
More is Less: Improving the Energy Efficiency of
Data Movement via Opportunistic Use of Sparse Codes

Yanwei Song and Engin Ipek
Department of Electrical and Computer Engineering
University of Rochester, Rochester, NY 14627 USA

{yanwei, ipek}@ece.rochester.edu

ABSTRACT
Data movement over long and highly capacitive inter-
connects is responsible for a large fraction of the energy
consumed in nanometer ICs. DDRx, the most broadly
adopted family of DRAM interfaces, contributes signif-
icantly to the overall system energy in a wide range of
computer systems. To reduce the energy cost of data
transfers, DDR4 adopts a pseudo open-drain IO circuit
that consumes power only when transmitting or receiv-
ing a 0, which makes the IO energy proportional to the
number of 0s transferred over the data bus. A data bus
invert (DBI) coding technique is therefore supported by
the DDR4 standard to encode each byte using a small
number of 0s. Although sparse coding techniques that
are more advanced than DBI can reduce the IO power
further, the relatively high bandwidth overhead of these
codes has heretofore prevented their application to the
DDRx bus.

This paper presents MiL (More is Less), a novel data
communication framework built on top of DDR4, which
exploits the data bus under-utilization caused by DRAM
timing constraints to selectively apply sparse codes, thereby
reducing the IO energy without compromising system
performance. Evaluation results on a set of eleven par-
allel applications show that MiL can reduce the average
IO interface energy by 49%, and the average DRAM
system energy by 8% when added on top of a conven-
tional DDR4 system, with less than 2% performance
degradation on average.

Categories and Subject Descriptors
B.4.3 [Hardware]: Interconnections

Keywords
Energy-efficient Design, Memory Interfaces, Sparse Rep-
resentation

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
MICRO Waikiki, H USA
ACM 978-1-4503-4034-2/15/12 ...$15.00.

1. INTRODUCTION
Data movement is responsible for a substantial and

growing fraction of the overall energy dissipation in nanome-
ter ICs [1]. IO energy is a major component of the over-
all data movement energy. The off-chip interconnects
typically span much longer routing distances than the
on-chip interconnects, and are therefore more capaci-
tive. Consequently, accessing the off-chip main memory
can cost 250× more energy than accessing an on-chip
cache [2]. Due to the increasing demand on off-chip
memory bandwidth, IO energy is expected to become
an even more critical problem in future systems. In
Figure 1, a breakdown of the total DRAM power is
depicted for different DRAM modules. Despite the in-
corporation of low-power signaling techniques into the
DDRx standard, the IO interface still is responsible for
42% of the aggregate DRAM power in current gener-
ation DDR4 modules. Hence, architectural techniques
that can increase the energy efficiency of data transfers
over the DDRx IO interface can go a long way toward
reducing DRAM energy.

Figure 1: DRAM power breakdown [3].

This paper presents MiL (More is Less), a novel data
communication architecture built on top of the latest
generation of DDRx interfaces in commercial use (DDR4
and LPDDR3). MiL reduces the data movement en-
ergy by exploiting the asymmetry in the energy cost of
transferring a 1 vs. a 0 over the DDRx IO interface.
In VDDQ-terminated IO interfaces such as DDR4, the
energy cost of transferring a 0 over the interconnect
is orders of magnitude higher than that of transferring
a 1 [4], which makes the energy consumption propor-
tional to the number of 0s communicated through the
interface. As a result, a sparse data representation that
reduces the number of 0s at the expense of a longer
codeword can improve the energy efficiency. DDR4

242

supports one such sparse representation, the DBI code,
at the expense of eight extra IO pins, increasing the
data pin count from 64 to 72. It is possible to apply
sparse codes that are more effective than DBI [5] to
the IO power problem; however, accommodating the
longer codewords that are typically encountered with
such codes requires either a significant increase in the
number of pins (a scarce resource), or in the DRAM
burst length (which wastes off-chip bandwidth). Note
that the latter approach would not only hurt the ex-
ecution time, but would also lead to greater DRAM
background energy. Figure 2 shows the effect of using
the (8,17) 3-limited weight code (3-LWC) [6] instead of
the DBI code on execution time, IO energy, and sys-
tem energy for two representative benchmarks, CG and
GUPS1. The 3-LWC code respectively reduces the IO
energy by 1.7× and 3.1× on CG and GUPS; however,
the execution times of the applications increase by 14%
and 42% due to the increase in off-chip bandwidth de-
mand, which results in marginal system energy savings.

(a) (b) (c)

Figure 2: (a) Execution time, (b) IO energy, and
(c) system energy, all normalized to the DBI
baseline when using the (8,17) 3-LWC for CG
and GUPS.

Key Idea. Due to DRAM timing constraints, the
DDRx data bus is under-utilized in many situations,
even during periods of high demand when multiple pend-
ing memory requests are queued at the memory con-
troller. In such situations, the memory bus lies idle
while waiting for the DRAM timing constraints to be
resolved; as a result, the burst length for the request
immediately preceding such an idle interval can be in-
creased without hampering DRAM throughput. We
propose to identify these periods of execution, and op-
portunistically use the (otherwise idle) data bus cycles
to transfer an energy efficient, sparse coded version of
the original data. Although in principle MiL can work
with any sparse code, a simple yet effective code, MiLC
(More is Less Code), is proposed here as one base coding
scheme for use with MiL. One design configuration of
MiL is evaluated over two types of energy constrained
systems: DDR4 based microservers [7], and LPDDR3
based mobile systems [8].2 The application of MiL to
these two systems is evaluated on a set of eleven par-
allel applications. The results indicate that MiL re-

1The experimental setup is explained in Section 6.
2We choose LPDDR3 in our study of mobile memory in-
terfaces due to a lack of detailed information on power and
current draw for the next generation LPDDR4 interface.

duces the interface energy by 49% and 46%, and over-
all DRAM system energy by 8% and 17% for DDR4
and LPDDR3 systems, respectively. These energy re-
ductions are achieved at the expense of a 2% perfor-
mance degradation in DDR4 based microservers, and a
4% performance degradation in LPDDR3 based mobile
systems.

2. BACKGROUND AND RELATED WORK
This paper aims at improving the energy efficiency of

the main memory interface, which requires optimizing
the high-bandwidth off-chip interconnect for low-energy
data transfers. It is therefore important to understand
the energy efficiency of data movement under different
signaling techniques, and with different types of inter-
connect.

2.1 DDRx IO Interface
The DDRx standard defines different types of inter-

faces (e.g., DDR4, LPDDR3) to address the perfor-
mance and energy requirements of different market seg-
ments. To guarantee signal integrity at high clock speeds,
on-die termination usually is adopted in systems with
multiple ranks on a DRAM channel. All of the re-
cent DDRx interfaces, including DDR2/3/4, and (op-
tionally) LPDDR3/4, support on-die termination in dif-
ferent forms; however, on-die termination typically is
unnecessary in mobile systems that employ a point-to-
point configuration.

2.1.1 DDR4: A Terminated Interface
To reduce the IO energy, DDR4 adopts the pseudo

open drain (POD) signaling scheme3 [9] shown in Fig-
ure 3(a). The interesting property of the POD signaling
scheme is that the transmission of only the 0s costs en-
ergy due to the current flow from V DD to GND; the
transmission of 1s effectively is free. This asymmetry
provides an opportunity to apply coding techniques that
reduce the number of 0s in the transferred data. DDR4
chips with x8 and x16 output widths hence support data
bus inversion (DBI) coding [4], which reduces both the
worst-case simultaneous switching output (SSO) noise
and the IO interface energy. The DBI coding is ap-
plied at the byte granularity, and requires one extra
pin to transmit a DBI bit for each group of eight data
pins. When the number of 0s in a given byte of data
is greater than four, the DBI bit is set to 0, and the
ones’ complement of the byte is transmitted (i.e., the
eight data bits are inverted). Otherwise, the original
eight data bits are transferred with the DBI bit set to
1. This guarantees the total number of 0s in each byte
of transferred data is less than five. A DDR4 chip with
a x4 output width can reap only modest benefits from
DBI coding; as a result, DBI coding is not supported
by the x4 chips.

