Architecture Support for 3D Obfuscation

Mahadevan Gomathisankaran and Akhilesh Tyagi
Electrical and Computer Engineering
lowa State University
Ames, IA 50011
{gmdev,tyadi@ ast at e. edu

Abstract— Software obfuscation is defined as a transformation
of a program & into .7 (<) such that the whitebox and black-
box behaviors of .7 (&) are computationally indistinguishable.
However, robust obfuscation is impossible to achieve withhie
existing software only solutions. This results from the powr of
the adversary model in Digital Rights Management systems whbh
is significantly more than in the traditional security scenaios.
The adversary has complete control of the computing node -
supervisory privileges along with the full physical as wellas
architectural object observational capabilities. In essece, this
makes the operating system (or any other layer around the
architecture) untrustworthy. Thus the trust has to be provided
by the underlying architecture. In this paper, we develop an
architecture to support 3-D obfuscation through the use of wll
known cryptographic methods and show how it provides copy-
protection, IP-protection and tamper-resistance.

Index Terms— Obfuscation, Digital rights management, Secure
systems architecture.

I. INTRODUCTION

The trusted computing group consisting of AMD, HP,
IBM, and Intel among many others is expected to release
trusted platform module (TPM) [3], to provide the SSC. The
TPM is designed to provide such a root of trust for storage,
for measurement, and for reporting. Hence, we believe that
TPM provides building blocks for the proposed architecture
However, we identify additional capabilities needed topup
robust 3D obfuscation. The proposed architecture obfigtat
blocks can absorb TPM functionality (based on the released
TPM 1.2 specifications [4]).

This paper is organized as follows. Section Il describes
the obfuscation problem and its interaction with the emisti
cryptographic solutions. Sectionllll discusses earli@ppsed
research and their drawbacks. Section IV explains the basic
building blocks ofArc3D and provides a high level overview.
Section V provides operational details Afc3D system. We
describe various attack scenarios in Section VI. Section VI
gives the performance analysis Afc3D. Section VIII con-

IGITAL rights management (DRM) deals with intel-cmdeS the paper.

lectual property (IP) protection and unauthorized copy
protection. Software piracy alone accounted for $13 hillio
annual loss [1] to the software industry in 2002. Software di

ital rights management traditionally consists of watetrar,
obfuscation, and tamper-resistance. All of these taskmanke
difficult due to the power of adversary. The traditional ségu

techniques assume the threat to be external. The systdin itse

is not an adversary. This providessafe haveror sanctuary

for many security solutions. However, in DRM domain, the
OS itself is not trustworthy. On the contrary, OS constgute

the primary and formidable adversary.

II. THE PROBLEM

The attributes that need to be supported by a DRM system
are as follows.

1) Associability of Software to a particular CPUcopy-
protectior)
Verifiability of the CPU’s authenticity/identity.copy-
protection, IP-protection
Binary file, conforming to a standardized structure,
should not reveal any IP of the software through static
analysis based reverse engineerintR-fgrotection —
static obfuscatiop

2)

3)

Any software-only solution to achieve DRM seems to be
inadequate. In the end, in most scenarios, it reduces to the)
problem oflast mile wherein only if some small kernel of
values could be isolated from the OS (as an axiom), the entire5)
schema can be shown to work. At this point, it is worth) :
noting that even in the Microsoft's next generation secure _ — Qynam|c obfuscatign)
computing base (NGSCB) [2], the process isolation from The first two p_rot_>|ems are analogous to t_he real life
OS under a less severe adversary model is performed whiipblem of establishing trust between two parties followed

hardware help. The NGSCB's goal is to protect the proceg¥ secret sharing on a secure _encrypted channel. Thi_s is a
from the OS corrupted by external attacks by maintaini ell analyzed problem and solutions like Pretty Good Pgvac

a parallel OS look-alike callecdhexus The nexusin turn QP) exist which uses atrustgd Certification Authqrity ICA
relies upon a hardware Security Support Component (SSC) des.apprgach has been gsed in almost all the earllgr résearc
performing cryptographic operations and for securelyisgpr d€aling with copy-protection ([5], [6]) and we too will use a

cryptographic keys. similar approach. _ _ o
The third problem requires prevention (minimization) of

information leak from the static binary file/image. This @bu

Any modification of the binary file should make the
software unusablelR-protection — tamper-resistange
The program execution parameters visible outside CPU
should not reveal any IP of the softwaré&?<{protection

