
tencies), the number of DTLB misses that resulted in
L2TLB hits, and the total number of L2TLB misses
(which then require page table walks). In addition,
we also make use of several fixed hardware parameters
including the penalty to flush and refill the processor
pipeline (20 cycles, taken to be about the same as a
branch misprediction penalty [1]), the DTLB hit latency
(1 cycle), and the L2TLB hit latency (7 cycles).

The analytical performance model is conceptually sim-
ple, although it contains many terms to capture all of
the different hit/miss and correct/wrong speculation
scenarios covered earlier in Figure 6. In the baseline
case without GLUE, the program execution time is sim-
ply CPU_CYCLES. From the performance counters, we
can determine the total number of cycles spent on ad-
dress translation overheads ATO (e.g., page table walks),
and therefore CPU_CYCLES - ATO gives us the number
of cycles that the processor is doing “real” execution
BASE_CYCLES (i.e., everything else but address transla-
tions). In other words, this would be the execution time
if virtual memory was completely free. From here, our
analytical model effectively consists of:

Execution Time = BASE CYCLES+
∑

i

ATOi (1)

where each ATOi is the number of cycles required for
address translation for each of GLUE’s hit/miss and
speculation/misspeculation scenarios.

For example, consider when we have a DTLB miss
but we find a speculative entry in the 2MB TLB and
the speculative translation turns out to be correct, then
the number of cycles for address translation would sim-
ply be the latency of the L1 TLB (both 4KB and 2MB
TLBs have the same latency in our model), as we as-
sume that the verification of the speculation can occur
off of the critical path of execution. Our functional
simulation determines how often this happens in the
simulated one-billion instruction trace, we linearly ex-
trapolate this to the full-program execution to estimate
the total number of such events3, and multiply this by
the L1 TLB latency to determine the execution cycles
due to this scenario.

For a slightly more interesting example, consider the

3
We are confident in our extrapolation methodology as we have val-

idated the performance projections from our 1B instruction traces
against performance counter measurements taken from the corre-
sponding full-program executions.

8

 0.0

 0.1

 0.2

 0.3

 0.4

0.5

Gem
sF

DTD

sw
 te

sti
ng

g
an

aly
tic

s

gr
ap

h5
00

om
ne

tp
p

m
um

m
er

ca
nn

ea
l

xa
lan

cb
m

k

d
ca

ch
ing tig

r
as

ta
r
gu

ps

ca
ctu

sA
DM

m
cf

av
er

ag
eR

un
tim

e
Im

pr
ov

em
en

t
L1-only spec

L1-L2 spec
ideal

Figure 8: Performance benefits of L1-only, L1-L2 specu-
lation, compared to the ideal case. Performance is nor-
malized to the baseline single-VM.

case shown in Figure 6(d) where we miss in the L1 4KB
TLB, find a speculative entry in the L1 2MB TLB, the
speculation turns out to be wrong, but it required a full
page-table walk to determine this (i.e., the PTE was
not in the L2TLB). The number of cycles for such an
event is:

L2TLB LAT+ PW LAT+max(DATA LAT, BMP) (2)

which corresponds to the L2TLB access latency (need
to perform a lookup even though it misses), the page-
walk latency PW_LAT (we use the average as determined
by performance counters), and then the longer of ei-
ther the data cache lookup DATA_LAT or the branch mis-
prediction penalty BMP. Assuming we use the prefetch
optimization described in Section 5.6, when we detect
the misspeculation, we can then concurrently flush the
pipeline and start the prefetch of the load into the DL1.
Because these events occur in parallel, we take the max-
imum of these terms. Due to space constraints, we
omit explanations for the remaining ATO i equations,
but they all follow a similar form that reflects what has
already been described in Figure 6. It should be noted
that such a methodology based on analytically adjust-
ing real-machine measurements has been used in other
recent virtual memory research studies [10].

7. EXPERIMENTAL RESULTS

7.1 GLUE Performance Results: Single VM
We first consider the performance improvements of

L1-only and L1-L2 speculation, also showing the im-
portance of careful verification control.

