IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001 509

A Reconfigurable Multifunction Computing Cache
Architecture

Huesung Kim Student Member, IEEEArun K. Somanj Fellow, IEEE and Akhilesh TyagiMember, IEEE

~ Abstract—A considerable portion of a microprocessor chip mapped to the programmable logic. If an application does
is dedicated to cache memory. However, not all applications not need the logic, these functions remain idle. PipeRench

need all the cache storage all the time, especially the computing 61 reconfigures the hardware every cycle to overcome the
bandwidth-limited applications. In addition, some applications limitati f hard
i limitation of hardware resources.

have large embedded computations with a regular structure. Suc X .
applications may be able to use additional computing resources. A field-programmable gate array (FPGA) can be viewed
If the unused portion of the cache could serve these computation as a two-dimensional (2-D) array of configurable logic
needs, the on-chip resources would be utilized more efficiently. plocks (CLBs)—CLB is a primitive programmable element
This presents an opportunity to explore the reconfiguration of a (PE)—with interspersed routing channels. Each CLB consists
part of the cache memory for computing. Thus, we propose adap- ) -

tive balanced computing (ABC)—dynamic resource configuration of conflggrable gates_ realized through lookup tables (LUTS).
on demand from app"cation_between memory and Computing The LUT is an essen“al Component to construct FPGAs. LUTs
resources. In this paper, we present a cache architecture to convert usually have four inputs and one output out of an SRAM-based
a cache into a computing unit for either of the following two struc- - memory to keep the overall operation and routing efficient.
tured computations: finite impulse response and discrete/inverse However, the 1-bit output granularity of each LUT results

discrete cosine transform. In order to convert a cache memorytoa . | int t | th th f
function unit, we include additional logic to embed multibit output In a large Interconnect area—even larger than the area o

lookup tables into the cache structure. The experimental results LUTs—and delay due to a number of switches for the pro-
show that the reconfigurable module improves the execution time grammability [8].

of applications with a large number of data elements by a factor  Xijlinx Virtex FPGA family [7] allows concurrent and partial
as high as 50 and 60. reconfiguration. However, the dynamic partial reconfiguration
Index Terms—Cache memory, reconfigurable computing. can be only done at the granularity of a configurable logic block
consisting of four-input LUTs. An advantage of this architecture
is that a number of smaller configuration memory blocks can be
combined to obtain a larger memory. However, a fine-grained
HE number of transistors on a chip has increased di@emory cannot be synthesized efficiently in terms of area and
matically in the last decade. Within the next five to tetime. In particular, providing a large number of decoders for
years, we will have a billion transistors on a chip. In a modegmall chunks of memory is expensive.
microprocessor, more than half of the transistors are used folThese observations motivate the design of a reconfigurable
cache memories. This trend is likely to continue. Howevemodule that works as a function unit as well as a cache memory.
many applications do not use the entire cache all the time. Su@br goal is to develop such a reconfigurable cache/function unit
applications result in low utilization of the cache memory. Manghodule to improve the overall performance with low area and
times, these applications are bandwidth limited. This suggesitae overhead using multibit output LUTs. The expectation is
using the unutilized cache resources for computing. Therefotieat significant logic sharing between the cache and function
we propose adaptive balanced computing (ABC)—dynamimit would lead to relatively low logic overhead for a recon-
resource configuration on demand from application—betwegigurable cache (RC). If the area overhead of an RC exceeds
memory and computing resources. the area of the dedicated logic for that function, or if the time
Several researchers have studied the use of reconfigurailerhead of cache is significant (if the time increases more than
logic for on-chip coprocessors [1]-[5]. Such logic can speel-10%—commonly treated as a significant increase), this is too
up many applications. An on-chip coprocessor improves thég a compromise.
performance of the applications and reduces the bottleneckSingle-instruction multiple-data (SIMD) multimedia applica-
of off-chip communications. In Garp architecture [1], protions with large streamed working data sets, in which data are
grammable logic resides on a processor chip to accelerat®d once and then discarded [9], can be accelerated by a spe-
some computations. The frequently used computations afal function unit. A larger on-chip cache hardly helps these ap-
plications due to the lack of temporal locality [10], [11]. Since
SIMD applications need less reconfiguration at run-time by the
Manuscript received January 15, 2000; revised October 17, 2000. This whiRture of SIMD, the run-time reconfiguration does not affect the
was supported by Carver Trust Grants, lowa State University, and by the Na/erall execution time significantly once we configure the RC as

I. INTRODUCTION

tional Science Foundation under Grant CCR-9900601. _afunction unit. The multiply-and-accumulation [(MAC)—core
The authors are with the Department of Electrical and ComputerEnglneerlr(]jt%, . S

lowa State University, Ames, IA 50011 USA. finite impulse response (FIR)] and ROM-based distributed
Publisher Item Identifier S 1063-8210(01)03515-6. arithmetic [(DA)—core of discrete/indiscrete cosine transform

1063-8210/01$10.00 © 2001 IEEE



510 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

6bits 6 bits

j—————————»}
b [ 3bits Cin=1 3bits Cin=0
3bits Cin=1} 3bits Cin=0
3bits Cin=1} 3bits Cin=0
16 lines 3bits Cin=1| 3bits Cin=0

|

2bit adder
N
LUT

4bits_>

4t016 decoder

16 lines

3bits Cin=1| 3bits Cin=0
L | 3bits Cin=1{ 3bits Cin=0

@ Cin 3bits Cin=1! 3bits Cin=0
sum[1:0] A 3bits Cin=1 | 3bits Cin=0

@

6bits 6 bits
%2 X [4vits or 6bits
X - -
g| | multiplier 4 bits or 6 bits
3 or 4 bits or 6 bits
4bitsppy é M 4x2 16 lines 4 bits or 6 bits
o constant . .
2| | multiplier 16 line :
N LUT 4 bits or 6 bits
— 4 bits or 6 bits
4 bits or 6 bits
4-bit result [3:0] y T bits or G bifs

or
6-bit result[5:01

(b)
Fig. 1. Multioutput LUTSs: (a) 2-bit adder; (b) & 2 or 4 x 2 constant coefficient multiplier.

(DCT/IDCT)] functions are good examples of such SIMD appli- |l. RECONFIGURABLE CACHE MODULE ARCHITECTURE

cations. Such structured computations are more easily targetep . . . .
: : L n this section, we describe how the proposed reconfigurable
for a reconfigurable cache, especially within the low area and

cache module architecture (RCMA) is organized and works.

time overhead constraints. Hence, in the first phase of this re- . L .
. . L irst, we introduce multibit output LUTs to be used in the re-

search, we have implemented two computing primitives needed . : .
. . ) . onfigurable cache (RC) in Section II-A. Second, we show the
in structured video/audio processing: FIR and DCT/IDCT. We . : :
" . overall architecture of RC and a conventional microprocessor
partition the cache into several smaller caches. Each cachg |

. . . architecture in Section I1-B. Third, we describe the core design
then designed to carry out a set of specialized dedicated comm- : .
) . . of RC architecture, such as how it operates as a cache memory
pute-intensive functions.

The experi ' ?nd a special function unit in Section 1I-C. In Section 1I-D, we

perimental results show that the reconfigurable . .

. . . L ... compare and estimate the cache access time of RC.
module improves the execution time of applications with &
large number of data elements by a large factor (as high as o
50 and 60). With respect to two cache organization modefs; Multibit Output LUTs
a memory cell array cache and a base array cache with segh most FPGA architectures, an LUT usually has four inputs
mented/partitioned bit/word lines, the area overhead of thed one output to keep the overall operation and routing effi-
reconfigurable cache module for FIR and DCT/IDCT is lessient. However, an SRAM-based single-bit output LUT does not
than the core area of those functions. The reconfigurable cadievell with a cache memory architecture because of a large area
(RC) based on a cache with a large memory cell array mayerhead for the decoders in a cache with a large memory block
have faster access time and larger area overhead, while $fme. Instead of using a single-bit output LUT, we propose to
RC built in the base array cache structure may increase tee a structure with multibit output LUTs. Such LUTSs produce
access time slightly with lower area overhead. The conceptrofiltiple output bits for a single combination of inputs and are
reconfigurable cache modules can be applied at Level-2 cachester suited for a cache than the single-bit output LUTSs. Since
instead of Level-1 caches to provide an active-Level-2 cachamultibit output LUT has the same inputs for all output bits,
similar to “Active pages” in [12]. it is less flexible in implementing functions. However, it is not

Section |l describes the architecture of a reconfigurabéemajor bottleneck in our problem domain. A 2-bit carry select
module with the function unit and cache operations witadder and a 2-bit multiplier or a* 2 constant coefficient mul-
multibit output LUTs. The configuration and scheduling of théplier (all need the same size, up to 6-bit output, of LUT) are
module are described in Section Ill. Section IV presents expelepicted in Fig. 1(a) and (b), respectively.
imental results on the reconfigurable module. We conclude thislf a multibit output LUT is large enough for a computation,
paper in Section V. no interconnection (for example, to propagate a carry for an