3GDDR5 also uses POD, while LPDDR4 uses a low voltage
swing with VSSQ termination. However, the asymmetry in
the energy when transferring different values (0 or 1) still
exists in LPDDR4.

'1'

'0'

Tr
an

sm
itt

er

Off-chip LPDDR3 I/O

R
ec

ei
ve

r

'1'

'0'

DDR4 Vddq
Termination

RODT

Off-chip DDR4 I/O

R
ec

ei
ve

r

Tr
an

sm
itt

er

(a) (b)

No termination

Figure 3: DDRx IO Interface: (a) a terminated
interface (VDDQ termination) in DDR4, (b) an
unterminated interface in LPDDR3.

2.1.2 LPDDR3: An Unterminated Interface
Figure 3(b) shows the unterminated IO interface sup-

ported by the LPDDR3 standard, which consumes en-
ergy by charging and discharging the load capacitance
of the data bus [10]. Different from the DDR4 IO inter-
face, the IO interface of LPDDR3 consumes energy on
the 0→1 and 1→0 transitions. As as result, minimiz-
ing the number of zeroes in the transferred data is not
necessarily a wise strategy for LPDDR3, and LPDDR3
does not support any native coding techniques. This
problem, however, can be overcome relatively easily by
relying on bus invert (BI) coding [11], an early prede-
cessor of DBI. In bus invert coding, one extra BI pin is
paired with each group of eight data pins. When the
number of transitions is less than five, the original eight
data bits are transferred with the BI bit set to 0. When
the number of transitions is greater than four, the data
bits are inverted with the BI bit set to 1. In addition,
transition signaling (Section 4.5) can make the number
of bit flips on the bus equal to the number of transmit-
ted zeroes.

2.2 Low Energy Data Encoding Schemes
Energy efficient data encoding has been heavily stud-

ied in the literature. Bus-invert coding [11], the fun-
damental principle behind the data bus invert (DBI)
coding [4] used in DDR4, was introduced in 1995. Tran-
sition signaling [12, 13] makes the number of bit flips on
the bus (and therefore the bus energy) depend only on
the hamming weight of the transmitted data, even if
the bus is unterminated. The k-limited weight codes
(k-LWC) [5] are a class of codes which constrain the
maximum hamming weight of a given block of data to
k. Stan et al. first proposed 3-LWC [6], a simple code
which maps an 8-bit block of data to a 17-bit code, and
later invented the perfect 3-LWC [14] as the dual of
the Golay code, which maps 11 bits of data to a 23-bit
sparse representation with at most three 1s. All of these
coding schemes are applied by increasing the intercon-
nect width, or transferring a given (long) codeword over
multiple cycles.

Two survey papers [15, 16] give a comprehensive in-
troduction to various encoding techniques for both on-
chip and off-chip interconnects. Stan and Burleson [12]
also present a general coding framework which takes
into account factors such as space, time, and voltage

amplitude. Various adaptive code-book based meth-
ods [17, 18, 19] exploit the temporal correlations among
different cache blocks by caching the recently commu-
nicated data. Childers and Nakra [20] reorder the data
in a burst to reduce the switching activity on the data
bus.

Sparse data representation finds application not only
in energy efficient data movement, but also in mini-
mizing write energy and wear-out for emerging mem-
ory technologies. Flip-N-Write [21] applies bus invert
coding to phase change memory (PCM). The recently
published CAFO [22] is a form of two dimensional bus-
invert coding, which alternates row and column bus in-
verting in an iterative fashion until no more Hamming
weight reduction can be achieved. In contrast, the goal
of the proposed MiL framework is to improve the en-
ergy efficiency of data movement over the DDRx data
bus via the opportunistic use of sparse codes. As a cod-
ing scheme, CAFO is comparable to MiLC in the MiL
framework. MiLC exploits the correlation among bytes
that are spatially close to one another, and achieves a
deterministic latency, which simplifies scheduling. CAFO
exhibits a non-deterministic coding latency, which makes
it much harder for the memory controller to schedule
the commands. If the number of iterations for CAFO
is fixed, the reduction in the number of zeroes is com-
promised. Moreover, the memory controller has to con-
sider the worst-case coding latency at all times. In other
words, CAFO suffers from limitations when used under
the MiL framework. CAFO requires iterative search in
two dimensions, which incurs higher design complex-
ity and hardware overhead, and its encoding latency is
higher than that of MiLC.

2.3 Circuit Level Low Power Signaling Tech-
niques

Low-swing signaling can lower the interconnect en-
ergy by using a low output voltage swing at the ex-
pense of a higher latency. LPDDR4 has adopted this
circuit optimization to improve the IO power [23]. Wide
I/O [24] and High Bandwidth Memory (HBM) [25] are
two memory standards with a wide interface operating
at a low frequency to achieve higher power efficiency
at the expense of extra pins and greater cost. Hybrid
Memory Cube (HMC) [26, 27] changes the IO interface
to SERDES to improve both the bandwidth and the
energy efficiency when the bandwidth is highly utilized;
however, when the bandwidth is underutilized, it costs
more energy than the conventional parallel DDRx in-
terface due to the constant static power consumption
of SERDES. Li et al. [28] propose a photonic intercon-
nect as a substitute for the conventional electrical mem-
ory interface to improve the signal integrity and power
efficiency, which requires much more radical hardware
changes as compared to MiL. MiL is not applicable to
HMC or photonic interfaces.

3. DATA BUS UNDER-UTILIZATION AND
THE POTENTIAL FOR SPARSE CODING

The DDRx data bus is often under-utilized due to

244

DRAM timing constraints, even when executing memory-
intensive applications. The under-utilization creates
an opportunity to apply sparse codes to data transfers
without degrading system performance.

3.1 Data Bus Under-Utilization
Due to DRAM timing and resource constraints, the

DDRx data bus utilization often falls well below 60% [29,
30, 31, 32, 33, 34, 35], even during periods in which
many pending requests are queued at the memory con-
troller. Over time, the DDRx family of standards has
evolved toward a more heavily constrained interface to
accommodate various circuit level constraints (e.g., peak
power, noise). The DDR4 interface, for instance, has in-
troduced new timing constraints that are absent from
the earlier generation DDR3 by dividing banks into mul-
tiple bank groups [36], and making the tRRD, tWTR,
and tCCD parameters depend on whether consecutive
commands are in the same bank group or in different
groups.

Figure 4 shows the distribution of idle cycles between
successive transactions on the data bus. The bus trans-
actions occur back-to-back in only 13% of the cases. No-
tably, it is possible for the data bus to be idle due to two
different reasons: 1) there may be no pending requests
at the memory controller; and 2) timing constraints
may prevent keeping the data bus utilized even when
requests are pending. Figure 5 shows how frequently
these two situations occur. The applications MG, FFT,
SCALPARC, SWIM, OCEAN, CG, and GUPS are mem-
ory intensive, and result in pending requests at the
memory controller a majority of the time. However,
the data bus remains idle due to timing constraints in
more than half of these cycles when the requests are
pending.