This work is supported in part by IBM PhD Fellowship.

http://www-306.ibm.com/software/info/university/fellowship/phd/

be viewed as the problem of protecting a message in presents a memory access footprint that does not depend on
untrustworthy channel. One possible solution is to enctiypt the program input. This prevents information leak about the
binary file (the solution adopted by XOM [6] and ABYSSprogram CFG. Oblivious RAM require3(,/m) steps for each
[5]). An alternative approach would recognize that the hinaoriginal memory access. This is a very high overhead for
file is a sequence of instructions and data, with an undeglyipresent day architectures.
structure. Static obfuscation ([7], [8]) attempts to expld DS5002FP [11] is a secure 8-bit microcontroller from Dallas
smaller subset of these program level structure attributes Semiconductor which uses bus-encryption. The DS5002FP
The fourth problem requires the binary image to be tampinplements three on-chip block-cipher functidfs for 17-bit
resistant. Any modifications to the binary image should baddress-bus encryptioBp for 8-bit data-bus encryption , and
detectable by the hardware. Message Digest, which is a OE\g-1 for 8-bit data-bus decryption. The encryption functions
way hash of the message could be used to solve this probleme fixed unless changed by uploading a new secret key.
This once again is a generic solution which is applicableto aThis allows the adversary to build up information by running
message transaction that does not use any specific prapettie program multiple times and observing its behavior. Kuhn
of a binary image. We rely upon obfuscation to provide thd2] proposed such an attack to extract the secrets stored in
tamper-resistance in the following way. Tampering gains &S5002FP microcontroller.
advantage for the adversary only if the properties of the
tampering point - the specific |nstructlon or data at thahpei 5 opsuscation
are known. However, obfuscation prevents the adversary fro
associating program points with specific desirable progert =S)
(such as all the points that have a branch, call sites, toaifspe €21ier literature ([13], [14]). We refer to any obfuscatio
procedure or all the data values that point to a specific adjire Meéchanism that hides the control flow from static analysis
Hence most tampering points are randomly derived resultiggOUQh a binary image or CFG transformation static
in the disabling of the program, which we do not consider fuscation However, th(_ase obfuscation me_chamsms cgqnot
be an advantage to the adversary in the DRM model whédigfeat an adversary with access to architecturally visible
the adversary/end user has already purchased rights folgisRarameters such as memory address bus. Our use of term
the program. obfuscationrefers to schemes that hlde dynamic _execut|0n
The fifth problem dictates that the CPU not trust anything'Odel para_lmeters_ as well. Note that in our obfuscation model
outside its own trusted perimeter including any softwayeta ven t_he |_nstrqct|ons themselves can be transformed into
The problem is simplified by the fact that CPU can halt jt20tentially invalid ones.

We use the ternmobfuscationin a different way than the

operations once it detects any untrustworthy behavior. The <
attributes of the application program execution trace spa Permutation Function

which the CPU has to protect, can be thought of as havi Addr Content Addr Content
three dimensions, namely, instructions (content), adeéieat A / P z
which the instructions are stored (address sequencing)), { E R A

the temporal sequence of accesses of these addressedi{se \

order address sequencing). All of these three dimensiore h ~ 3

to be protected in order to prevent any information leakag)

This holds true even for data. Fig. 1. Weakness of HIDE approach

Ill. PREVIOUS RESEARCH

ABYSS [5] was proposed as a software protection arcH- Analysis
tecture. It supports botprotectedand unprotectedorocesses. Almost all of the earlier research, except HIDE, does not
Protected processes are executed praected processaand hide the temporal sequencing of memory accesses. Neither
are encrypted. Drawbacks of ABYSS include non-scalabilitfo these solutions exploit the software specific properties
and unexplained OS interactions. The solution proposed by HIDE to prevent information leak