KIM et al.: RECONFIGURABLE MULTIFUNCTION COMPUTING CACHE ARCHITECTURE 511

LUT . LUT .
(270 * 5) lg— 8bits (279 # 5) | g— 8bits
4bit adder Carry 4bit adder [ Carry In
Carry QU gn(4bits) SUM(4bits)
(€Y
LUT LUT LUT LUT
(278 * 5) (278 * 5} | 8bits (2/M8 * 5) (278 *5) | 8bits
|— -——
4bit adder | 4bit adder 4bit adder | 4bit adder
Cin=0 Cin=1 Cin=0 Cin=1
|
MUX Carr Carry
Carry Out Y
SUM(4bits) SUM(4bits)
(b)
LUT LUT LUT LUT LUT LUT LUT LUT
(274 * 3) (274 * 3y | 4bits (204 * 3) @M3) 1 it (274 * 3) QM*3) | gt (M *3) @M% 3) ) gt
2bit adder | 2bit adder 2bit adder | 2bit adder | 2bit adder | 2bit adder [+ 2bit adder | 2bit adder [+
Cin=0 Cin=1 Cin=0 Cin=1 Cin=0 Cin=1 Cin=0 Cin=1
MUX MUX [
2 y Carry In
Carry Out Carry Carry
SUM(2bits) SUM(2bits) SUM(2bits) SUM(2bits)

(©
Fig. 2. Eight-bit adder using (a) two 9-LUTs, (b) two 8-LUTSs, and (c) four 4-LUTs.

adder) may be required since all possible outputs can be stoagldler using the 4-LUTs might be higher than that using the
in the large memory. In addition, unlike a single-bit output LUT3-LUTs because it has twice the number of multiplexers to be
a multibit output LUT requires only one decoder or a multipropagated. However, the read time for a 4-LUT is faster than
plexer with multiple inputs. Thus, the area for decoders reducéar. an 8-LUT since it has a smaller decoder and shorter data
However, the overall memory requirement to realize a functidimes for memory reading. We therefore recommend the design
increases. The required memory size increases exponentiailyig. 2(c).
with the number of inputs. Therefore, multibit LUTs may not be
area-efficient in all situations. The computing time in this Case Overview of the Processor with Reconfigurable Caches
may also not reduce much due to the complex memory block
and the increased capacitance on long bit lines for reading.  In an RCMA, we assume that the data cache is physically
Instead of using one large LUT, we show implementations pfrtitioned intor cache modules. Some of these cache modules
an 8-bit adder with a number of smaller multibit output LUTsare dedicated caches. The rest are reconfigurable modules. A
as shown in Fig. 1. Fig. 2(a) depicts an 8-bit adder consistipgocessor is likely to have 256 KB to 1 MB Level-1 data cache
of two nine-input LUTs. Each 9-LUT has two 4-bit inputs, onavithin the next five to ten years. Each cache module in our de-
1-bit carry-in, and a 5-bit output for a 4-bit addition. Thus, theign is 8 KB, giving us 32—128 cache modules. A reconfigurable
total memory requirement Bx 2° x 5 = 5120 bits. The carry cache module can behave as a regular cache module or as a spe-
is propagated to the next 9-LUT after the previous 4-bit addital-purpose function unit.
tion in one LUT is completed (i.e., a ripple carry). Since each Fig. 3 shows the overview of the processor with reconfig-
LUT must be read sequentially, this adder takes longer to finisinable caches (RCs). In an extreme case, thesehe modules
an addition. By employing the concept of carry select adder ean provide am-way set associative cache.modules out of
depicted in Fig. 2(b), a faster adder using two 8-LUTs can lmache modules are reconfigurable. Whenever one of these cache
realized as the reading of the LUTs does not depend on the presdules is converted into a computing unit, the associativity of
vious carry. In this case, the actual result of each 4-bit additiontlee cache drops or vice versa. Alternatively, the address space
selected using a carry propagation scheme. However, all LUdan be partitioned dynamically between the active cache mod-
are read in parallel. The total time for the modified adder is thdes with the use of address bound registers to specify the cached
sum of the read time for one 8-LUT and the propagation timedress range. The details of this architecture are being devel-
for two multiplexers. Thus, it is faster. This adder also requiregped in [13]. The RCMA simulation on real multimedia pro-
the same amount of memory (i.d.x 2% x 5 = 5120 bits). grams [13] expects to settle a mix of the following issues. How
To make an area efficient adder, a 4-LUT with 6-bit outlarge should the mix of RC modules/» be? How many and
puts can be employed [Fig. 2(c)]. The same carry propagatishat functions ought to be supported in each RC? What kind of
scheme as in Fig. 2(b) is applied to the 4-LUTs to implemenbnnectivity is needed between these RCs? RC1, RC2,RC3,
an 8-bit adder, but four 4-LUTs are used. The total time of tHRCm in Fig. 3 can be converted to function units, for example,



512

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

HOST
Dynamically Configurable B e s
ynamically Contigurable Bus [« B
} } } } } 2
RC1/ RC2/ RC3/ RCoy/ Co/ 2
«
FIR Filter DCT/IDCT | | Encryption | FPMult. | D-Cache
(reconfig) (reconfig) (reconfig) (reconfig) (Fixed)
Fig. 3. Overview of a processor with multiple reconfigurable cache modules.
to carry out functions such as FIR filter, DCT/IDCT, encryption &  essoagerory I
and a general computation unit like a floating-point multiplie ; (s S M'ﬂ F—— o e
respectively. When some subset of theRCs is used as func- ~ g1 § i locat bit ine
tion units, the other caches continue to operate as memory ca : :_P_; ) b, d N
. . . . = N — | —) ! . elobal bit line
units as usual. It is also possible to configure some cache mi & EiH— 1] “ “ L
. " & d|
ules to become data input and output buffers for a function ur :
The RCs are configured by the processor in response to s i —_felel iy ——fee- e __feife e
cial instructions. We envision a dynamically configurable bt il = ;m" =
(as shown in Fig. 3) to support dynamic communication nee ; . ]
between RCs. Enable sigrin
i ) for memory mpde L Ly 1) _}. L
In this paper, we propose that each cache module be desig 4. it Y
to be reconfigurable into one of several specific function unit
Since each reconfigurable module can be converted into a sn - - SRl - el
set of functions with similar communication needs, intercor (- rereomesipn

nections for each RC are fixed to be a super set of the commu-

nication needs of the supported functions. The advantages-igf 4. Cache architecture in the reconfigurable module.

fixed interconnection are as follows. The fixed interconnection

is less complex, takes less area, and allows faster communiggraddress lines are connected to a decoder for the entire cache

tion than a programmable interconnection. Moreover, our exaf-the figure. In the cache memory mode, the LUTs take the

rience demonstrates the feasibility of merging several functionsit address as their inputs selected by the enable signal for the

into one RC with fixed interconnections. memory mode. Therefore, regardless of the value of the upper
o ) ) bits in the address, the dedicated row decoder selects a word line

C. Organization and Operation of a Reconfigurable Cache i, gach row of LUTS. This means one word is selected in each

Module LUT row according to the least significant 4 bits.

Since we target computation-intensive applications with a Each LUT thus produces as many bits as the width of the
regular structure, such as digital signal processing (DSP) dddT. These are local outputs of the LUTs. These outputs are
image applications (FIR, DCT/IDCT, Cjpeg, Mpeg, etc.), aavailable on the local bit lines of each LUT row. For a normal
mentioned in Section |, we first partition them at coarse levehche operation, one of the local outputs needs to become the
into repeated basic computations. A function in each stagkbal output of the cache. This selection is made based on the
can be implemented using the multibit output LUTs, as delecoding of the remainingh(4) address bits decoded by the
scribed in Section 11-A. We only add pipeline registers to eadfigher bit decoder. The local outputs of the selected row of
coarse-level stage, which contains a number of LUTs, to mak&/Ts are connected to the global bit lines. The cache output
the entire function unit efficient. All these registers are enablésl carried on the global bit lines, as shown in Fig. 4. Thus, the
by the same global clock. Therefore, a number of coarse-leweitput of any row of LUTs can be read/written as a memory
computations can be performed in a pipelined fashion. block through global lines. We propose that these global lines

Fig. 4 shows a coarse template for a module. The cache danimplemented using an additional metal layer. The global bit
be viewed as a 2-D matrix of LUTs. Each LUT has 16 rows tlines are the same as the bit lines in a normal cache.
support a 4-LUT function and as many multibits in each row as Both decodings can be done in parallel. After arow is selected
required to implement a particular function. In the function unlty both the decoders, one word is selected through a column
mode—in which the RC works as a special function unit, thedecoder at the end of the global bit line, as in a normal cache
output of each row of LUTs is manipulated to become inputsperation. In the figure, the tag part of a cache is not shown, and
for the next row of LUTs in a pipelined fashion. In the cacha direct-mapped cache is assumed for the module. However, the
memory mode—in which the RC works as a conventional cachencept of reconfigurable cache can be easily extended to any
memory, the least significant 4 bits of the address lines are caet-associativity cache because the tag logic is independent of
nected to the row decoders dedicated to each LUT. The resttod function unit's operations.