MiL aims at increasing the energy efficiency of data
movement by applying sparse codes during otherwise
idle data bus cycles. Regrettably, not all idle cycles
can be exploited without hurting system performance.
Specifically, if two successive transactions on the data
bus require a bus turnaround (and therefore are sepa-
rated by idle bus cycles), applying sparse codes to the
first transaction would delay the starting time of the
second transaction. As such, the extra delay incurred
by sparse codes cannot be hidden when the relevant
timing constraints that cause the idle cycles are due
to bus turnaround (e.g., tWTR, tRTRS, and tOST).
We define the slack between two successive data bus
transactions as the number of cycles by which the end
of the first transaction can be postponed (in order to
use sparse codes) without delaying the beginning of the
second transaction. Figure 6 shows the distribution of
slack between successive data bus transactions. The
results indicate that in many (but not all) cases, the
bus turnaround does not limit the application of longer
sparse codes. All in all, the wasted data bus bandwidth
offers a good opportunity to improve the energy effi-
ciency of data movement over the DDR4 interface.

3.2 Potential of Sparse Coding

Figure 4: The distribution of idle cycles between
successive transactions on the DDR4 data bus.

Figure 5: The distribution of time among cy-
cles when there are no pending requests, cycles
when the data bus is idle despite the presence of
pending requests, and cycles when the data bus
is utilized. Benchmarks are sorted based on the
utilization from low to high.

Since the DDR4 interface has already adopted the
DBI coding technique to improve the energy efficiency,
it is useful to study how much potential there is to re-
duce the energy further by using more sophisticated
coding techniques. To reduce the size of the design
space, only static codes in which a code is mapped to a
unique data pattern are studied. In order to make the
comparison fair, all of the codes are configured to have
the same overhead as DBI (i.e., 8-bit data are paired
with a single extra bit). Figure 7 shows the normalized
number of zeroes achieved by different codes. Com-
pared to DBI, these codes show significant potential to
lower the IO energy; however, the codec logic for these
codes are hard to implement algorithmically, while a
look-up table based codec is impractical due to exorbi-
tant capacity overheads. Therefore, MiL adopts simple
algorithmic codes; the study of other coding schemes is
left for future work.

4. MORE IS LESS: OPPORTUNISTIC DATA
ENCODING

The proposed “More is Less” (MiL) framework is a
general opportunistic data encoding interface for point-
to-point communication, but this paper focuses exclu-
sively on the DDRx interface. MiL exploits the idle
cycles on the data bus due to the inherent timing con-

245

Figure 6: The distribution of slack between suc-
cessive data bus transactions.

Figure 7: Relative reduction in the number of
zeroes achieved by optimal static LWC codes.
(8, 9) denotes an LWC which optimally encodes
an 8-bit data pattern into a 9-bit code accord-
ing to the frequency of different data patterns.
The number of zeroes observed with different
schemes are normalized to the number of zeroes
observed on the original data.

straints of the DDRx interface to reduce the data move-
ment energy.

4.1 Overview
Figure 8 illustrates an example DDRx system with

and without the proposed MiL framework. MiL is en-
gaged on column read or write commands. In a conven-
tional DDRx system, timing constraints often result in
idle cycles between two successive data bursts. In a MiL
based DDRx system, the memory controller identifies
an opportunity to exploit these idle cycles, and decides
whether to apply the sparse coding (Section 4.2). If
sufficiently many idle cycles are identified, a sparse en-
coded version of the original data is sent to save energy
(Section 4.3). As a result, the data movement energy
is reduced even though the bus utilization is increased
(i.e., more bits are sent over the bus with less overall
energy). As shown in Figure 8, read 0 and read 1 are
separated in time due to a timing constraint, which re-
sults in the idle cycles between data burst 0 and data
burst 1 in a conventional DDRx system. In the MiL
based DDRx system, the data movement energy sav-
ing is achieved by transferring data burst 0 in a sparse
representation without hurting the performance. This
approach is more cost-effective than adding data pins
to the memory chip; moreover, unlike the case of DBI,
x4 chips can benefit from MiL.

Conventional DDRx System

MiL based DDRx System

time

C/A read 0

Data

read 1

data 1
Timing Constraint

data 0 data 1

data 0

Data

C/A read 0' read 1

Timing Constraint

Figure 8: Illustrative example of the key idea.
Note that MiL is applicable to both reads and
writes.

The design of the MiL framework (Figure 9) is de-
coupled from that of the memory controller for the sake
of simplicity. It consists of two major components: 1)
the decision logic at the memory controller, which de-
termines when the sparse coding should be applied; and
2) the codec logic, which implements specific coding al-
gorithms on both the memory controller and the DRAM
sides. Besides these two components, minor modifica-
tions are made to an existing memory controller.

On-chip Memory
Controller

DRAM System

Scheduler

Timing Check

Data Buffer

Decision Logic

Codec
Logic

Off-chip
Interconnects

Figure 9: The design of a MiL-based memory
system.

4.2 When to Code?
The decision logic is activated only when a ready read

or write command is scheduled, and is used to decide
which coding scheme to apply. Deciding when to ap-
ply a sparse representation affects both the data move-
ment energy and the system performance. If the system
performance degrades too much, the energy consumed
by other components, such as the static energy due to
DRAM background power, will be sufficiently large to
nullify the energy savings on the IO interface. The de-
cision to use sparse encoding is made based on an intu-
itive yet effective heuristic: 1) assume the data will be
coded in an X-cycle sparse representation; 2) although
incoming requests may create new scheduling opportu-
nities that can fill otherwise idle bus cycles, use the
current commands in the queue to infer the approxi-
mate behavior of the schedule in the next few cycles; 3)
check whether there are any ready reads or writes that
can issue in the next X cycles. If there is no such read
or write, a wider sparse code is allowed, otherwise, a
simpler code or the original data are transferred. This
approach avoids significantly delaying pending requests,
and prevents system performance degradation.

246

4.3 How to Code?
Based on the decision made by the decision logic, ei-

ther the original data or a sparse coded version of that
data is transmitted. We study two types of sparse codes:
1) the existing, low-overhead 3-limited-weight code (3-
LWC) [6]; and 2) a newly proposed “More is Less Code”
(MiLC). Other coding approaches can be adopted in the
MiL framework so long as the codec latency is determin-
istic, which makes it possible for the memory controller
to schedule all requests while delaying the DDRx timing
constraints.

4.3.1 3-Limited-Weight Code
The limited-weight code (LWC) [5], which restricts

the hamming weight of a codeword to be below a fixed
number, is a sparse representation of the original data
that can be used to greatly reduce the number of ze-
roes.4 For example, the bus inverting code is an n

2 -
LWC (n denotes the number of bits in the original data),
whereas a one-hot code is a 1-LWC. However, the algo-
rithmic generation of an arbitrary LWC is hard. Stan
et al. [6] propose a 3-LWC with a very low hardware
overhead, which encodes 8-bit data to 17-bit codewords
with a hamming weight of at most 3. We make a small
improvement over the original coding algorithm (Sec-
tion 5.2.2), and apply the modified coding scheme (3-
LWC) to the data at an 8-bit granularity.

4.3.2 More is Less Code
MiLC, a very efficient coding scheme with a low band-

width overhead, is proposed in this section. MiLC ex-
ploits the spatial correlations in the data, and manages
to reduce the number of zeroes in a data block better
than the recent work on CAFO [22]. The coding scheme
is intuitive and exhibits a fixed latency, whereas CAFO
requires a variable number of iterations to reduce the
number of zeroes. Figure 10 shows the basic idea be-
hind MiLC. The original data at the 64-bit granularity
are laid out as an 8× 8 square, and the final code is 80
bits (i.e., the square plus the last two columns). Each
row of eight bits has four candidate codes as shown at
the bottom: 1) inverted and XORed with the previous
row, 2) XORed with the previous row, 3) inverted, and
4) original. Two extra mode bits denote the chosen
combination. The mode value is selected to achieve the
fewest number of zeroes, after which the data are en-
coded. The decoding step is even simpler: MiLC first
decides whether the inversion is needed, and then de-
cides on the application of the XOR based on the se-
lected mode. The gray-colored bit in the first row is
used to perform the bus inverting over the other seven
xor mode bits in the same column to further reduce the
number of 0s.