GLUE performance: Figure 8 quantifies the bene-
fits of GLUE (all results are normalized to the runtime
of the application on a single VM) for L1 and L1-L2
speculation, showing it eliminates the vast majority of
TLB overheads in virtualized systems with splintering.
On average, runtime is improved by 14%, just 4% away
from the performance of an ideal system with no ad-
dress translation overheads (i.e., there are never any
L1 TLB misses). Most benchmarks are actually signif-
icantly closer to the ideal case with only mummer, data
caching, gups, and mcf showing a difference. For mum-
mer and data caching, this occurs because they are
the only benchmarks where the guest generates fewer
large pages (see Figure 3); nevertheless, performance
benefits are still 5%. For gups, and mcf, the difference

 0.0

 0.1

 0.2

 0.3

 0.4

(a)

R
un

tim
e

Im
pr

ov
em

en
t noadd

addL1
addL2

addL1L2
ideal

 0

 50

 100

 150

 200

(b) L2 accesses(c) PTW
 0

 50

 100

 150

 200

L2
 P

K
I

P
T

W
 P

K
I

base
noadd
addL1

addL2
addL1L2

Figure 9: Average (a) performance improvements when
inserting the non-speculative 4KB PTE, after correct
speculation, in neither TLB (noAdd), the L1 TLB
(addL1), the L2 TLB (addL2), or both (addL1L2), com-
pared with the ideal improvement; (b) number of L2
TLB accesses per kilo-instruction (APKI) including ver-
ification compared to a baseline with speculation; and
(c) number of page table walks per kilo-instruction.

occurs because these benchmarks require more 2MB en-
tries (speculative or otherwise) than the entire TLB hi-
erarchy has available; nevertheless, we still achieve 24%,
and 30% performance gains, respectively.

Interestingly, Figure 8 also shows that L1-only spec-
ulation is highly-effective, achieving 10% performance
benefit. In fact, only mummer, tigr, gups, and graph

analytics see significantly more performance from spec-
ulating with both L1 and L2 TLBs.

Mitigating verification costs: To balance the ca-
pacity benefits of speculative 2MB entries against the
overheads of verification, we insert the non-speculative
4KB PTE corresponding to a correct speculation into
the 4KB L1 TLB. Figure 9 evaluates this design deci-
sion versus a scheme that inserts the non-speculative
4KB PTE into the L2 TLB instead, into both, or into
neither. We show the performance implications of these
decisions and the number of additional L2 TLB lookups
and page table walks they initiate to verify speculations
(per kilo-instruction). All results assume L1-L2 specu-
lation; we show average results because the trends are
the same across benchmarks.

Figure 9(a) shows that in general, noAdd performs the
best because a single speculative 2MB entry is used in
the entire TLB hierarchy for information about any con-
stituent 4KB SPP. However, inserting non-speculative
4KB PTEs into the L1 TLB (addL1), the L2 TLB (addL2),
or even both (addL1L2) performs almost as well (within
2%). Figures 9(b)-(c) shows, however, that these schemes
have vastly different verification costs, by comparing the
additional page walks per kilo-instruction and L2 TLB
accesses per kilo-instruction they initiate. Not only does
noAdd roughly triple the page table walks and L2 TLB
accesses, even addL2 only marginally improves L2 TLB
access count. Therefore, we use addL1 because its verifi-
cation costs are comparable to the baseline case without
sacrificing performance.

Figure 10a quantifies the impact of the L2 entry clus-
ter bitmaps. We show the fraction of original page table
walks eliminated; on average, 27% of the costly page
table walks are eliminated, with absolutely no loss in
performance and only 2 additional bits per TLB en-
try. Some workloads like cactusADM are almost entirely

9

 0.0
 0.2
 0.4
 0.6
 0.8
 1.0

Gem
sF

DTD

sw
 te

sti
ng

g
an

aly
tic

s

xa
lan

cb
m

k

d
ca

ch
ing
as

ta
r

ca
ctu

sA
DM

m
cf

av
er

ag
e

P
T

W
 E

lim
in

at
ed

(a)

 0.0
 0.2
 0.4
 0.6
 0.8
 1.0

Gem
sF

DTD

sw
 te

sti
ng

g
an

aly
tic

s

xa
lan

cb
m

k

d
ca

ch
ing
as

ta
r

ca
ctu

sA
DM

m
cf

av
er

ag
eF

ra
ct

io
n

of
 b

as
el

in
e

L2 TLB accesses on critical path
PTWs on critical path

(b)

Figure 10: (a) Fraction of page table walks eliminated
using clustered bitmaps in speculative L2 TLB entries;
and (b) fraction of the baseline L2 TLB accesses and page
table walks remaining on the critical path of execution
with TLB speculation.