KIM et al.: RECONFIGURABLE MULTIFUNCTION COMPUTING CACHE ARCHITECTURE 513

£ “;(:':; o s If there are many LUTSs that take the same lower 4 bits in the
Z -4)bits (MSB) = — - it line X . .
E 1 s module, we have to consider the increased capacitance due to
Sy I L e the fan-out of the lower address bits. If the delay of decoding
. | —— g i is higher, we may need a larger driver for the least significant 4

bits to reduce the delay. However, the drivers will not affect the
size of the reconfigurable module much, as we can put a driver
into the space saved due to the reduction in the decoder size for
ol 1 o T ey 3 o higher order bits.
Each bit line in a normal cache is replaced by the global line
Fig. 5. Parallel decode cache architecture (base array cache) for faster cé'é‘hté‘e proposed archltect_ure. Since _the globalline QOes not drive
access time. any gates (only the drain connections of the switches placed
in an interleaved fashion—every 16 cache blocks), the recon-
figurable module does not have higher delay due to the global
lines. Although the global bit line in RC is stretched by in-
We compare the access times for the RC with the accessting the interconnection between LUT rows, the number of
time for a fixed cache module of comparable size. The badmins—dominant capacitance in the bit line—is reduced by a
fixed cache module from which a reconfigurable cache is diactor of 16. Thus, the segmented global bit line in the RC has
rived comes in two styles. The first is a memory cell-only arralgss capacitance than the bit line of a conventional cache. Addi-
cache with one address decoder and one data array. The sec¢immally, the local bit-line discharge can be done in parallel with
is a parallel decoding cache with segmented-bit lines and p#re higher address bit decoding and word-line propagation. This
titioned-word lines. The segmented-bit lines are divided eveiydicates that a data signal from a memory cell through the bit
16 cache blocks and enabled by the decoder for the high-oréiee in the module is propagated faster than a normal cache.
address bits with switches like the global bit lines in Fig. 4. The The word line in the reconfigurable cache is longer than in
partitioned-word lines are divided into the decoding lines from memory cell array cache due to additional row decoders for
the the high-order address decoder and local word lines in a sebeh LUT. Therefore, the propagation delay of a signal from
memory block from each dedicated decoder in Fig. 4. The lodak higher bit decoder through the word line in the module is
word lines select one block in every 16 cache blocks, and osightly higher than in a normal cache. However, the sum of two
of them is selected by the high-order address decoder. The baisagation times, word and bit lines, is smaller than in a con-
array cache is shown in Fig. 5. ventional cache since the local bit line in RC starts discharging
The memory-cell-only array cache has single-level decodiriggfore the word line finishes the propagation.
leading to low area and slow access time. An RC based on this\s mentioned earlier, other delays are similar in both cases.
design reduces access time by introducing hierarchical decodinggummary, the cache access time of RC is faster in decoding
at a cost of large area overhead. A base array cache structtinee and bit/word-line propagation time. Therefore, the RC is
however, already incorporates access time advantage of hiefaster than a conventional memory cell array cache in read and
chical decoding, and hence also needs more area. An RC basgtk cache operations.
on this design, hence, shows a slight degradation in access tim2) Base Array CacheRecall that the base array cache
with a very small area overhead. We analyze the RC accessforms parallel decoding with segmented-bit and parti-
time for cache operations in terms of address decoding tiiened-word lines. Cache implementations may have a similar
and word/bit-line propagation time. Other components of aor more efficient parallel decoding structure with segmented bit
cess time, such as sense amplifier and column decoding, dolimas. Unlike the RC organization with vertical and horizontal
differ over the two cache organizations. The access times forgartitions, some partitioned caches might employ only the
RC based on a memory cell array cache and the base array ca@rtcal partition of cache blocks for less capacitance on the
are estimated below, respectively. segmented bit lines because the stretched word line causes
1) Memory Cell Array CacheThe cache with the recon- more delay than a large subblock. However, if we consider
figurable structure may have a faster address decoder thatihe word-line propagation time with the discharging time
memory cell array cache, which contains one main address dé4ocal bit lines, the horizontal partition with the dedicated
coder and a bunch of adjacent memory cells. Since each LWiEcoders to each LUT (submemory module) can make the
with its own row decoder for addressing in the reconfigurablgord-line propagation faster. As described earlier, discharging
module, is much smaller than a large synthesized memory d&lié local bit line can start with charging the word line in RC.
array in a conventional cache, the decoding time of an LUT iswe partition a cache block only vertically for segmented bit
faster than the decoding time of a large cache. As mentioni@tes, one bit line of each bit-line pair in a cache block cannot
earlier, since two decoders can decode in parallel, possible wbel discharged unless the entire word line is fully charged
lines in a cache according to the least significant 4 bits may fdecoded) from the higher address-bit decoder. Although
ready to be read or written before the main row decoder even fthe entire stretched word-line propagation in RC is slightly
ishes decoding an address. The assumption here is that the reliwer due to the insertion of the dedicated LUT decoders, the
decoder has a larger number of address bits. Since the two p&rallel discharge/charge of the local bit/word line compensates
coding operations are independent, the delay of decoders istte stretched word line (or makes it even faster). Therefore,
maximum of two decoding times in the reconfigurable moduleve compare the access time for RC to the base array cache

(Ul 9Ye2 A02 3G) 0] JAX02Q

D. Access Time for Cache Operations



514 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

partitioned vertically and horizontally with the segmented bdf memory. However, the idle memory blocks for LUTs are not
lines and partitioned word lines. likely to be a problem when the module is used as a function
The access time of reconfigurable cache is slightly slowanit due to availability of sufficient memory size in a cache.
than that of a plain cache due to the stretched bit lines caused by
the interconnections between LUT rows in the RC. Based on tRe Initial/Partial Reconfiguration
SPICE model parameters for .8n technology in [14], the ca-  Initial configuration converts a cache into a specific func-
pacitance of the stretched bit line in the RC is increased by 1%#én unit by writing all the entries of LUTs in the cache. The
over the segmented bit line in the caches. Since the bit-line @onfiguration data to program a cache into a function unit may
cess time constitutes 8% of the overall cache access time [15d, available either in an on-chip cache or an off-chip memory.
the access time overhead due to the stretched line is about 1%aedding time for the configuration data in the latter case will
the overall cache access time. Since the word-line propagatismlarger than in the former case. The configuration data may
time, the decoding time, and other components in RC are simitss prefetched by the controller or the host processor to reduce
to those in the base array cache as described above, the ovetiglloading time from off-chip memory. Using normal cache op-
cache access time, therefore, is slower than the base array cathéions, multiple writes of configuration data to the LUTs are
by about 1%. The area overheads for FIR and DCT/IDCT funeasily achieved.
tion modules are given in Section IV-B with respect to both An RC operating as a function unit can also be partially recon-
cache models. figured at run-time using write operations to the cache. When a
partial reconfiguration occurs, the function unit must wait for
[1l. CONFIGURATION AND SCHEDULING the reconfiguration to complete before feeding the inputs. Since

computation data (input and output) and reconfiguration data

We explain how to store and place the configuration data jf,nwents of LUTS) for a function unit share the global lines for
a cache memory based on a conventional cache architecturg ip, buses, we cannot perform both computing and partial re-

Section _”I'A' Then, In Sgc;‘uon I1I-B, we desc”?’e away to Iqa onfiguration at the same time. It is possible to perform both
the configuration data initially and to load partial Co”f'g“rat'or&omputations and reconfigurations simultaneously if we have

data at run-time. The scheduling and controlling data flow fQly 3 ate data lines for computation data and configuration data.
RC is described in Section III-C. Finally, we discuss compilef, 1 rocess a large number of data elements, we do not need to
issues in Section I1I-D. reconfigure often. For example, in convolution application with

. ] ) . 256 taps, we need to reconfigure a module implementing eight
A. Configuration of a Function Unit taps 32 times.

To reduce the complexity of the column decoding in anormal The time to configure initially from the normal cache
cache memory, data words are stored in an interleaved fashia@mory mode to a function unit mode or to reconfigure a part
in a block. The distance in bits between two consecutive bits @f a function unit depends on the number of cycles to write
a word is equal to the number of words in a block. Due to theords into a cache. Initial configuration time dominates the
interleaved placement of data words in a cache block, we cant@al configuration/reconfiguration time. The partial reconfig-
write one entry of a multibit output LUT by writing one word inuration at run-time usually loads a small part of configuration.
acache. This implies that we can only write one bitinto a LUT ifhe targeted SIMD applications require small initial and partial
the width of LUT is the same as the number of words in a cachenfigurations, and hence configuration has a small effect on
block or we can write 2 bits simultaneously into an LUT if theoverall execution time. The formulas for the configuration time
width of the LUT is half the number of words in a cache blockand the simulated configuration times (including initial and
For example, if a 4-LUT produces anbit-wide output for a partial) for FIR and DCT with various function parameters
function and the number of words in a cache block,id6 x n are shown in Section IV-C. With a smaller number of data
words—16 for the number of entries andor the width of LUT  elements, the configuration time dominates the total execution
output (1 bit from each word)—are required to be written time. However, the total execution time is not dominated by
the LUT in the cache. However, since other LUTSs placed in tlie configuration time when the number of input data elements
same cache blocks (LUT row) can also be programmed simakceeds a threshold (which is true for SIMD applications).
taneously, no more than 26 words are required to fill up the ) )
contents of all LUTs in the entire LUT row. In addition, if theC: Scheduling and Controlling Data Flow
width of an LUT is larger than the number of words in a cache A cache module can also be used to implement a function
block, multibit writing is performed into each LUT in an LUT with a larger number of stages than what can be realized by
row, as mentioned above. This places a restriction that the widltle reconfigurable cache in one pass. In this case, we divide
of amultibit output LUT be an integral multiple of the number othe function into multiple steps. That iS, stages required for
words in a cache block to allow an efficient reconfiguration of all function can be split into setS;, Ss, ..., Sk, such that each
LUTs in a row. The number of LUTs in a column—placed versetS; can be realized by a cache module. If &t are similar,
tically—for a pipeline stage may also be required to be a powtren we can adapt data caching, as described in [16], to store the
of two. Since all cache structures are based on a power of tyaytial results of the previous stage as input for the processing
it is more convenient to make all LUT parameters (length arxy the next configuration. “Similar” here means that the LUT
width) a power of two to avoid a complicated controller and acontents may change, but the interconnection between stages is
arbitrary address generator. This may result in underutilizatitine same. This happens, for example, in convolution application.