MiL applies MiLC as the base coding scheme when
the 3-LWC code cannot be applied to achieve the best
energy savings.

4Strictly speaking, minimizing the number of zeroes requires
inverting all of the bits after LWC is applied, because by
default LWC minimizes the number of ones as opposed to
zeroes.

8x8 data

r4
r3

rx

r4rx

rx rx r4 r4
(1,1) (1,0) (0,1) (0,0)

xorbi

Figure 10: MiLC coding schemes.

4.4 Modifications to the Memory Controller
Minor modifications to an existing memory controller

are needed to support different data burst lengths. For-
tunately, two of the required features (dynamic burst
length, and codec latency) can be readily supported by
DDR4 [37].

Dynamically changing the burst length is already sup-
ported by the DDR4 interface. Specifically, an extra
address pin called “burst chop” specifies a burst length
of eight (no burst chop) or four (burst chop), on the
fly. Supporting a greater variety of burst lengths re-
quires more pins to differentiate among the alterna-
tives. In this paper, we try to avoid the addition of
any pins. Based on a performance sensitivity study
to the burst length and the available coding schemes,
the new burst lengths are respectively chosen to be 10
and 16 to support MiLC and 3-LWC. This means that
MiLC is used when the decision logic decides not to ap-
ply the more expensive 3-LWC coding. Note that this
is only one design point; the burst length can even be
made application-specific with a few candidate coding
schemes, which is left for future work.

The DDR4 interface also supports programmable pream-
bles for column read and write commands. This feature
can be used when the coding scheme requires a variable
number of cycles to finish. MiLC and 3-LWC both ex-
hibit low codec latencies close to that of DBI 5, so no
extra preamble is needed at runtime; more sophisticated
coding schemes can reuse the preamble to guarantee the
right timing for the data burst. Notably, the one or two
cycle latency added to the memory request has little
effect on the performance of the system.

4.5 Transition Signaling Logic for LPDDR3
In the unterminated LPDDR3 interface, the data move-

ment energy is consumed by the bit flips on the wires.
It is possible to apply coding schemes such as bus inver-
sion (BI) directly to the interface; alternatively, transi-
tion signaling [12] can convert the energy problem on
the unterminated interface to the same logical problem
encountered on the terminated interface, in which the
optimization only needs to consider the current data.
Either the level or the transition of voltage can be used
to represent logic 1 and 0. Level signaling represents in-
formation by high vs. low voltage, respectively, whereas
transition signaling represents logic 1 by a voltage level
transition on a wire, and logic 0 by the absence of a
level transition. Therefore, an energy-efficient coding

5One more DRAM cycle is added to the fixed tCL based on
the systhesis results.

247

scheme with transition signaling needs to minimize only
the number of 1s in each data bock to reduce the data
movement energy. This makes the MiL framework read-
ily applicable to LPDDR3.

4.6 Optimizations
Occasionally, the sparse data representation gener-

ated by MiLC exhibits fewer zeroes than the sparse data
representation that results from applying LWC to the
same original data. One optimization that the memory
controller can apply to writes is to encode the data with
both coding schemes ahead of time, and pick the better
option (i.e., the code that results in fewer zeroes, with
no extra latency imposed on the following column com-
mand). This write optimization is implemented in MiL;
however, the optimization is not applicable to reads,
since the memory controller cannot inspect the data at
the moment the read command is scheduled.

More changes can be made to the memory controller
to improve the results. This paper takes the strategy
of decoupling functional components completely in the
memory controller for low complexity, thereby requir-
ing no modifications to the command scheduler of the
memory controller. A coding-aware memory controller
can combine the decision logic with the scheduler, which
should result in better coding decisions based on greater
knowledge of scheduling decisions. For instance, the
memory writes, which are not on the critical path, can
be coded by finding the right available slots on the data
bus. In the current version of MiL, we forego such op-
timizations for simplicity: only a simple write drain
mode [38] is implemented to mitigate the effect of the
tWTR bus turnaround constraint.

5. IMPLEMENTATION
The implementation of MiL is straightforward and

carries low overhead. This section discusses each com-
ponent (the decision logic at the memory controller, and
the codec logic on both sides of the DRAM interface)
of the MiL framework.

5.1 Decision Logic
A high-level explanation of the decision logic is given

in Section 4.2, and the implementation turns out to be
straightforward. In MiL, a group of comparators is used
to check whether a column command (read or write)
will become ready within the next X cycles, where X
is the burst length (in cycles) for 3-LWC. When there
is more than one column command, the decision logic
picks MiLC rather than 3-LWC to avoid delaying other
column commands.

Figure 11 illustrates the concept. All of the timing
constraints for the column commands are guaranteed
with saturating down counters that decrement every cy-
cle. A zero in a counter indicates that the corresponding
timing constraint is met in the current cycle. Similarly,
the timing constraint is met within X cycles when the
corresponding counter has a value less than or equal to
X. By ANDing the ready signals of all of the timing
constraints for a column command, as shown by the

tRCD

tCCD

cnt

cnt

=0

<=X

=0

<=X

 rdy

 rdyX

...
...

......

...

(a)

Sched

...

rdy1
rdyn

...

o

o
...

rdyX1
rdyXn

...

... o

(b)

0: MiLC
1: 3LWC

Figure 11: Illustrative example of the implemen-
tation of the decision logic: (a) the rdyX gener-
ation logic, and (b) the selection logic. Note
that only the gray portions are newly added to
a conventional memory controller.

“rdyX” signal in Figure 11(a), the readiness within X
cycles is known. If the number of ready column com-
mands within X cycles is greater than one, MiLC is
picked (i.e., decision logic outputs a 0). This is shown
in Figure 11(b); the output of the scheduler is one-hot
encoded to indicate which command is scheduled.

5.2 Codec Logic
The codec logic handles the data encoding and de-

coding for different coding schemes.

5.2.1 Data Layout
In a DDR4 memory system, a block of data comes

from a rank of either eight (x8) or four chips (x16).
In order to support critical word first, the data layout
is commonly organized as shown in Figure 12(a) [39].
When the data block is transferred on the interface,
each chip ships the data in the fashion shown in Fig-
ure 12(b), but with the encoded format. For the LPDDR3-
based point-to-point system, since all of the data are
supplied by a single chip, it is easy to apply a data lay-
out similar to what is shown here. Therefore, without
loss of generality, the DDR4 data layout is assumed in
the following sections.

1 2 ... 8 1 2 ... 8...

512 bit

: 8 bit data in chip k (x8)
or chip k%4 (x16)

k

(a) (b)

time

64 bit

...

8

1 1

8

 col 1

Figure 12: (a) The 512-bit data block layout for
DRAM chips, and (b) data block padding for
3-LWC.

5.2.2 3-LWC

248

The new 3-LWC coding algorithm, which converts 8-
bit data to a 17-bit codeword, is applied to each small
square (8 bits) of every column, as shown in Figure 12(b).
The total number of bits for transmitting 512 original
data bits with 3-LWC is 1088 bits; these bits are trans-
ferred by reusing some of the existing DBI pins and
increasing the burst length to 16 (8 cycles). Figure 13
illustrates the algorithm to generate the code word: 1)
a group of 8 data bits is split into two halves, and one
hot encoding is applied to generate the 15-bit left and
right intermediate forms; and 2) left and right data are
ORed to generate the final code, and the mode value
is set based on the code, left, and right conditions as
shown in Table 1.