 0.0

 0.1

 0.2

 0.3

Gem
sF

DTD

sw
 te

sti
ng

g
an

aly
tic

s

gr
ap

h5
00

om
ne

tp
p

m
um

m
er

ca
nn

ea
l

xa
lan

cb
m

k

d
ca

ch
ing tig

r
as

ta
r
gu

ps

ca
ctu

sA
DM

m
cf

av
er

ag
eR

un
tim

e
Im

pr
ov

em
en

t

Improvement Ideal

Figure 11: Performance gains achieved by GLUE on
a multi-VM configuration, compared against the ideal
performance improvement where all address translation
overheads are eliminated.

freed of page table walks, while others like GemsFDTD

and software testing see 70% and 48% eliminated.

Analyzing TLB miss rates: Figure 10b profiles how
many of the baseline VM’s L2 TLB accesses (caused
by L1 TLB misses) and page table walks (caused by
L2 TLB misses) remain on the program’s critical path.
The others are removed from the execution critical path
(because they are correctly speculated) and hence do
not incur a performance penalty. Overall, Figure 10b
shows that TLB speculation removes 45% of the L2
TLB lookups and 80% of the page tables walks from the
critical path. Some workloads, like cactusADM, see al-
most no page table walks because the clustered bitmap
in the L2 TLB completely eliminates verification-induced
page table walks (see Figure 10a).

7.2 GLUE Performance Results: Multiple VMs
VMs with similar workloads: We have investigated
the benefits of TLB speculation in scenarios with mul-
tiple virtual machines, which may change splintering
rates because of inter-VM page sharing, etc. We have
studied scenarios with 2, 3, 4, and 8 VMs, but be-
cause performance trends are very similar, we show 8-
VM results for the SPECcpu and PARSEC workloads.
CloudSuite applications, which have far greater mem-
ory needs, overcommit system memory with fewer VMs;
we hence present 4-VM studies for them.

Figure 11 quantifies GLUE’s benefits on the multi-
VM setup (averaged across VMs, since we find negligible
inter-VM variance), compared to an ideal scenario with
no TLB misses. Multiple VMs stress TLBs even fur-
ther due to greater contention. Fortunately, sufficient

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

all
ON

all
OFF

all
ON

all
OFF

Single VM

GSmall-HSmall GSmall-HLarge GLarge-HSmall GLarge-HLarge

(a) mummer canneal

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

1V
M

m
ult

i-V
M

1V
M

m
ult

i-V
M

TPS only

(b) mummer canneal

Figure 12: (a) Effect of page sharing and memory sam-
pling turned on (allOn) in a single VM versus all off
(allOff) on page splintering; and (b) Effect of inter-VM
page sharing on page splintering in multi-VM settings.

page splintering and good alignment remains, letting
GLUE (with L1-L2 speculation) eliminate 75% over-
heads on average. GemsFDTD, astar, cactusADM, and
software testing see virtually no address translation
overheads. Because real-world virtualization deploy-
ments commonly share a single physical node among
multiple VMs, GLUE has high real-world utility.

VMs with different workloads: We also study the
rarer case where one physical node runs multiple VMs
with the same OS (stock Linux) but different work-
loads. We were surprised to observe that even with
different workloads, there is significant inter-VM page
sharing, leading to ample page splintering. For exam-
ple, we found that at least 80% of all TLB misses were
to pages that were large in the guest and small in the
hypervisor when running VMs with mcf, graph500, and
gups. Notable culprits were pages shared from the OS
images across VMs and shared libraries. In addition,
zero-value pages across VMs were also shared [5]. For-
tunately, GLUE counters page sharing-induced splin-
tering even when VMs run different workloads, greatly
boosting performance.

7.3 Characterizing Page Splintering Sources
By default, ESX uses working set sampling and page

sharing for overall performance [7]. Figure 12a shows
how guests and the hypervisor allocate small and large
pages, assuming a single VM running on the physical
host. Results are shown for canneal (whose behavior
almost exactly matches all the other benchmarks and
is hence indicative of average behavior) and mummer,
which illustrates more unique behavior. We compare
the default setting against a case where sampling and
sharing are turned off. Clearly, turning off sampling
and page sharing recovers almost all of the opportunity
lost by page splintering.

Figure 12b extends these observations when multiple
VMs share a physical machine. Because multiple co-
located VMs have many pages to share (from the kernel
and application), assuming sampling is disabled, page
sharing splinters most of the guest large pages.