KIM et al.: RECONFIGURABLE MULTIFUNCTION COMPUTING CACHE ARCHITECTURE 515

By changing the contents of LUTs, we can convert a stageterget description). In another case, the compiler could be re-
the cache block to carry out the operation of a different set sjponsible for generating the configurations, which allows even
pipeline stages. In general, MAC is a very common functiomore flexibility. The configuration data generated in either case
in many DSP and image-processing problems. The applicatidgpsecomputed or compiler-driven) is based on RC framework
computing with MAC may have the same interconnection fdstructure), such as the number of LUTSs, the width of LUTS,

all the computing stages with different LUT contents. the size of RC, and the interconnection.
In a data caching scheme, we place all input data in a cache
and process it for the first set of staggs Following this, the IV. EXPERIMENTAL RESULTS

cache module is configured for stagés. We have to store We have experimented with two applications, convolution

the intermediate results from the current set of stages into A DCT/IDCT. In this section, we describe how we map the
other cache and then reload them for the next set of compu-_,.” . . L
. applications onto RC. First, we map each application into RC
tations. Therefore, we need two other cache modules to stg ) o . X
. : ) . Separately; then we merge two applications into a single RC.
input and intermediate data, respectively. These modules ar
6 also compare the overall area of separated RCs and a com-

a_ddress-mapped to provide efficient data caching for mtem}:ﬁhed RC in Section IV-B. Next, we compare the execution time
diate results. The role of the two caches can be swapped duri

. . ; U %hese applications on RCs with the execution time on a gen-
the next step when a computation requires the intermediate re- . .
sults as inputs and generates another set of intermediate resﬁ[tasl._ purpose processor (GPP) in Section IV-C.
If both an input and an intermediate result are required by %I\I/ Experimental Setup
the computations, the two caches cannot be swapped. The two
caches must be large enough to hold input and intermediate rel) Convolution (FIR Filter): A reconfigurable cache to per-
sults, respectively. Moreover, the reconfigurable cache mustf§ém a convolution function is presented in this section. The
able to accept an input and an intermediate result as its inputdmber of pipeline stages for the convolution in areconfigurable
The host processor needs to set up all the initial configuré@@che depends upon the size of a cache to be converted. Our
tions, which include writing configuration data into LUTs ancdsimulation is based on an 8-KB size cache with 128 bits per
configuring the controller to convert a cache into a function un#lock/16-bit-wide words implementing four input LUTs with
To do this, the host processor passes the information aboutlgnbit output. A conventional convolution algorithm (FIR) is
application to the controller, such as the number of stages &#tPwn in the following:
the number of input elements. The allocation and deallocation
of RCs between cache memory mode and function unit mode,
and the corresponding scheduling, are also the controller’s re-
sponsibility. The controller is initiated and terminated by two
new special instructions added to the conventional instructionOne stage of convolution consists of a multiplier and an adder.
set architecture (ISA). These instructions make the RC funerour example, each stage is implemented by an 8-bit constant
tions active and inactive in a code sequence. The data cachesdefficient multiplier and a 24-bit adder to accumulate up to 256
hold the input and the intermediate results are also allocatedthps in Fig. 6(a). The input data are double pipelined in one stage
the host processor initially. The controller establishes the cdiar the appropriate computation [6]. An>8 8 constant coeffi-
nections between the reconfigurable cache and the data caaiest multiplier can be implemented using two<48 constant
with a dynamic bus architecture. The addresses for input, intetefficient multipliers and a 12-bit adder with appropriate con-
mediate, and output data are produced by an address genetiaetions [17]. A 4x 8 constant coefficient multiplier is imple-
in the controller. These addresses are sequential within the iented using twelve 4-LUTs with single output from each LUT
spective cache units in regular computations. The controller als@ FPGAs. In our implementation, we split the 12-bit-wide LUT
monitors the computation and initiates the next step when tbentents of a 4< 8 conventional constant coefficient multiplier
current step is completed. into two 16-bit output 4-LUTSs (part 1, 2) with 6-bit-wide mul-
tiple outputs for a lower routing complexity of the interconnec-
tions, as shown in Fig. 6(b). The first six bits of each content are
stored in LUT partl, while the last six bits are stored in LUT
These reconfigurable caches can be employed under cqrart2 to realize a 4« 8 constant multiplier.
piler control by adding new instructions, such R (param- The conceptof acarry selectadderis employed for an addition
eters)/DCT(parameters)r rfu cache #, other parametershe using the LUTs described in Section 1I-A. Therefore, we need a
first approach fixes priori the functions supported by the ar-6-bit-wide resultfor a 2-bitaddition, three bits when carry=ird
chitecture. The configuration in this case can be stored in thadthree bitswhencarry-#a 1fromanLUT. Ann-bitaddercan
system memory as a part of the operating system initializatidseimplementedusing: /2] suchLUTsandthecarry propagation
These configurations can then be fetched by the microarchitecheme. The outputis selectedbasedontheinputcarry.
ture in response to an instantiation of these instructions. TheOne stage of convolution can be implemented with 22 LUTSs.
second approadifu) is more extensible through compiler analTo keep the number of LUT rows a power of two for cache
ysis, in as much as it allows the compiler to map any suitabderation, we put six LUTs in each LUT row and have four LUT
function on RCs. The configuration for a set of functions is preews to use 22 (out of 32) required LUTSs. The final placement
defined/precomputed (which is an input to the compiler in itsf LUTs is shown in Fig. 6(b). A few LUTs in the figure are

y(n) =" wikye(n — k). (1)

k=0

D. Compiler Issues



516 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

termediate Input
ﬂlesnllt P

Constant Coeff,
Multiplier (8*8)

|

24-bit Adder

[ PipelineReg. | [ Reg. |

@

4x8 constant muitiplier 4x8 constant multiplier

% ) “8x2bits | 8x2 Biié’g ) '8'>i'2't'>it'§|' TRk -Bi-t-fl-i 8x2 bitf 8x2 bits 8x2 bits 8x2 bits
ey o d . :
= ié .| const. const. | | const. const. [: [ not not not not
gl el mult. mult, [ ] mult. mult. [: | used used used used
e | part 1 part2|: :| part 1 part 2 |:
S| o A
2|, 12-bitadder...... e
8| £t [ not t
O =11 2bit 2bit 2bit 2bit 2bit 2bit |: | DO no
) QI adder adder adder adder adder adder |: used used
¥
1rﬁ ““.......““-.“.....“-“--...‘......““-“”‘“““””””““””””.:
S| 2| 2bit 2bit 2bit 2bit 2bit 2bit |: | not not
é EI adder adder adder adder adder adder |: | used used
& : :
3| £ |
S| £l 2bit 2bit 2bit 2bit 2bit 2bit [i | not not
21:| adder adder adder adder adder adder |} | used used
x . !
(b)

Fig. 6. (a) One stage of convolution and (b) array of LUTs for one stage of convolution.

not used for the computation. In Fig. 6(b), pipeline registemoefficients, and’(0) = (1/v/2), C(u) = C(v) = 1 if u,v #
placed between stages and interconnections for LUTs are fiot
shown. For an 8-KB reconfigurable cache, we have 32 rows of This N x N 2-D cosine transform can be partitioned into two
LUT that can be used to implement eight taps of the convolutiagi-point one-dimensional (1-D) transforms. To complete a 2-D
algorithm. DCT, two 1-D DCT/IDCT processes are performed sequentially
2) DCT/IDCT (MPEG Encoding/Decoding)in this sec- with anintermediate storage. By exploiting a fast algorithm (the
tion, we show another reconfigurable cache module to perfosymmetry property) presented in [18] and [25],/8x N matrix
a DCT/IDCT function, which is the most effective transformmultiplication for theN x N 2-D cosine transform defined in
technique for image and video processing [25]. To be able (®) and (3) can be partitioned into tW&v/2) x (N/2) matrix
merge the convolution and DCT/IDCT functions into the sammultiplications of 1-D DCT/IDCT with additions/subtractions
cache, we have implemented DCT/IDCT within the number diefore the DCT process and after the IDCT process.