The code generation algorithm is from prior work [6],
and we further reduce the number of zeroes by reassign-
ing the mode values.6 Therefore, the maximum number
of zeroes within the codeword, including the code and
mode bits, is 3. The decoder simply implements the in-
verse operation based on Table 1, which requires a low
hardware overhead.

4

one-hot
coding

4

15 2

8
d:

c:

l: r:

m:

Figure 13: Illustrative example of a 3-LWC en-
coder: d, l, r, c, m respectively denote data, left,
right, code, and mode bits.

Mode Code Left Right

00 all 0s all 0s all 0s
01 single 1 single 1 single 1
00 single 1 single 1 all 0s
10 single 1 all 0s single 1
10 two 1s greater smaller
00 two 1s smaller greater

Table 1: 3-LWC Mode Generation Table.

5.2.3 MiLC
Encoder. MiLC takes each 64-bit row in Figure 12(b),

and converts it into an 8 × 8 square (Figure 10). Each
eight-bit row is encoded in parallel by the row encoder
(Figure 14). MiLC picks the code for each eight-bit
row with the minimum number of zeroes among the
four candidates. Notably, a simplified implementation
is used for the first row in Figure 10, in which the xorbi
bit is used for bus inverting over the other seven XOR
mode bits in the same column.

6The insight is that different types of codes can reuse the
same mode value, and they can still be distinguished by the
code.

last row data current row data

rx r

rx r

min

nz(rx)

nz(rx)+1

nz(r)+1

nz(r)+2

rx:11
rx:10
 r:01
 r:00

mode=
{xor, bi}code

8 2

Figure 14: Illustrative example of the MiLC row
encoder. The nz function counts the number of
0s in the input 8-bit data, and the additional
constant corresponds to the number of 0s in the
mode value.

Decoder. The MiLC decoder operates in two steps:
1) perform bit inversion over the 8 × 8 region and the
xor column based on the bus invert bits, including the
xorbi bit, in parallel, and 2) XOR the result with the
previous row if the XOR bit is set.

5.3 Transition Signaling for LPDDR3
For LPDDR3, MiL uses transition signaling to make

the energy of data movement a function of the hamming
weight of the original data: transferring a 1 requires the
inversion of the voltage level on the wire, and transfer-
ring a 0 retains the previous voltage. This is realized
by XORing the input bit with the previous value on the
wire at the encoder side. The code is then recovered
by XORing the current value on the wire with the pre-
vious one. Figure 15 shows the implementation of the
encoder (left) and the decoder (right). In the figure, Cn

represents the actual signal on the interface.

Dn
Cn-1

Cn
Dn

Cn-1

Figure 15: Transition signaling.

6. EXPERIMENTAL SETUP
Assessing the performance, energy, and area of MiL

requires both circuit and architecture level design and
evaluation. The MiL framework is designed and verified
in Verilog RTL with Cadence NCSim [44], and synthe-
sized using the Synopsys Design compiler [45] at 45nm
using the FreePDK standard cell library [46]. The num-
bers are then scaled to a 22nm DRAM process using the
methodology [47] 7 and FO4 factors reported in prior
work [48, 49]. The efficacy of MiL depends on both the
contribution of the memory interface to system power

7The peripheral circuitry within the memory array is mod-
eled with ITRS LSTP devices [47].

249

Snapdragon-like Mobile System [40, 8] Niagara-Like Microserver System [41]

Core 8 out-of-order cores 1.6GHz 8 in-order cores 3.2GHz
single thread in each core, issue width: 3 4 threads in each core, fetch/issue width: 4/2

IL1 cache (per core) 32KB, direct mapped, 64B line, hit/miss delay 1/1
DL1 cache (per core) 32KB, 4-way, 64B line, WB, hit/miss delay 2/2
Coherence MESI
L2 cache 2MB, 8-way, 8 banks, 64B line, hit/miss delay 8/4 4MB, 8-way, 8 banks, 64B line, hit/miss delay 16/4
Stream Prefetcher nstreams/distance/degree: 64/8/1 nstreams/distance/degree: 64/32/4
Memory Controller scheduling:FR-FCFS [42], address mapping: page-interleaving

read queue:64 entries, write queue:64 entries, write drain high/low watermark: 60/50
Memory LPDDR3-1600 chips [43, 40] DDR4-3200 chips [37]

channels/ranks/banks=2/2/8, pageSize:4KB channels/rank/banks=2/2/8, pageSize:8KB

DRAM System CL/WL/CCD S/CCD L/RC/RTP/RP/RCD/RAS/WR/RTRS/WTR S/WTR L/RRD S/RRD L/FAW/REFI/RFC

DDR4-3200 20/16/4/8/72/12/20/20/52/4/2/4/12/9/11/48/12480/416
LPDDR3-1600 12/6/4/4/51/6/16/15/34/6/1/6/6/8/8/40/3120/104

Table 2: Simulated system parameters.

and the bandwidth utilization of the applications. MiL
is less effective if the memory interface power is low or
if the bandwidth utilization is too high.8

6.1 Architecture
We model two systems: a DDR4 based server sys-

tem, and an LPDDR3 based mobile system (system pa-
rameters are shown in Table 2). Simulations are per-
formed on a heavily-modified version of the SESC simu-
lator [50].A stream prefetcher [51] is simulated with the
best performing configuration. To mitigate the adverse
effect of tWTR on performance, write drain mode [38]
is implemented, and the best performing memory con-
troller configuration is picked for the baseline. DRAM
is modeled with a detailed, cycle-accurate DDRx tim-
ing model that includes the new timing constraints in-
troduced in DDR4, such as the bank group dependent
tRRD, tWTR, and tCCD. We use McPAT 1.0 [52] and
DDR4/LPDDR3 power calculators [53, 10] to estimate
the energy. Table 2 lists all of the modeled DDRx timing
parameters. The data bus is modeled with the dynamic
burst length feature (10 or 16) when MiL is applied,
and with a fixed burst length (8) for the baseline with
DBI.

6.2 Applications
In order to assess the impact of MiL on applications

with different characteristics, we evaluate 11 applica-
tions with different bandwidth utilization and memory
intensity. These applications and the corresponding in-
put data sets are shown in Table 3.

7. EVALUATION
The MiL framework is evaluated herein.

7.1 MiL Hardware Overhead
As discussed in Section 5, both the decision logic and

the transition signaling circuits exhibit low design com-
plexity. We focus on the synthesis results for the two
coding schemes, MiLC and 3-LWC. Table 4 shows the
area, power, and latency of the codec logic for a 22nm

8This would be the case for streaming memory accesses;
however, even memory intensive benchmarks (e.g., GUPS
and CG) exhibit abundant idle cycles to be exploited.

Benchmarks Suite Input

GUPS HPCC [54] 225 table, 1048576 updates
CG NAS OpenMP [55] Class A
MG NAS OpenMP Class A

SCALPARC NuMineBench [56] F26-A32-D125K.tab,
HISTOGRAM Phoenix [57] small
Matrix Mult Phoenix 3000 x 3000 matrix
String Match Phoenix 50MB file
ART-OMP SPEC OpenMP [58] MinneSpec-Large

SWIM-OMP SPEC OpenMP MinneSpec-Large

FFT SPLASH-2 [59] 220 complex data points
OCEAN SPLASH-2 514×514 ocean

Table 3: Applications and data sets.

DRAM process9. The power and area costs are neg-
ligible; however, the extra latency (up to 0.35ns) is a
significant fraction of the DDR4 clock period (0.63ns),
and is taken into account by increasing tCL by one clock
cycle. MiL also eliminates the need for extra DBI pins
by exploiting the idle cycles, which results in a lower
pin cost.