7.4 Importance of GLUE in Future Systems
Our application of GLUE to hypervisor-based virtu-

alization targets scenarios where guests can indeed cre-

10

ate large pages, which is purely a function of OS large
page support. Modern operating systems have sophisti-
cated and aggressive support for large pages [4, 31, 38],
so guests are likely to continue generating large pages.
Nevertheless, we now consider unusual scenarios which
could impede guest large page creation.

One might initially consider that memory fragmenta-
tion on the guest might curtail large page use in some
scenarios. To this, we make two observations. First,
VMs are typically used on server and cloud settings to
host an isolated, single service or logically related sets of
services. It is highly unlikely that fragmentation from
competing processes are an issue. Second, in the un-
usual case where this is an issue, many past studies on
large-page support conclude that sophisticated already-
existing memory defragmentation and compaction al-
gorithms in OS kernels [4,31] drastically reduce system
fragmentation. To test this, we ran our workloads in
setups where we artificially fragmented system mem-
ory heavily and completely using the random access
memhog process [31]. We found that even for work-
loads with the largest memory footprints (e.g., mcf,
graph500, data analytics, data caching, and soft-

ware testing), there were negligible changes in the
number of guest large pages allocated, their splinter-
ing rates, and how well-aligned the ensuing splintered
4KB pages were. GLUE remains effective in every sin-
gle, aggressively-fragmented setup that we investigated.

One might also consider the impact of memory bal-
looning on the guest’s ability to generate large pages.
Ballooning is a memory reclamation technique used when
the hypervisor is running low on memory (possibly in re-
sponse to the demands of concurrently-running VMs).
When the balloon driver is invoked, it identifies 4KB
page regions as candidates to relinquish to the hypervi-
sor, and unallocates them. In effect, this fragments the
guest’s view of physical memory, hampering large page
allocation, or breaking already-existing large pages. To
study this, we have run several experiments on our se-
tups. Since hypervisors like KVM and Xen expose bal-
looned pages to the memory defragmentation software
run by the kernel, ballooning has no impact on guest
large page generation [4].

7.5 Understanding GLUE’s Limitations
GLUE activates TLB speculation only for memory

regions where a large guest page is splintered by the hy-
pervisor and identified by the page table walker as such.
Therefore, GLUE is ineffective (though not harmful)
when the guest is unable to generate large pages. How-
ever, TLB speculation can actually be harmful when
the 4KB pages in a speculated large page region are not
well-aligned; in these cases, frequent TLBmis-speculations
introduce pipeline flushes and refetches, degrading per-
formance. We have not encountered a single case where
mis-speculations degrade performance in practice, but
we detail how to handle this should it become an issue
for other workloads we have not evaluated.

Section 5.4 explained that TLB misses are frequently
followed by long-latency accesses to the lower-level caches
or to main memory to retrieve the requested data. Be-
cause L3 caches and main memory typically require

40-200 cycles on modern systems [12, 30, 31], these la-
tencies usually exceed (or are at least comparable) to
the cost of flushing and steering the pipeline on a mis-
speculation. Therefore, by initiating a cache prefetch
for these data items as soon as a mis-speculation is de-
tected, we can usually overlap mis-speculation penalties
with useful work. Because all our real-system configu-
rations enjoy accurate speculation, cache prefetching is
not really necessary (on average, we gain roughly 1%
more performance). We have calculated the minimum
correct speculation rate required to ensure no perfor-
mance loss; for every single benchmark evaluated, 48%
speculation accuracy (a pessimistic scenario compared
to the 90% accuracy we see in all our configurations)
results in no performance degradation.

8. RELATED WORK
Beyond recent work on TLB speculation [9], the ris-

ing costs of address translation on big-memory systems
have prompted researchers to perform many other stud-
ies on TLB design [8, 10, 13, 18, 31]. While some of
these efforts have focused on mostly hardware efforts
[8,13,30,31], others have shown the benefits of efficient
OS-hardware co-design [10,16,22]. In particular, recent
work on redundant memory mappings [22] has inter-
esting implications on page splintering since it employs
eager allocation - depending on workload configuration
and hypervisor decision-making, splintering could occur
at the granularity of ranges of (possibly large) pages.
We will investigate the interplay between our splintering
approaches and redundant mappings in future work.