LUTs in the convolution cache module. The 1-D DCT/IDCT process is an MAC, which can be
Given an input block:(z, j), the N x N 2-D DCT/IDCT in represented ag = Ef;gl a;x;. Although an MAC is already
[25] is defined as built in the reconfigurable cache in Section IV-Al, the dis-

tributed arithmetic [23] instead is employed in the RC for the

N—-1 N-1
_ 2 Lo DCT/IDCT function to avoid the run-time reconfiguration of
X v) = NC(U)C(U) ; ; =(i, 1) coefficients required for the coefficient multiplier in FIR. Using
. - = this scheme, once the coefficients are configured into the RC,
20+ Dur (25 + Dow . : T _
X COS cos (2) no more run-time reconfiguration is required.
N1 N2_11\7 2N The inner product of each 1-D transform (MAC) can be rep-
. 2 - resented as follows:
x(i,5) = I Z Z C(u)C(w) X (u,v)
u=0 wv=0 N-1 N-1 Wy—1
% o8 (2i =+ 1)u7r cos (2J =+ 1)U7T (3) Y= Z a;r; = Z a; <_bi0 =+ Z bir27>
2N 2N 1=0 =0 r=1
herex(i, j) (¢, =0 N —1) is a matrix of the pixel data SRS ~
wnerex(z,7) (¢, 7 = 0,..., /N —=1)1 IX IX ) — aby| 277 + ap(—b; (4)
X(u,v) (u,v = 0,...,N — 1) is a matrix of the transformed ; ; ; (~b0)




KIM et al.: RECONFIGURABLE MULTIFUNCTION COMPUTING CACHE ARCHITECTURE 517

Bit-Serial Input I
Shift Reg. 0 DIV by 2
Shift Reg. 1 ROM
Shift Reg. 2 16x16 IRegister 16 bits)|

| 16-bit Adder/Subtractet{

Bit-Serial Output |
@

Parallen In Parallen Out
SR_Inl MMW SR_outl DJIMJSR_outZDEMJ
v Serial Out v Serial In
8x2 bits 8x2 bits 8x2 bil:‘ 8x2 bitq‘ 8x2 bits 8x2 bits 8x2 bits 8x2 bits
EEI not not not 16x16 not not not not
S | used used used ROM used used used used

16-bit adder/subtracter

Fig. 7. (a) ADCT/IDCT processing element. (b) Array of LUTs for DCT/IDCT processing element with the input registers.
wherez; = —bjo + 2471 b,.27" with two’s-complement To make the DCT/IDCT implementation compatible with the
form of an input word lengthV; anda; (i = 0,1,2, ..., N —1) convolution function unit, we place 4-LUTs with 16-bit output
is the weighted cosine factors. According to (4), the multiplican an 8-KB sized cache. Only 20 LUT rows (16 for PEs and
tion with the coefficients can be performed with an ROM corfour for pre/postprocessing) out of 32 LUT row in the 8-KB
taining 2V precalculated partial product@j(;g1 a;biy) INna cache are used for the implementation. However, the LUTs
bit-serial fashion. The inner product computes the sums of paet used in this function still remain in the RC module for the
tial products corresponding to the same order bit from all tewmpatibility with other functions.
input elements processed in the current stage using a set of sé 16-bit carry select adder is configured as a shift accumu-
rial shift registers. For the output of the inner product, one mola&tor with the registers not shown in the figure for the self-ac-
shift register is required. Therefore, one PE contains a ROM aogimulation in each PE. According to (4), only one subtrac-
a shift accumulator for the partial summations of corresponditign is necessary. This is done by the same adder, which can
data bit order. In this configuration, each inner product is corkeep both addition and subtraction configurations in 12-bit data
pleted in the number of clock cycles that is the same as the wavitith (6 bits for adder and 6 bits for subtracter). The adder-sub-
length of input. WithlV PEs,/NV-point DCT can be completed in tracter shares the same input and output with the adder without
parallel. Using the symmetry property, the contents of a ROMquiring any extra logic. However, an extra control signal is
can be reduced by’"22. However, it requires two sets 8f/2 needed to enable the subtraction. The additional adders and sub-
adders andV/2 subtracters before the DCT process and aftemcters for the pre/postprocessing are implemented using the
the IDCT process. scheme for adder-subtracter described above since each pair of
Due to the coding efficiency and the implementation comaddition/subtraction needs the same input elements. In addition,
plexity, a block size of & 8 pixels is commonly used in imagethe 1-bit shift of accumulated data can be easily done by appro-
processing [19]. We therefore have implemented an®2-D priate connections from the registers to the input data lines of
DCT/IDCT function unit by two sequential 1-D transform prothe adder. The input/output shift registers are added only to the
cesses. In addition, the width of input elements is 8 bits. We algdout port of the actual DCT/IDCT function unit after the pre-
select the word length of the coefficients to be 16 bits for the agrocessing unit and before the postprocessing unit. This means
curacy of the DCT computation. that only one set of shift registers are necessary since all the PEs
One PE with conventional architecture is depicted icompute using 4 bits out of the same set of input data in each
Fig. 7(a). One PE implemented in the reconfigurable cachetiansform of a row or a column.
depicted in Fig. 7(b). In the figure, the ROM is placed in the In the actual implementation, we add one more set of shift
middle of an LUT row to reduce the number of routing tracksegisters to remove any delay due to loading or storing in/out
In the given cache size, 8 KB, eight such PEs and the additiomlalta from other memories. All the loading/writing back from/to
adders/subtracters for pre/postprocessing can be implemented.storage can be overlapped with the computation cycle time



518

1,234
for 1-D transform

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

®

Input Shift Reg.

®

3) Reconfigurable Cache Merged with Multicontext Config-
urations: Since we implement convolution and DCT/IDCT in
the same reconfigurable cache framework, we can merge the

5,6,7,8
for 1-D transform S for two functions into one reconfigurable cache. With the concept of
to complete Storage for RC (8 PEs) . ) - . i
5D transform input image _ i Storage for multicontext configurations mapped into multibit output LUTs
Swé‘; for with 1-D DCT I-Duansform| and individual interconnections, the reconfigurable cache can
2-D transform be converted to either of two function units. A combined re-

configurable cache with two functions takes less area than the
sum of the areas of two individual function units because the
additional area cost is due to interconnections only. The logic
@ is absorbed in the available cache memory-based LUTs. The
required interconnection for each function is placed indepen-
dently together in the combined reconfigurable cache, which
implies that there is no sharing of interconnection between the

in PEs by appropriate multiplexing of the dual shift registeréwvo functions. As described in Section II-B, we use fixed inter-
Adding shift registers allows in/out data to be ready to be pr§onnection since it takes less area and propagation time than the
cessed and written immediately after the previous computatidogrammable interconnection. The actual area of the reconfig-
without any idle time. The controller described in Section IlI-girable cache framework (base array cache) and interconnection
handles and controls the computation procedure. Once the Hgghown in the last part of Section IV-B.
processor passes the required information to the controller, all
the control signals are sent by the controller. B. Area

The computation process of an88 2-D DCT is as follows.
The function unit on the RC computes the 1-D transform for an To measure the actual area overhead of cache array only for
entire row by broadcasting a set of input data after the pred¥thmemory cell array cachandbase array cacheye experi-
dition/subtraction process to eight PEs in eight time units infgented with layouts of the reconfigurable cache with only con-
bit-serial fashion (i.e., a half set of data to four PEs and anothé&ution, only DCT/IDCT, and both functions. As we compare
half set of data to the other four PEs). A set of bit serial outptfte access time of RC for cache operations in two cache models,
from eight PEs is carried out to the output shift registers in tfiée memory cell array cachand thebase array cachén Sec-
same fashion. The eight global bit lines described in Section 111N 1I-D, the area overheads are estimated with respect to the
are used as input and output data lines. To avoid the delay of #® cache models.
global lines for the cache operations due to additional switchesAccording to our layout experiment, the total area of the re-
we can place other routing tracks into the space between gloganfigurable module including the pipeline registers with an
bit lines, such as feedthrough. Since we have already added &# filter, which supports up to 256 taps, is 1.53/1.12 times
additional metal layer for the global bit lines, this layer can biée area of data array in the memory cell array cache/base array
used to route additional lines. This implies that we have enougche without other logic components, respectively (described
vertical routing tracks in this architecture. This computation i§ Section II-D). To see the exact area overhead of memory array
repeated eight times, once for each row, for eight rows of @ly, we consider the area overhead of RC with respect to the
8 x 8 image. In the mean time during each computation, th@se area of only the data cache array, which does not include
next set of input data is fetched in another set of input regihe additional cache logic—specifically, row/column decoders,
ters and the previous output data is written into an additiorigig/status-bit part, and sense amplifiers. Peecentageof RC
memory. All the intermediate results from the 1-D transforrrea overhead would appear to be even lower had we inflated
must be stored in a memory and then loaded for the second 1h® base area by including the area for these logic components.
transform, which performs the same computations to complét@wever, the actual area overhead remains the same.
a 2-D transform. Therefore, 2-D DCT/IDCT is computed with For the DCT/IDCT function unit on an RC, the required inter-
two additional memories similar to the convolution function. A&onnection is fixed just as in the convolution cache module. In
data flow diagram of the computation process fok 8 2-D the DCT/IDCT function, no complicated routing is required and
DCT is depicted in Fig. 8. the number of LUT rows in the RC is less than that for the FIR

Several other opportunities for reconfigurable units exist filter, while the number of registers is higher. Thus, according
this architecture, as described later. Although the width of cts our experimental layout for DCT/IDCT, the total area of the
efficients in the ROM configuration is fixed at 16 bits in thisDCT/IDCT module is 1.48/1.09 times the area of data array in
example, the coefficient width is flexible in this architecture behe memory cell array cache/base array cache, respectively, in-
tween one and 16. Moreover, the width of input elements cahuding the accumulating registers and the shift register at the
be easily extended by adding more shift registers without mag/out port. Again, those basic units, such as row/column de-
ifying the current configuration. The emulation of an ROM ircoders, tag/status-bit part, and sense amplifiers, are not included
the RC does not imply fixed processing coefficients. Hence, dift this comparison as mentioned above.
ferent sets of coefficient values can be loaded using the convenin Tables | and Il, the area overhead of FIR filter and
tional cache operation for the other distributed arithmetic opddCT/IDCT in the RC is compared with designs for these
ations. functions previously reported in the literature. The designs we

@ A
Output Shift Reg.

Fig. 8. Data flow of the computation process fox8 2-D DCT transform.