Area (um2) Power (mW) Latency (ns)

MiLC Enc 1429 3.32 0.35
MiLC Dec 188 0.16 0.39
3-LWC Enc 173 0.44 0.10
3-LWC Dec 81 0.70 0.12

Table 4: Area, power and latency for the MiL
codec.

7.2 Performance
The performance results for the DDR4 and LPDDR3

systems are presented in this section. CAFO [22] is
a recently published coding scheme that aims at im-
proving the write endurance of non-volatile memories
by reducing the number of bit flips. It can be adapted
to the MiL framework to reduce the number of zeroes
on DDRx bus transfers. CAFO [22] is applied under
the MiL framework on 8× 8 square data to achieve the
same bandwidth overhead as MiLC. Since CAFO ben-
efits from iterative search, the encoding logic requires
a clock to synchronize each iteration. We assume one
DRAM cycle per iteration for CAFO in this paper. For
example, CAFO2 denotes two iterations, including one
row and one column search, such that the encoding

9Note that MiLC is at the 64-bit granularity, whereas 3-
LWC is at the 8-bit granularity.

250

latency is deterministic (i.e., 2 DRAM cycles) and is
added to the tCL. Therefore, CAFO is evaluated with
different numbers of iterations and compared to MiLC.
It is observed that CAFO with four iterations achieves
a comparable number of 0 s as the original CAFO with-
out an extra latency penalty; consequently, two CAFO
variations (with two and four iterations) are shown in
the following results. In the Figures, the MiLC-only
scheme always encodes the data with MiLC.
Figure 16 shows the execution times normalized to

the DBI baseline for CAFO2, CAFO4, MiLC-only, and
MiL on both DDR4 and LPDDR3 memory systems.
All of the results are sorted by memory bus utilization
from low to high. The results exhibit a clear trend: the
more data-intensive the application is, the more perfor-
mance degradation the sparse coding incurs. In Fig-
ure 16(a), the performance degradation of the highly
memory-intensive benchmarks SWIM, OCEAN and CG,
are within 4% of a conventional DDR4 system. On av-
erage, MiL respectively outperforms CAFO2, CAFO4,
and MiLC-only by 2%, 3%, and 1%. CG and GUPS
are sensitive to the additional tCL cycles, so MiL and
MiLC-only outperform CAFO. Note that MiL is 9%
faster than MiLC-only in GUPS, and even outperforms
the baseline in STRMATCH. The MiL framework in-
creases the latency of memory requests by applying ei-
ther MiLC or 3-LWC. This increased latency can re-
sult in a higher command queue occupancy, which al-
lows the scheduling policy to pick among more candi-
date commands. The performance results achieved on
the LPDDR3 system are shown in Figure 16(b). The
single-threaded core of the evaluated mobile system is
more sensitive to the additional memory traffic than the
DDR4-based server system. With the look-ahead deci-
sion logic, the performance degradation is constrained
to less than 4%. Due to the out-of-order execution ca-
pability of the processor core, the performance degra-
dation incurred by CAFO2 and CAFO4 on GUPS is
reduced to around 10%. HISTOGRAM exhibits trends
similar to GUPS.

7.3 Energy Impact on DDR4
Figure 17 illustrates the number of zeroes transferred

under four different schemes: CAFO2, CAFO4, MiLC-
only, and MiL normalized to the DDR4 DBI code. As
compared with DBI, all of these schemes significantly
reduce the number of 0s on MM, STRMATCH, and
GUPS. On average, MiL respectively outperforms DBI,
CAFO2, CAFO4, and MiLC-only by 49%, 12%, 11%,
and 9%.
A DRAM energy breakdown is shown in Figure 18(a).

The DDR4 background energy is a big contributor to
the overall DDR4 energy due to the lack of a fast power
down mode, which offsets the IO energy savings. MiL
reduces the DDR4 system energy by 8% on average.
The average system energy savings shown in Fig-

ure 19(a) are 2.2%, 1.6%, 3.1%, and 3.7% for CAFO2,
CAFO4, MiLC-only, and MiL on a server system. The
system energy savings are determined by the percent-
age of memory system energy, data bus bandwidth, and

(a)

(b)

1.3
1.5

Figure 16: Execution Time normalized to the
DBI baseline: CAFO2, CAFO4, MiLC-only, and
opportunistic MiL (a) with DDR4, and (b) with
LPDDR3.

Figure 17: Number of zeroes normalized to the
DDR4 DBI baseline.

the reduction in the number of 0 s. This explains why
MM and STRMATCH (memory non-intensive applica-
tions where the memory system energy is not signifi-
cant) exhibit only small energy savings, although the
reduction in the number of 0 s is significant. Memory
intensive benchmarks, such as GUPS and SCALPARC,
show greater savings due to the relatively high reduc-
tion in the number of 0 s. Better sparse coding schemes,
and tighter integration of the scheduler and the decision
logic, may further improve the energy efficiency. In ad-
dition, the new power modes proposed by Malladi et
al. [60] can reduce background power, and help increase
the percentage of system energy savings that MiL can
provide.

7.4 Energy Impact on LPDDR3
When applied to LPDDR3, MiL outperforms DBI,

CAFO2, CAFO4, and MiLC-only by 46%, 13%, 10%,
and 9% in the number of transitions, respectively. This
result is similar to the savings achieved on DDR4, be-
cause the effect of the coding scheme depends on the
characteristics of the application data. Since LPDDR3
is optimized aggressively to reduce the background power
consumption, the IO energy is a major contributor to
the LPDDR3 DRAM system energy. The average en-

(a)

(b)

Figure 18: Energy breakdown of DBI vs MIL in
(a) DDR4, and (b) LPDDR3.

(a)

(b)

Figure 19: (a) DDR4 and (b) LPDDR3 MiL-
based system energy normalized to the DBI
baseline.

ergy reduction observed on the LPDDR3 system is 17%,
as shown in Figure 18(b). Due to the energy efficiency
of the mobile cores, the system energy is not sensitive to
the small performance degradation. Applications that
heavily utilize the data bus (e.g., SWIM, ART, GUPS)
expend a greater fraction of the memory system energy
at the IO interface, which results in greater system en-
ergy savings with MiL. Figure 19(b) shows that MiL
achieves 7% average system-wide energy savings, which
is greater than the savings achieved by CAFO2 (5%),
CAFO4 (5%) and MiLC-only (6%).

7.5 Analysis and Discussion
Sensitivity studies were performed on both DDR4

and LPDDR3 systems. Only the DDR4 results are
shown here for brevity; the LPDDR3 based system ex-
hibits similar characteristics.

7.5.1 Fixed Burst Length: Coding With A Single Scheme
Recall that the distribution of the idle cycles between

successive data bursts was analyzed in Section 3.1. A
näıve approach to exploit the idle cycles is to perform
a specific sparse coding at all times to improve the en-
ergy efficiency. Intuitively, the longer the sparse code

is, the less energy is consumed by the memory interface.
However, the longer burst length required by the sparse
code can delay ready column commands and degrade
the performance, which in turn can increase the back-
ground energy consumption of the system. In other
words, a careful balance must be struck between the
DRAM interface energy and the background energy.
Figure 20 shows the execution time results based on

different fixed burst lengths. SWIM, OCEAN, CG, and
GUPS are highly data-intensive benchmarks, which suf-
fer from the increased burst length (BL). STRMATCH
(String Match) actually runs slightly faster when the
burst length is 14. The extra latency due to the con-
tention on the data bus allows more requests to be
queued up, which provides more ready commands that
the memory scheduler can inspect when deriving the
command schedule. On average, the execution times are
increased by 3%, 6%, 6.5%, and 9.3% with BL10, BL12,
BL14, and BL16, respectively. Therefore, always cod-
ing with a long burst length is not attractive. However,
there are indeed opportunities to exploit long periods of
idle cycles as shown in Figure 4. As a result, a hybrid
scheme (with MiLC as the base scheme and 3-LWC as
the opportunistic scheme) is a natural choice10 to in-
crease the energy savings without hurting performance.