9. CONCLUSION
This work observes the fundamental conflict between

the address translation benefits of large pages versus the
desire for finer-grained monitoring and agile memory
management. We ask the question: is it possible to pro-
vide hardware support that enables us to ally the TLB
reach benefits of large pages with memory management
issues like lightweight memory monitoring, smoother
page sharing, and seamless management with NUMA
systems. Our proposed hardware uses interpolation-
based TLB speculation to achieve this, boosting hypervi-
sor-based virtualization and containers. Overall, while
we observed that splintering is a problem and can cause
significant performance problems, our proposed GLUE
architecture can largely mitigate these issues, thereby
making virtualized systems more attractive to deploy.

10. ACKNOWLEDGMENTS
We thank Jim Mattson for his help and valuable feed-

back. We thank Kathryn McKinley and Mark Hill for
their insights and feedback in preparing the final ver-
sion of the paper. Further, we thank the National Sci-
ence Foundation, which partially supported this work
through grants 1253700 and 1337147, and VMware for
its support. AMD, the AMD Arrow logo, and combi-
nations thereof are trademarks of Advanced Micro De-
vices, Inc. Other product names used in this publication
are for identification purposes only and may be trade-
marks of their respective companies.

11

11. REFERENCES
[1] “Software Optimization Guide for AMD Family 15h

Processors,” Advanced Micro Devices Inc, Tech. Rep., 2014.

[2] A. Agarwal and S. Pudar, “Column-Associative Caches: A
Technique for Reducing the Miss Rate of Direct-Mapped
Caches,” ISCA, 1993.

[3] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin,
B. Jacob, C.-W. Tseng, and D. Yeung, “BioBench: A
Benchmark Suite of Bioinformatics Applications,” in
Proc. of the Intl. Symp. on Performance Analysis of
Systems and Software, Austin, TX, March 2005, pp. 2–9.

[4] A. Arcangeli, “Transparent Hugepage Support,”KVM
Forum, 2010.

[5] A. Arcangeli, I. Eidus, and C. Wright, “Increasing Memory
Density by Using KSM,”Ottawa Linux Symposium, 2009.

[6] G. Atwood, “Current and Emerging Memory Technology
Landscape,” Flash Memory Summit, 2011.

[7] I. Banerjee, F. Guo, K. Tati, and R. Venkatasubramanian,
“Memory Overcommittment in the ESX Server,”VMware
Technical Journal, 2013.

[8] T. Barr, A. Cox, and S. Rixner, “Translation Caching:
Skip, Don’t Walk (the Page Table),” ISCA, 2010.

[9] ——, “SpecTLB: A Mechanism for Speculative Address
Translation,” ISCA, 2011.

[10] A. Basu, J. Gandhi, J. Chang, M. Hill, and M. Swift,
“Efficient Virtual Memory for Big Memory Servers,” ISCA,
2013.

[11] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne,
“Accelerating Two-Dimensional Page Walks for Virtualized
Systems,”ASPLOS, 2008.

[12] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared
Last-Level TLBs for Chip Multiprocessors,”HPCA, 2011.

[13] A. Bhattacharjee, “Large-Reach Memory Management Unit
Caches,”MICRO, 2013.

[14] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
Benchmark Suite: Characterization and Architectural
Simplications,” IISWC, 2008.

[15] J. Buell, D. Hecht, J. Heo, K. Saladi, and R. Taheri,
“Methodology for Performance Analysis of VMware
vSphere under Tier-1 Applications,”VMWare Technical
Journal, 2013.

[16] Y. Du, M. Zhou, B. Childers, D. Mosse, and R. Melhem,
“Supporting Superpages in Non-Contiguous Physical
Memory,”HPCA, 2015.

[17] M. Ferdman, A. Adileh, O. Kocberber, S. Volos,
M. Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu,
A. Ailamaki, , and B. Falsafi, “Clearing the Clouds: A
Study of Emerging Scale-out Workloads on Modern
Hardware,”ASPLOS, 2012.

[18] J. Gandhi, A. Basu, M. Hill, and M. Swift, “Efficient
Memory Virtualization,”MICRO, 2014.

[19] F. Gaud, B. Lepers, J. Decouchant, J. Funston, and
A. Fedorova, “Large Pages May be Harmful on NUMA
Systems,”USENIX ATC, 2014.

[20] F. Guo, S. Kim, Y. Baskakov, and I. Banerjee, “Proactively
Breaking Large Pages to Improve Memory
Overcommitment Performance in VMware ESXi,”VEE,
2015.

[21] D. Kanter, “Haswell Memory Hierarchy,”
http://www.realworldtech.com/haswell-cpu/5/, 2012.