KIM et al.: RECONFIGURABLE MULTIFUNCTION COMPUTING CACHE ARCHITECTURE

TABLE |
AREA COMPARISON OFFIR FHLTERS AND RC OVERHEAD FORFIR

TABLE Il

519

AREA COMPARISON OFMULTIPLIER-ACCUMULATORS AND RC OVERHEAD

FOR ONE MAC STAGE

] [20] l [21] I [22] - - :
oo ot | Tzumikawai et al. [26] | Lu-Samueli [27]

Taps 64 40 15,19 Size of In/Out 16bx16b/32bits 12bx12b/27bits

Coefficient 14 bits 12 bits g bits Technology 0.25pm 1.0pm
Word-length (fixed) (programmable) (fixed) Area 0.55 mm? (core) 9.30 mm? (chip)
Technology B?gﬁ”és 0.9um L 2um [ MAC in the RC (area overhead)
STy T Bt o s Size of In/Out Tobx 16b/32b1ts
Technology 0.25um 1.0um
FIR Filter in the RC Area Overhead! 0.28 mm? 4.41 mm?
(area overhead of the cache) Area Overhoead? 0.08 a2 1.35 mm2
Number of 256 taps % for area overhead! 51%
Tapg (with 8 physical taps) % for area overhead? 11%
Coeflicient
Word-length 8 bits
Technology 0.8um 0.9um 1.2um L. . . .

Area area of designin[22] shown here is estimated in [20]. In Table I,
Overhead! | 11.28 mm? 14.28 mm? 25.39 mm? the core area of 1-D IDCT in design [23] excludes 1/O pads and
ng;e:adz 3.45 rmm? 437 rm? —— buffer area. We scale the reported total area by the proportion of
AR 53%% of axca Tor arrayonly the reported core area to the reported total area. The area of FIR

0 () = . . . .

overhead! of the memory cell array cache filter and DCT/IDCT in the RC includes all the required reg-
% for area 12% of area for array-only isters such as pipeline registers for FIR and accumulating/shift
overhead? of the base array cache registers for DCT/IDCT.

1 Area overhead of the “only” memory cell array

2 Area overhead of interconnections and registers
regarding the “only” base cache array described in II-D

TABLE I
AREA COMPARISON OFCHIPS AND RC OvERHEAD FORDCT/IDCT
[ 23] ] [24] | [25]
Function 1-D 8x8 8x8
IDCT DCT/IDCT | DCT/IDCT
Technology 0.6 um 0.8um 0.8um
Core Area 9.4 mm? 10 mm? 21.21 mm?
8x8 DCT/IDCT in RC
(area overhead of cache)
Technology 0.6um 0.8um
Area Overhead! 5.9 mm? 10.5 mm?
Area Overhead? | 1.51 mm? 2.68 mm?

T % for area 48% of area for array-only
overhead! of the memory cell array cache
% for area 9% of area for array-only
overhead? of the base array cache

Most of the reported FIR filter designs have fixed coeffi-
cients with as many physical MACs as the number of taps.
Although coefficients are programmable in [21], only 40 taps
can be supported for various types of filter. Besides, the time
taken for run-time reconfiguration in a serial fashion is high
due to the limited number of pins. The time of run-time re-
configuration of coefficients in the RC is much smaller be-
cause multiple LUT writes are achieved per cache write op-
eration. For a fair comparison, the area per tap can be cal-
culated roughly in each filter by dividing the core area by
the number of taps. According to the area per tap, the area
of a tap in the RC is larger than others with respect to the
memory cell array cache while the area per tap in the RC is
smaller than others with respect to the base array cache area
overhead. Although only eight taps are implemented physi-
cally in the RC, the FIR cache module can support up to 256
taps with fast configuration not visible to the application.

Since some of the filters have a different word length, we
compare the area of 16 16 constant coefficient multiplier
and 32-bit accumulator (MAC) implemented in the RC with
the same word length of MAC, as presented in [27]. Since

compare with this paper are from the literature of the last teonstant coefficient multipliers are used in most DSP and
years. We compare our result to the best area implementatiomgtimedia applications, we implemented a 4616 constant

in the literature. We have estimated the area for an RG@2in coefficient multiplier, one MAC stage for FIR. The MAC
by scalingX from 0.25 to 12:m (some of them are not shownarea is estimated based on the number of LUT rows used
in the tables). As we explained in Section II-D, the area oveand interconnection in RC. In our experimental layout, the
head for RC is also estimated with respect to the two base cadh&C (16 x 16) area in the RC is less than or equal to two
architectures. For the memory cell array cache, the area oviimes the area of one MAC stage of convolution %88) in
head includes the dedicated decoders, switches, RC-intercihre RC. This area is smaller than that of the existing MACs,
nect, and required registers while the area overhead in the baseshown in Table Il in both cases. This implies that an FIR
array cache with the parallel decoding and segmented bit/wdilter with 16-bit word length can be easily implemented in
lines consists of only the interconnect and the registers. Fothe RC with a similar area overhead for four physical taps.
fair comparison, only the core sizes are listed in both tables biypwever, it can still support up to 256 taps.

estimating the area of the core part of the entire chips. Also, theNote that the designs reported in [20] and [21] implement
area overhead of RC in the tables is the area of only additio®dR with 14-bit and 12-bit coefficients, respectively, while we
units to support the functions implemented. In other words, theport RC area overhead for an 8-bit coefficient design. Itis hard
original cache areais notincluded in the area overhead. The ctirelevelop a precise analytical model for area parameterized by



520 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

the number of bits in a coefficient. Some parts (such as mul- TABLE IV
tiplier) may scale nonlinearly with the number of coefficient AREA OVERHEAD OF THE COMBINED RECONFIGURABLE CACHE
bits depending on the algorithm. Some parts would scale st Fonction FIR, DCT/IDCT
linearly, such as control and global routing. For an approxima Technology 06um | 0.8um
comparison, we assume that the area scales linearly in coe  Interconnection & registers 1.94 mm? | 3.45 mm?
cient width. Hence, the 8-bit version of [20] would take area 2 FIR : s y
mm? (£ x 49 mm?), and for [21], the area would be 14.7 Am Intercongé%’fl%g{eglsmrs 51 mm 68 mm
(2 x 22 mm?), which are comparable to the RC area over RC framework (base array cache) | 4.41 mm2 | 7.88 mm>
head for FIR. The main advantage of RC for FIR is the recor Area Overhead! 3.45 mm? | 6.13 mm?
figurability, which allows the RC-FIR to have a virtually infinite Area Overhead” 7.86 mm?® | 13.96 mm?
number of taps unlike other customized FIR chips, with faste Technology [ 10pm | 12um
reconfiguration of taps. We therefore conclude that the area Interconnec'%i?fr; & registers 5.39 mm? 7.77 mm?
tap for RCis comparaple to thgt of the customlzeq FIR ch|ps_. Trterconmection & Togsiors TTo o
The area of the previous designs for DCT/IDCT in Table Il i¢ DCT/IDCT
larger than the proposed DCT/IDCT cache module except [2 RC framework (base array cache) | 12.24 mmn? | 17.62 mmn?®
with respect to area overhead of the memory cell array cact Area Overhead® 9.58 mm® | 13.81 mm?’
The 2-D DCT/IDCT functions are implemented with a similar Area Overhead” 21.82 mm” | 31.43 mm’
procedure as in the DCT/IDCT cache module—two 1-D DC” % for area overhead’ 63%
steps. Since the DCT function is implemented using a hardwire % for area overhead® 21%

multiplier in [24], the area is smaller than the cache module with
respect to the area overhead of the memory cell array cache. ) ]
However, the area overhead with respect to the base array caghé=*ecution Time
is smaller than all the previous designs shown in the table. Thel) Convolution: We compare the execution time of the FIR
DCT function in [25] has two 1-D DCT units, so the area of onfilter using an RC to a conventional GPP running the algorithm
1-D DCT unit is roughly half of the overall area, which is stillin (1). Since the reconfigurable cache may have to be flushed,
larger than the RC overhead. we show the results for the following two cases. In the first
In the combined multifunction reconfigurable cache, eaatase, no data in the cache needs to be written back to main
function needs a fixed interconnection topology. Therefore, theemory before it is reconfigured as the function unit, for ex-
total area of interconnection occupied by the two functions ample, caches with write-through policy. In the second case, the
the combined RC is the sum of the individual interconnectigorocessor has to flush all the data in the cache before configuring
areas for convolution and DCT/IDCT. According to our ex (i.e., written back to the main memory). The extra time is de-
perimental layout of the combined cache, the total area of theted by thdlush timeand is required for write-back caches.
RC with two functions is 1.63/1.21 times the area of data array The total execution time of the convolution in the reconfig-
in the memory cell array cache/base array cache, respectivelgble cache consists of configuration and computation times.
with all the required registers and without other componenthe configuration time includes the times for adder and constant
described above. coefficient multiplier configuration. In addition, in the second
Since the decoders for LUTs account for most of the arease, the cache flush time is also added to the configuration time.
overhead in the reconfigurable caches, adding more intercdire actual parameter values to compute the times are given in
nection does not add much area in the combined RC. The @able V. We chose the values to be as conservative as possible
tual area of the combined cache module is shown in Table With respect to SPARC dlprocessor cycle time at 270 MHz
The base array cache described in Section II-D consists of dE2B] (where the GPP simulation was performed). The access
icated 4-to-16 decoders, four address lines, and a numbetiofe for the data cache in a SPARG frocessor is one cycle
switches to connect the local bit lines to the global bit lines. Thie a pipelined fashion (it is a 16-KB direct mapped cache with
area of combined reconfigurable cache is smaller than the stwio 16-B subblocks per line). In a typical processor, this ac-
of smallest areas in the existing FIR and DCT/IDCT functioness time can be anywhere from one to two cycles. Hence, we
units in both cache models. This implies that we can add azhose three cycles for the cache access time in RC for a con-
ditional multiple functions in the existing reconfigurable cachservative model. Had we chosen a lower cache access time (one
with a relatively small area overhead. The interconnection areatwo cycles), the RC execution time would appear to be even
for individual functions is also listed in Table IV. Moreovermore favorable since other parameters, such as LUT read time
since some part of the area for routing tracks between the timoRC, were based on the cache access time—three cycles (12
functions is overlapped—for example, adders, constant multis). The main memory access time is 20 cycles. The parameters
plier, and ROMs—the area of interconnection in the combinddr the cache structure are based on an 8-KB size cache with
RC may be less than the sum of two individual interconnectiaight words per block and 16 bits per wok.{.e, Lr.uT, and
areas. The fixed interconnection for the functions can be effi¥,,). Since eight words in a cache block are stored in the inter-
ciently routed and does not take much area. The placement ésal/ed fashion, each bit of one word is stored every 8 bits. The
routing of the reconfigurable cache has been done manuallyfiest and ninth bits of an LUT content can be written in the LUT
a first cut. We can expect the area overhead to reduce furthesiihultaneously by writing one word (parameter = 2). The
we place and route carefully. computation time of one stage/PE in the RCs is chosen by the