1.419

Figure 20: Sensitivity of execution time to burst
length. The results are normalized to burst
length=8.

7.5.2 Look-ahead Distance
In MiL, the decision logic (Section 4.2) checks whether

there are any column commands that will become ready
within the next X cycles, which is referred to as the
“look-ahead distance” hereforth. Since MiL uses the 3-
LWC as the optional coding scheme (which occupies the
data bus for 2×4 = 8 cycles during each transaction), it
is natural to set X = 8. This guarantees that no ready
column command has to be postponed at the moment
the current command is scheduled with 3-LWC.
Figure 21 illustrates how the system performs as the

look-ahead distance is varied. The geometric mean of
the execution times are all within 4% of one another for
X � 6. Note that at X = 14 (rather than X = 8),
the system performs the best, with a 2% performance
degradation; this is because the simple decision logic
cannot perfectly predict the future commands in the

10We eliminate the need for the DBI pin and reuse the burst
chop pin, as discussed in Section 4.4.

next eight cycles at the time a command is scheduled.
A more sophisticated decision logic is possible, and may
achieve better results as discussed in Section 4.6.

Figure 21: Impact of the look-ahead distance
“X” on execution time.

7.5.3 MiLC vs 3-LWC: How Often are They Used?
We study how often MiLC and 3LWC are at run-

time; the results are shown in Figure 22. The results
indicate that the opportunity to apply long sparse codes
decreases when the data bus utilization increases. The
data-intensive benchmarks cannot fully benefit from the
3-LWC, which indicates that an intermediate sparse code
with code length in between that of MILC and 3-LWC
may improve the energy efficiency of data movement.

Figure 22: The fraction of time that MiLC and
3-LWC coding are chosen at runtime.

8. CONCLUSION
This paper presents MiL, a novel data communication

framework built on top of the DDRx interface, which
exploits the data bus under-utilization due to DRAM
timing constraints. The experimental results show a
2× energy reduction in the DDR4 IO interface, and an
8% DDR4 system energy reduction with a less than 2%
performance degradation. We conclude that MiL opens
up a new dimension for energy optimization over the
DDRx IO interface.

9. ACKNOWLEDGEMENTS
The authors would like to thank anonymous reviewers

for useful feedback. This work was supported in part
by NSF grant CCF-1217418.

10. REFERENCES
[1] B. Dally, “Power, programmability, and granularity: The

challenges of exascale computing,” in Test Conference
(ITC), 2011 IEEE International, 2011.

[2] S. Keckler, W. Dally, B. Khailany, M. Garland, and
D. Glasco, “Gpus and the future of parallel computing,”
Micro, IEEE, vol. 31, pp. 7–17, Sept 2011.

[3] “Samsung DDR4 Brochure.”
http://www.samsung.com/global/business/
semiconductor/file/media/DDR4_Brochure-0.pdf.

[4] J. Feng, B. Dhavale, J. Chandrasekhar, Y. Tretiakov, and
D. Oh, “System level signal and power integrity analysis for
3200mbps ddr4 interface,” in Electronic Components and
Technology Conference (ECTC), 2013 IEEE 63rd,
pp. 1081–1086, IEEE, 2013.

[5] M. R. Stan and W. P. Burleson, “Limited-weight codes for
low-power i/o,” in International Workshop on low power
design, 1994.

[6] M. R. Stan and W. P. Burleson, “Coding a terminated bus
for low power,” in VLSI, 1995. Proceedings., Fifth Great
Lakes Symposium on, pp. 70–73, IEEE, 1995.

[7] “Flexible, Low Power Microservers for Lightweight
Scale-Out Workloads.”
http://www.intel.com/newsroom/kits/atom/c2000/pdfs/
Intel_Microserver_Whitepaper.pdf.

[8] “Qualcomm Snapdragon 808.” http://www.qualcomm.com/
products/snapdragon/processors/808.

[9] K. Sohn, T. Na, I. Song, Y. Shim, W. Bae, S. Kang,
D. Lee, H. Jung, S. Hyun, H. Jeoung, K.-W. Lee, J.-S.
Park, J. Lee, B. Lee, I. Jun, J. Park, J. Park, H. Choi,
S. Kim, H. Chung, Y. Choi, D.-H. Jung, B. Kim, J.-H.
Choi, S.-J. Jang, C.-W. Kim, J.-B. Lee, and J. S. Choi, “A
1.2 v 30 nm 3.2 gb/s/pin 4 gb ddr4 sdram with dual-error
detection and pvt-tolerant data-fetch scheme,” Solid-State
Circuits, IEEE Journal of, vol. 48, pp. 168–177, Jan 2013.

[10] “MICRON LPDDR3 Power Calculator.”
http://www.micron.com/.

[11] M. R. Stan and W. P. Burleson, “Bus-invert coding for
low-power I/O,”TVLSI, vol. 3, no. 1, pp. 49–58, 1995.

[12] M. Stan and W. Burleson, “Low-power encodings for global
communication in cmos vlsi,”TVLSI, vol. 5, no. 4,
pp. 444–455, 1997.

[13] M. Anders, N. Rai, R. K. Krishnamurthy, and S. Borkar,
“A transition-encoded dynamic bus technique for
high-performance interconnects,” JSSC, vol. 38, no. 5,
pp. 709–714, 2003.

[14] M. R. Stan and Y. Zhang, “Perfect 3-limited-weight code
for low power i/o,” in Integrated Circuit and System
Design. Power and Timing Modeling, Optimization and
Simulation, pp. 79–89, Springer, 2004.

[15] S. Pasricha and N. Dutt, On-Chip Communication
Architectures: System on Chip Interconnect. Morgan
Kaufmann Publishers Inc., 2008.

[16] W.-C. Cheng and M. Pedram, “Memory bus encoding for
low power: a tutorial,” in Quality Electronic Design,
International Symposium on, pp. 199–199, IEEE Computer
Society, 2001.

[17] S. Komatsu, M. Ikeda, and K. Asada, “Low power chip
interface based on bus data encoding with adaptive
code-book method,” in GLSVLSI, 1999.

[18] J. Yang, R. Gupta, and C. Zhang, “Frequent value encoding
for low power data buses,”TODAES, vol. 9, no. 3,
pp. 354–384, 2004.

[19] D. Suresh, B. Agrawal, J. Yang, and W. Najjar, “Tunable
and energy efficient bus encoding techniques,”TC, vol. 58,
no. 8, pp. 1049–1062, 2009.

[20] B. R. Childers and T. Nakra, “Reordering memory bus
transactions for reduced power consumption,” in LCTES,
2000.

[21] S. Cho and H. Lee, “Flip-N-Write: A simple deterministic
technique to improve PRAM write performance, energy
and endurance,” in International Symposium on
Microarchitecture, (New York, NY), Dec 2009.

[22] R. Maddah, S. M. Seyedzadeh, and R. Melhem, “Cafo:
Cost aware flip optimization for asymmetric memories,” in
High Performance Computer Architecture (HPCA), 2015
IEEE 21st International Symposium on, pp. 320–330,
IEEE, 2015.

[23] D. Skinner, “Lpddr4 moves mobile,” in In JEDEC Mobile
Forum Conference, 2013.

[24] J.-S. Kim, C. S. Oh, H. Lee, D. Lee, H. R. Hwang,
S. Hwang, B. Na, J. Moon, J.-G. Kim, H. Park, J.-W. Ryu,
K. Park, S. K. Kang, S.-Y. Kim, H. Kim, J.-M. Bang,
H. Cho, M. Jang, C. Han, J.-B. Lee, J. S. Choi, and Y.-H.
Jun, “A 1.2 v 12.8 gb/s 2 gb mobile wide-i/o dram with
4x128 i/os using tsv based stacking,” Solid-State Circuits,
IEEE Journal of, vol. 47, pp. 107–116, Jan 2012.