XOM [6] is a compartmentalized - a process in one compathrough the address and memory bus is weak. This is because
ment cannot access data from another compartment - machthe. adversary can see the contents of the memory before
Application is encrypted with a symmetric key which in turrand after an address-permutation. It is possible becawse th
is encrypted with public asymmetric key of XOM. HIDE [9]encryption function applied to the contents is not address
is an extension of XOM. It points out the fact that XOM doedependent. Hence, for instance, if the contents at twondisti
not protect the time order of the address trace. Hence evaidressed\ and A; are also distincCa, and CAj then the
if the instructions (and data) themselves are encrypteal, tlollowing information leak path exists. For a program setee
address trace gives the adversary power to deduce the konwithin a loop, when instructions reoccur at the address and
flow graph (CFG). instruction buses, HIDE permutes the addresses within a pag

Goldreich and Ostrovsky [10] offered one of the firsfor the second (or subsequent) iteration.Af is permuted
schemes for software protection. They extended the oblévzioto a new addressi(A;) the contents at(A;) would still
Turing machine model to oblivious RAMs. An oblivious RAMappear asCa,. Hence a simple comparison would be able

to determine the permutatiom. Figure 1 illustrates this fact.

. N (N + 1) . . Address Content

Thus it takes only———— comparisons to reverse-engineer ,
the permutation, wherdl is the permutation size. Assuming — | ! Csllg1)
that there are 1024 cache-blocks in a page, the strength of 3 :; 2 Csllg1ep)
such a permutation is less thaf’2Even in the chunk mode, 3 I3 K’ 3 Csllgte)
which performs these permutations in a group of pages, the : ; ’ : :
complexity grows only linearly, and hence could be easily n In N Csll 1)
broken.

The proposed architectufec3D addresses all these issues.
Moreover, computational efficiency of proposed methods is a
key criterion for inclusion inArc3D. We make use of soft- . Co
ware structure to provide obfuscation and tamper-resistan
efﬁCIently' Address Content
4 1 CD(CS(|,61(,g1(1)))

2 ColCsll 11 2))

REq.‘ CPU
3 CD(CS(|,61(,g1(3)))
Virtual Address . .

DTLE,
i DLL
Physca) Ry
Page

N CoCsll o1ty

Physca)
Page

Fig. 3. Static and Dynamic obfuscation

RSA | SHA-1|

RNG | 3DES

of the static binary image, is achieved by permuting the
instruction sequence withg and obfuscating the instructions
with Cs. Another pair of sequence permutation and content
obfuscation functions which are dynamically chosap,and

Cb, help achieve dynamic obfuscation. These four functions,
15,Cs, 7 and Cp form the program secret which is guarded
_ _/ by the trusted component of the architecture. Figure 3 shows
Fig. 2. Overall Schema ohrc3D Architecture these obfuscation functions in operation.

Content

V. PROPOSEDARCHITECTURE ARC3D B. Overall Schema .
The overallArc3D architecture is shown in Figure 2. The As stated earhgr, Figure 2 shows the global schema. _for
.) . he proposed architecture. The shaded areas are the adtlitio
main affected components of the microarchitecture are the

ones that handle virtual-addresses. These componemmjmclcomponems ofrc3D over the base architecture. Shading hues

the translation lookaside buffer (TLB) and page table eatrialso |nd|cate_ th_e access rights as .fOHOWS' The Ilgh_tly stad
areas contain information accessible to the outside world,

g:;sr)ﬁawe first describe the objectives of the obfuscatlolpe” OS. The darkly shaded areas contain secret information

accessible only tArc3D. Arc3D has two execution modes,
namelyprotected and unprotected mode. It has a protected

A. Obtuscation Schema register spac&RkEG, which is accessible only to a protected
The goal of obfuscation is to remove the correlation betwegfocess.

1) the CFG and the static binary image. The core of Arc3D functionality is obfuscation. It is
2) the static binary image and the dynamic executigsthieved by modifying the virtual-address translatiorhpat
Image. translation look aside buffer (TLB) - of the base architeetu

Traditional static obfuscation techniques try to obscusast In addition to holding the virtual-address to physical-aid
sembling and decompilation stages to remove the correlatimapping, page table entry (PTE), the TLB has the obfuscation
between the static image and the CFG. But these technigaesfiguration P.onf). This Peont IS essentially the shared
are transparent to architecture and do not remove the coseeretsCs, Cp, Tk, 7o in encrypted form. In order to avoid
lation between the static image and the dynamic executibequent decryptionAr3D stores them in decrypted form in
image. Thus an adversary monitoring the address traced cdbbnf section of TLByp. This section of TLB is updated
very well extract the CFG. whenever a new PTE is loaded inTd_Byp. Arc3D assumes

We usearchitecture awarebfuscation of botlsequencand parallel address translation paths for data and instnostiand
contentto achieve this goal. Static obfuscation, or obfuscatidrence Figuré 12 shows DTLB and ITLB separately.