KIM et al.: RECONFIGURABLE MULTIFUNCTION COMPUTING CACHE ARCHITECTURE 521

TABLE V
PARAMETERS FOR THERCs & 50
0]
o]
Parameter | Description [ Values 40
Tepu 1 cpu cycle time 4ns %
T1_stage The time to complete the 24ns/16ns ©
computation in one stage/PE 530
Ratio of no. of cycles of 1 main 20 (80ns) 5
Rynem/cpu | memory access and 1 cpu cycle '*320
Ratio of no. of cycles of 1 cache 3 (12n8) E
Reache/epu | memory access and 1 cpu cycle 5
Leache Number of cache lines in the cache 512 210
Liur Number of contents in a LUT 16 K]
Whn Number of words per cache block 8
N b f b.t v d t ﬁ O i L 5 1 L ]
o contert of one LT for o abit - 64 128 256 512 1024 2048 4096 8192
a adder with 3bits for carry=0 6 Number of Data elements
and 3bits for carry=1
& for the half of a 4x8 constant @
coefficient multiplier. ' ' ' ' '8 Taps ——
r Number of bits required to configure 16 &50 - 16 Taps - 1
a content of LUT for a ROM o] 32 Taps -
m Number of bits to be written 2 e 1% Epz o
by one word when configuring 2 Q40 ¢ 256 Tags‘,-'—/;z .
S Number of taps/PEs 8 5 R
implemented in the RC 8 %; 30| s A
Parameters for Convolution = o s
= .
TAP Number of taps 8 - 256 2 =
X Number of data 64 - 8192 §20 -
Parameters for DCL/IDCT o .
[=] e
Wy The width of input elements 8 bits o10 ]
N The size of a basic block image 8 ;:55 ) R
IMG The size of an entire image 8x8 - r;;;;_sg - R
1920x1152 [ = ' ; ' ;
64 128 256 512 1024 2048 4096 8192

Number of Data elements
following factors. Each stage in the convolution function unit (b)
requires three LUT reads with additional time for propagatiofly. 9. Ratio of execution time of RC and GPP for convolution: (a) without
through a number of multiplexers, while each PE in DCT/IDCThemory flush and (b) with memory flush before converting into the function
unit does two LUT reads with additional time for multiplexers4t
We use read time for an LUT of 8 ns with the multiplexer prop-

agation time—less than the cache access time because the ldifthe cases in Fig. 9. From the trace, we found that, regardless
is much smaller and faster than the 8-KB cache memory. Thethe number of taps and data elements in the computation, the

expressions for the times are presented as follows: number of cache misses does not vary with the execution time.

1) ConFig. Time for addet [(Ryem/cpu)(a/m)(LruT) + Therefore, we neglected the effect of the cache miss penalty in
(Rcache/cpu)(@/m)(Leacte — LruT X S)] X Lepu; the comparison. We simulated convolution with floating-point

2) ConFig. Time for constant multipliee= (Ryem/cpu) Variables instead of integers, which leads to faster processing

(a/m)(Lr.ur)(TAP) X Tepu; in GPP. The choice between memory cell array and base array

3) Cache Flush Time: (Ryem/cpu)(Wn)(Leache) X Tepus  determines cache access time in GPP. As we explained in Sec-

4) Computation Time= [(TAP/S)x (X +25—1)]XT1_stage. tion lI-D, the RC based on memory cell array will give smaller

In the computation time, we adddnstead ofS for the ini- access time in GPP even for other applications, while the RC
tial pipeline steps because we exploit the double pipelined infagsed on base array will increase the cache access time by 1-2%.
data in each stage of the convolution, as shown in Fig. 6(a).\ve have assumed the cache access time in GPP and in the pro-
addition, we separate the configuration time for adders and makssor with RC to be the same for both cache types (memory
tipliers. The reason for this is that only one set of data for an LU3ell array or base array).
is necessary when reconfiguring the LUTs for adders becaus®ur results show that the reconfigurable cache provides a
the contents of all the LUTs are the same, while different confipetter performance improvement than the GPP as the number of
uration data are necessary for multipliers. The time for storimtata elements increases. Fig. 9 shows that the performance im-
and loading input and intermediate data can be overlapped wittovement is almost independent of the number of taps without
the computation time. Therefore, data access time for the comemory flush in Fig. 9(a). The ratio of the computation time
putation is not added. with less taps decreases with memory flush in Fig. 9(b) because

The speedup of RC over GPP for convolution is shown e flush time affects the ratio of the total execution time more
Fig. 9. We assume that all the input data fit into a data cachéth the decrease in the number of taps.
for both RC and GPP computations according to the following 2) DCT/IDCT: As described in Section 1V-A2, the 2-D
observation. We traced the number of cache misses in GPPEET/IDCT can be completed by two 1-D transforms. This pro-



522 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

cedure is similar to the data caching scheme, which is adapted% 70
for the FIR filter module (i.e., two additional memories for ¢
processing with intermediate data). We compare the execution @
time of the 2-D transforms in RC and GPP executing the fast
DCT algorithm described in Section 1V-A2. As in the previous
example, the two cases of cadhesh time,no cache flush and
cache flush, are considered in this section.

The total execution time of the DCT (IDCT) in the reconfig-
urable cache consists of configuration and computation times.
The configuration time includes the writing times for the con- 2
tents of ROMs and adders. In addition, in the case of cache flush,
the cache flush time is also to be added in the configuration time.

The actual parameter values to compute the times for this func-
tion used are the same as for the convolution in Table V. The

expressions for the execution times are presented as followstig. 10. Ratio of execution time of RC and GPP for DCT/IDCT with and

. . without flush time
1) ConFig. Time for accumulators and pre- (or

post)adders/subtracters [(Ruyem/cpu)(2a/m)(LLuT)

"w/o mem flush ——

Ratio of Excution time of

s
(e}
—

x
[{=}
~

32x32
64x64
128x128

256x256
512x768
1920x1152

Size of an Image

+ (Reache/epu)(2a/m)((S + 2) X Lrur)] X Topu; memory flush in the larger si;g pf imaggs. Si_nce_the computa-
2) ConFig. Time for ROM=  [(Rpem/cpu)(r/m)(S x  tionis ROM based, only the initial configuration is necessary.
Lrur)] X Tepu; Thus, the larger sizes in the results, 542768 (TV-image) and
3) Cache Flush Time= (Ruem/cpu)(Wn)(Leache) X Topu; 1920 x 1152 (HDTV), do not rely on the flush time. For main
4) Computation Time= [2 x (1-Dtransform] x profile at high level decoding, the maximum allowable time to
(Image siz¢Basic block sizg x T1_stege = [2 x (N 4+ Process amacroblock is 4.08 [23]. The result shows that it is
Wy x N)] x (IMG/N x N) % Ti_stage- possible to process a block in 2.38.