[22] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. Hill,
K. McKinley, M. Nemirovsky, M. Swift, and O. Unsal,
“Redundant Memory Mappings for Fast Access to Large
Memories,” ISCA, 2015.

[23] B. Kero, “Running 512 Containers on a Laptop,”
http://bke.ro/running-512-containers-on-a-laptop, 2015.

[24] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood,
“Pin: Building Customized Program Analysis Tools with

Dynamic Instrumentation,” in Proc. of the ACM SIGPLAN
Conf. on Programming Language Design and
Implementation, Chicago, IL, June 2005, pp. 190–200.

[25] M. Meswani, S. Blagodurov, D. Roberts, J. Slice,
M. Ignatowski, and G. Loh, “Heterogeneous Memory
Architectures: A HW/SW Approach for Mixing
Die-Stacked and Off-Package Memories,”HPCA, 2015.

[26] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical,
Transparent Operating System Support for Superpages,”
OSDI, 2002.

[27] M. Papadopoulou, X. Tong, A. Seznec, and A. Moshovos,
“Prediction-Based Superpage-Friendly TLB Designs,”
HPCA, 2014.

[28] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi, “Pinpointing Representative Portions of
Large Intel Itanium Programs with Dynamic
Instrumentation,” in Proc. of the 37th Intl. Symp. on
Microarchitecture, Portland, OR, December 2004.

[29] S. Phadke and S. Narayanasamy, “MLP Aware
Heterogeneous Memory System,”DATE, 2011.

[30] B. Pham, A. Bhattacharjee, Y. Eckert, and G. Loh,
“Increasing TLB Reach by Exploiting Clustering in Page
Translations,”HPCA, 2014.

[31] B. Pham, V. Vaidyanathan, A. Jaleel, and
A. Bhattacharjee, “CoLT: Coalesced Large-Reach TLBs,”
MICRO, 2012.

[32] B. Romanescu, A. Lebeck, and D. Sorin, “Specifying and
Dynamically Verifying Address Translation-Aware Memory
Consistency,”ASPLOS, 2010.

[33] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling
Ways and Associativity,”MICRO, 2010.

[34] A. W. Services, “AWS Cloud Formation User Guide,” 2010.

[35] A. Seznec, “A Case for Two-Way Skewed Associative
Cache,” ISCA, 1993.

[36] ——, “Concurrent Support of Multiple Page Sizes on a
Skewed Associative TLB,” IEEE Transactions on
Computers, 2004.

[37] M. Spjuth, M. Karlsson, and E. Hagersten, “The Elbow
Cache: A Power-Efficient Alternative to Highly Associative
Caches,”Uppsala University Technical Report 2003-46,
2003.

[38] M. Talluri and M. Hill, “Surpassing the TLB Performance
of Superpages with Less Operating System Support,”
ASPLOS, 1994.

[39] VMware, “Large Page Performance: ESX Server 3.5 and
ESX Server 3i v3.5,”VMware Performance Study, 2008.

[40] ——, “VProbes Programming Reference,” 2008.

[41] C. Waldspurger, “Memory Resource Management in
VMware ESX Server,”OSDI, 2002.

[42] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers,
E. Cecchet, and M. Corner, “Memory Buddies: Exploiting
Page Sharing for Smart Colocation in Virtualized Data
Centers,”VEE, 2009.

[43] J. Xiao, Z. Xu, H. Huang, and H. Wang, “Security
Implications of Memory Deduplicationi in a Virtualized
Environment,”DSN, 2013.

[44] Y. Xie, “Modeling, Architecture, and Applications for
Emerging Non-Volatile Memory Technologies,” IEEE
Computer Design and Test, 2011.

12

	Introduction
	Background
	Motivation and Our Approach
	Sources of Page Splintering
	GLUE Microarchitecture
	TLB Organization
	Speculative TLB Entries
	TLB Operations
	Speculation Details
	Mitigating Verification Costs
	Mitigating Mis-speculation Overheads

	Experimental Methodology
	Workloads
	Trace Collection
	Functional simulator
	Analytical Performance Model

	Experimental Results
	GLUE Performance Results: Single VM
	GLUE Performance Results: Multiple VMs
	Characterizing Page Splintering Sources
	Importance of GLUE in Future Systems
	Understanding GLUE's Limitations

	Related Work
	Conclusion
	Acknowledgments
	References