[25] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim,
Y. J. Park, J. H. Kim, D. S. Kim, H. B. Park, J. W. Shin,
J. H. Cho, K. H. Kwon, M. J. Kim, J. Lee, K. W. Park,
B. Chung, and S. Hong, “25.2 a 1.2v 8gb 8-channel 128gb/s
high-bandwidth memory (hbm) stacked dram with effective
microbump i/o test methods using 29nm process and tsv,”
in Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2014 IEEE International, pp. 432–433,
Feb 2014.

[26] J. Jeddeloh and B. Keeth, “Hybrid Memory Cube new
DRAM architecture increases density and performance,” in
VLSI Technology (VLSIT), 2012 Symposium on.

[27] T. Pawlowski, “Hybrid Memory Cube (HMC).” HotChips,
2011.

[28] Z. Li, R. Zhou, and T. Li, “Exploring high-performance and
energy proportional interface for phase change memory
systems,” in High Performance Computer Architecture
(HPCA2013), 2013 IEEE 19th International Symposium
on, pp. 210–221, IEEE, 2013.

[29] S. Saini, J. Chang, and H. Jin, “Performance evaluation of
the intel sandy bridge based nasa pleiades using scientific
and engineering applications,” in High Performance
Computing Systems. Performance Modeling,
Benchmarking and Simulation, pp. 25–51, Springer, 2014.

[30] E. Ipek, O. Mutlu, J. Martinez, and R. Caruana,
“Self-optimizing memory controllers : A reinforcement
learning approach,” in International Symposium on
Computer Architecture, (Beijing, China), Jun 2008.

[31] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis,
K. Periyathambi, and M. Horowitz, “Towards
energy-proportional datacenter memory with mobile dram,”
in Proceedings of the 39th Annual International Symposium
on Computer Architecture, ISCA ’12, (Washington, DC,
USA), pp. 37–48, IEEE Computer Society, 2012.

[32] B. Jacob, “The memory system: you can’t avoid it, you
can’t ignore it, you can’t fake it,” Synthesis Lectures on
Computer Architecture, vol. 4, no. 1, pp. 1–77, 2009.

[33] E. Ipek, Reconfigurable and Self-optimizing Multicore
Architectures. PhD thesis, Cornell University, 2008.

[34] E. Saule, K. Kaya, and Ü. V. Çatalyürek, “Performance
evaluation of sparse matrix multiplication kernels on intel
xeon phi,” in Parallel Processing and Applied Mathematics,
pp. 559–570, Springer, 2014.

[35] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and
O. Mutlu, “Memory power management via dynamic
voltage/frequency scaling,” in Proceedings of the 8th ACM
international conference on Autonomic computing,
pp. 31–40, ACM, 2011.

[36] “DDR4 bank groups in embedded applications.”
http://www.synopsys.com/Company/Publications/DWTB/
Pages/dwtb-ddr4-bank-groups-2013Q2.aspx.

[37] Micron, 4Gb DDR4 SDRAM Data Sheet: EDY4016A.

[38] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. H.
Pugsley, A. N. Udipi, A. Shafiee, K. Sudan, M. Awasthi,
and Z. Chishti, “Usimm: the utah simulated memory
module a simulation infrastructure for the jwac memory
scheduling championship,” 2012.

[39] B. L. Jacob, S. W. Ng, D. T. Wang, and D. T. Wang,
Memory Systems: Cache, DRAM, Disk. Morgan
Kaufmann, 2008.

[40] “Qualcomm Snapdragon 805.”
http://www.anandtech.com/show/8035/qualcomm-
snapdragon-805-performance-preview.

[41] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A
32-way multithreaded sparc processor,” IEEE Micro,
vol. 25, no. 2, pp. 21–29, 2005.

[42] S. Rixner et al., “Memory access scheduling,” in ISCA,
2000.

[43] Micron, 16Gb 216-Ball, Dual-Channel Mobile LPDDR3
SDRAM Data Sheet: EDFA164A.

[44] “Cadence NCSim.” http://www.cadence.com/products/fv/
enterprise_simulator/pages/default.aspx.

[45] “Synopsys Design Compiler.”
http://www.synopsys.com/Tools/Implementation/
RTLSynthesis/Pages/default.aspx.

[46] “Free PDK 45nm open-access based PDK for the 45nm
technology node.”
http://www.eda.ncsu.edu/wiki/FreePDK.

[47] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. Brockman, and
N. Jouppi, “A comprehensive memory modeling tool and its
application to the design and analysis of future memory
hierarchies,” in Computer Architecture, 2008. ISCA ’08.
35th International Symposium on, pp. 51–62, June 2008.

[48] H. Esmaeilzadeh, E. Blem, R. St. Amant,
K. Sankaralingam, and D. Burger, “Dark silicon and the
end of multicore scaling,” in ISCA, 2011.

[49] N. K. Choudhary, S. V. Wadhavkar, T. A. Shah,
H. Mayukh, J. Gandhi, B. H. Dwiel, S. Navada, H. H.
Najaf-abadi, and E. Rotenberg, “Fabscalar: composing
synthesizable rtl designs of arbitrary cores within a
canonical superscalar template,” in Proceeding of the 38th
annual international symposium on Computer architecture,
ISCA ’11, (New York, NY, USA), pp. 11–22, ACM, 2011.

[50] J. Renau et al., “SESC simulator,” Jan. 2005.
http://sesc.sourceforge.net.

[51] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback
directed prefetching: Improving the performance and
bandwidth-efficiency of hardware prefetchers,” in High
Performance Computer Architecture, 2007. HPCA 2007.
IEEE 13th International Symposium on, pp. 63–74, IEEE,
2007.

[52] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “McPAT: An integrated power,
area, and timing modeling framework for multicore and
manycore architectures,” in ISCA, 2009.

[53] “MICRON DDR4 Power Calculator.”
http://www.micron.com/~/media/documents/products/
power-calculator/ddr4_power_calc.xlsm.

[54] P. Luszczek, J. J. Dongarra, D. Koester, R. Rabenseifner,
B. Lucas, J. Kepner, J. McCalpin, D. Bailey, and
D. Takahashi, “Introduction to the hpc challenge
benchmark suite,” Lawrence Berkeley National Laboratory,
2005.

[55] D. H. Bailey et al., “NAS parallel benchmarks,” tech. rep.,
NASA Ames Research Center, March 1994. Tech. Rep.
RNR-94-007.

[56] J. Pisharath, Y. Liu, W. Liao, A. Choudhary, G. Memik,
and J. Parhi, “NU-MineBench 2.0,” tech. rep., Northwestern
University, August 2005. Tech. Rep. CUCIS-2005-08-01.

[57] R. M. Yoo, A. Romano, and C. Kozyrakis, “Phoenix
rebirth: Scalable MapReduce on a large-scale
shared-memory system,” in IISWC, 2009.

[58] L. Dagum and R. Menon, “OpenMP: An industry-standard
API for shared-memory programming,” IEEE
Computational Science and Engineering, vol. 5, pp. 46–55,
Jan.–Mar. 1998.

[59] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The SPLASH-2 programs: Characterization and
methodological considerations,” in ISCA-22, 1995.

[60] K. Malladi, I. Shaeffer, L. Gopalakrishnan, D. Lo, B. Lee,
and M. Horowitz, “Rethinking dram power modes for
energy proportionality,” in Microarchitecture (MICRO),
2012 45th Annual IEEE/ACM International Symposium
on, pp. 131–142, Dec 2012.

254