The cachdflush timeis the same as earlier. Configuratio 3) MuIt|context_Rgc_onﬁgurable Caghéfhere IS no dif-
data need to be written to all the PEs once only because all gnee be_twe(_en individual and combmed caches in terms of
data elements in an image are processed with the same co _execgnon time. Hov_vever, the combined cache may have a
cients using the distributed arithmetic. The configuration pré—'ghtly h'gher propagatlon d_elay.due tq longer wires ce_lused by
cedure of the convolution in the previous section is applied EBe inclusion of |nte'rconnect|on, in our instance, 1.6% increase
DCT/IDCT. As described earlier, the time of loading and writinﬁ;ed?"’_whe access t|me. Therefore, we can assume that b,Oth
all the in/out data from/to memories can be overlapped with t ividual and combined RCs have almost the same execution
computation. Thus, only the initial loading and the final writind€"formance.
time, which is overlapped in the transition of data set, is added
to the computation time of each:8 8 1-D transform for data V. CONCLUSION

access time. In this Configuration, the adder is used as both e have presented areconfigurab|e cache module, which can
16-bit adder and a 16-bit subtracter with two sets of Conﬁglﬁ'erform both as a function unit and a cache. This allows a pro-
ration data. Since only one of the pre/postadders (subtractefg3sor to trade compute bandwidth for I/O bandwidth. We have
is necessary for DCT and IDCT, respectively, the configuratiqfhalyzed it for convolution and DCT/IDCT. The reconfigurable
time of pre-(or post)adders/subtracter with the same configu@ches for the computation of convolution and DCT/IDCT im-
tion scheme is added in the execution time. prove the performance by a large amount (a factor of up to

The speedup of RC over GPP for DCT is shown in Fig. 180 and 60 for convolution and DCT/IDCT, respectively). The
The assumption regarding the cache misses of data mentioaegh penalty for this reconfiguration is about 50-60% of the
in Section IV-C1 has been applied to this simulation. Therefomemory cell cache array area with faster cache access time, and
the main memory access time is not considered for in/fout datal@20% of the base cache array area with 1-2% increase in the
the computation. For a larger size of image than the basic bloclache access time. However, we save 27% for FIR and 44% for
8 x 8, we partitioned the entire image into a number of bas@CT/IDCT in area with respect to memory cell array cache and
block images. We assume that the cosine weighted factors ab®ut 80% for both applications with respect to base array cache
prestored as coefficients in an array when the GPP processesdftie were to implement all these units separately. We are cur-
DCT/IDCT, which means the actual cosine coefficient compuently developing similar mappings for other structured func-
tation is not performed in GPP. It is much faster than the compiiens. Pseudoprogrammable interconnection with limited pro-
tation with the actual cosine factors. Again, floating-point vargrammability, but with less area overhead, to support more gen-
ables are employed in our simulation of DCT/IDCT for fasteeral functions—a certain family of applications—is also being
processing in GPP. considered. Although we propose integrating the reconfigurable

According to the result in Fig. 10, the reconfigurable cacheache modules within Level-1 caches, these RC modules can
for DCT/IDCT has a better performance improvement over tlaso be used at Level-2 cache. Architecturally, Level-2 integra-
execution time of the GPP as the size of input image increastsn would be easier providing us with “Active pages” type of
The performance improvement is roughly independent of tisapability [12].



KIM et al.: RECONFIGURABLE MULTIFUNCTION COMPUTING CACHE ARCHITECTURE

(1]

(2

(3]

[4]

(3]
(6]

[7]
(8]

9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

REFERENCES [21]

J. R. Hauser and J. Wawrzynek, “Garp: A MIPS processor with a re-[22]
configurable coprocessor,” iRroc. IEEE Symp. Field-Programmable
Custom Computing Maching8pr. 1997.

A. DeHon, “DPGA-coupled microprocessor: Commodity ICs for the
early 21st century,” irProc. IEEE Workshop FPGAs for Custom Com-
puting MachinesD. A. Buell and K. L. Pocek, Eds., CA, Apr. 1994, pp.
31-39.

R. Razdan and M. D. Smith, “A high-performance microarchitecture
with hardware-programmable functional units,"Rroc. 27th Annu. Int. [25]
Symp. MicroarchitectureNov. 1994, pp. 172—-180.

A. Tyagi, “Reconfigurable memory queues/computing units architec—[26]
ture,” in Proc. Reconfigurable Architecture Workshop 11th Int. Parallel
Processing SympApr. 1997.

S. Haucket al,, “The Chimaera reconfigurable functional unit,”Rmoc.
IEEE Symp. FPGAs for Custom Computing Machii&97.

S. Cadambiet al, “Managing pipeline-reconfigurable FPGAs,” in
Proc. ACM/SIGDA 6th Int. Symp. Field Programmable Gate Arrays
Feb. 1998.

Xilinx Inc., Virtex 2.5 V field programmable gate arrays datasheet, .

A. DeHon, “Balancing interconnect and computation in a reconfigurable
computing array (or, why you don’t really want 100% LUT utilization),” H
in Proc. FPGA'99 Feb. 1999.
S. K. Raman, V. Pentkovski, and J. Keshava, “Implementing streami
SIMD extensions on the Pentium Il processdEEE Micro, vol. 20,
no. 4, July/Aug. 2000.

P. Ranganathan, S. Adve, and N. P. Jouppi,
video processing with general-purpose processors and media ISA exten-
sions,” inProc. 26th Int. Symp. Computer Architecture (ISCA99)

P. Soderquist and M. Leeser, “Memory traffic and data cache behavior

(23]

[24]

(27]

(28]

523

M. Hatamian and S. Rao, “A 100 MHz 40-tap programmable FIR filter
chip,” in Proc. IEEE Int. Symp. Circuits Sys1990.

S. Ishikawaet al., “Automatic layout synthesis for FIR filters using a
silicon compiler,” inProc. IEEE Int. Symp. Circuits Sys1990.

T. Masakiet al, “VLSI implementation of inverse discrete transformer
and motion compensator for MPEG2 HDTYV video decodingEE
Trans. Circuits Syst. Video Technoalol. 5, Oct. 1995.

A. Madisetti and A. N. Willson, “A 100 MHz 2-D 8 8 DCT/IDCT
processor for HDTV applicationsJEEE Trans. Circuits Syst. Video
Technol, vol. 5, Apr. 1995.

S. Uramotcet al,, “A 100 MHz 2-D discrete cosine transform core pro-
cessor,"|EEE J. Solid-State Circuitsvol. 27, pp. 492—-499, Apr. 1992.
M. Izumikawaiet al,, “A 0.25-¢m CMOS 0.9-V 100-MHz DSP core,”
IEEE J. Solid-State Circuits/ol. 32, pp. 52—-61, Jan. 1997.

F. Lu and H. Samueli, “A 200-MHz CMOS pipelined multiplier-accu-
mulator using a quasidomino dynamic full-adder cell desi¢BEE J.
Solid-State Circuitsvol. 28, pp. 123-132, Dec. 1993.

Sun Microsystems, UltraSPARC#HUser’'s manual, .

uesung Kim (S'99) received the B.E. degree in electrical engineering from
Kangnung National University, Kangnung, Kangwon, Korea, in 1996. He is cur-
ntly pursuing the Ph.D. degree in the Departments of Electrical and Computer
gineering, lowa State University, Ames.

His research interests include VLSI design and computer architecture, espe-
“Performance of image &igfly in microarchitecture and cache memory design.

of an MPEG-2 software decoder,” froc. 1997 Int. Conf. Computer Arun K. Somani (S’83—M’83—SM’88—F’99) received the M.S.E.E. and Ph.D.

Design Oct. 1997.

degrees in electrical engineering from McGill University, Montreal, QC,

M. Oskin, F. T. Chong, and T. Sherwood, “Active pages: A computatiofranada, in 1983 and 1985, respectively.

model for intelligent memory,” irfProc. 25th Int. Symp. Computer Ar-
chitecture (ISCA'98)

He is currently David C. Nicholas Professor of Electrical and Computer En-
gineering at lowa State University, Ames. From 1985 to 1997, he was a faculty

A. Singhal, “Reconfigurable cache module architecture,” M.S. thesiglember at the University of Washington, Seattle. His research interests are in
Dept. of Computer Science, lowa State University, Ames, May 2000.the area of fault-tolerant computing, computer communication and networks,

Wafer Electrical Test Data and SPICE Model Parameters, .

wireless and optical networking, computer architecture, and parallel computer

S. J. E. Wilton and N. P. Jouppi, “CACTI: An enhanced cache access a#iptems.

cycle time model,”lEEE J. Solid-State Circuitssol. 31, pp. 677-688,
May 1996.

Prof. Somani is a distinguished speaker and distinguished tutorial speaker
of IEEE. He has served on numerous conference program committees and as

D. Deshpande, A. K. Somani, and A. Tyagi, “Configuration schedulingeneral chair, program chair, and tutorial chair.

schemes for striped FPGAs,” iRroc. FPGA'99 Feb. 1999, pp.
206-214.
M. Wojko and H. EIGindy, “Self configuring binary multiplier for LUT

addressable FPGAs,” iffroc. 5th Australasian Conf. Parallel and Akhilesh Tyagi (M'88) received the B.E. degree (Honors) in electrical and elec-

Real-Time System$998.

tronics engineering from Birla Institute of Technology and Science, Pilani, in

W. H. Chen, C. H. Smith, and S. V. Fralick, “A fast computational al-1981, the M.Tech. degree in computer engineering from the Indian Institute of

gorithm for the discrete cosine transforniEEE Trans. Communvol.
COM-25, pp. 1004-1009, Sept. 1977.

M. Maruyameet al., “VLSI architecture and implementation of a multi-
function, forward/inverse discrete cosine transform processoRtdn.
Visual Communications and Image Processing 90. 410-417.

T. Yoshino et al, “A 100-MHz 64-tap FIR digital filter in 0.8§m
BiCMOS gate array,TEEE J. Solid-State Circuifs/ol. 25, Dec. 1990.

Technology, New Delhi, in 1983, and the Ph.D. degree in computer science from
the University of Washington, Seattle, in 1988.

He was on the Faculty of the Department of Computer Science at the Univer-
sity of North Carolina at Chapel Hill and lowa State University, Ames. He has
been with the Department of Electrical and Computer Engineering at lowa State
University since August 1999. His research interests in VLSI include: com-
plexity theory, design, synthesis, and computer architecture.