The address translation for a protected process occurssaveral redundant configurations in this space. We estimate
the obfuscation unit. Sections IV-D and IV-E explain irthe redundancy through statistical analysis to be less than
detail the address sequence and content obfuscationtalgsri 0.3%.
respectively.Arc3D uses the same logic for both static and The exchanger blocks shown in Figure 4 perforrsveap
dynamic obfuscations. The basis of these obfuscationseis tperation. It has two sets of inputs and two sets of outputs.
permutation function which is explained in Section IV-CThe mapping function ik = Sk if X = 0, andSk = Si
Arc3D has a protected L2 cache, which is accessible only tdfaX = 1, where,Sk is the input setSy is the output set,
protected process, thus providing temporal order obfimtat X is configuration bit, and is 0 or 1. Sinceexchanges also

Arc3D controller provides the following interfaces (APIs)bijective, the composition dfoffoli gates anéxchangeréeads
which enable the interactions of a protected process with tto a bijective function with large population diversity. f@r

OosS. interesting routing structures may also guarantee bggasti
1) start_prot_processAllocate the necessary resources anBut a typical FPGA routing matrix configuration will require
initialize a protected process. extensive analysis to determine if a given routing confitiana
2) exit_prot_process Free the protected resources allocatelg bijective. One point to note here is that we chose to imple-
for the current protected process. ment a 10bit permutation function withToffoli(5,5) gates
3) ret_prot_processReturn to the current protected procesiistead of a direct implementation @dffoli(10,10). This is
from an interrupt handler. because an-LUT requires 2 configuration bits and hence 10-

4) restoreprot_process Restore a protected process aftekUTs are impractical in the reconfigurable computing world.
a context switch.

5) transfer prot_process Fork the current protected pro-/ ,,,,,,,,,,,,,,,,,)
cess.

These APIs and their usage are explained in detail
Sectonv. | LA

fo | f1 [fo | f3 fe3

C. Reconfigurable Bijective Function Unit

Obfuscation unit is a major componentAfc3D. This unit :x
is responsible for generatirgjection functionsrt. There are

2" possiblen-bit reversible functions. Reconfigurable logic i§

well-suited to generate a large dynamically variable subse

these reversible functions. Figuré 4 shows one such sche config rorFouEs)

for permutation of 10 address bits (specifying a page consi — BoB1B,B48,
ing of 1024 cache-blocks). Before exglaining the blocks Pohahehshs

Figure[4, we observe that there r@znz possible functions \ J
implemented in a x n look up table (LUT) om n-LUTs. But Fig. 5. Configuration Selection for each LUT

only a subset of them are bijective. We wish to implement

only reversible (conservative) gates ([15], [16]) with L&IT Having fixed the reconfigurable logic to perform the ob-
Definition 1: A Toffoli gate, Toffoli(n,n)(C,T), is fuscation (permutation), we need to develop a schema for the

defined over a support se{xy,Xp,...,%,} as follows. LUT configuration. A simple mechanism would be to store all

Let the control setC = {Xi1,X2,...,xx} and the the 55 possible configurations at each of the LUTs (similar to
target setT = {xj} be such thatCNT = 0. The DPGA of DeHon [18]). In addition to 4nput bits each LUT
mapping is given by Toffoli(n,n)(C,T)[X1, Xz, ..., Xn] = will also have6 configuration bitsto choose from one of the
X0,%X2, -+ s X]—1,Z, X[41, - - - s Xn] where z = x © 55 configurations (assuming some configurations are regeate
(X1 AXi2 A ... AXik)- to fill the 64 locations), as shown in Figure 5. In Figlre 5

Both Fredkin [15] and Toffoli [17] have defined classeof1A2AsAq represent the input address bitg, f1, f2, ..., fe3
of reversible gates. We us®offoli(5,5) gates with 5-input represent the 64 configurations, a@gCiCC3CsCs represent
bits and 5-output bits in our scheme as shown in Figure We configuration bits. Each of thexchangerblocks also
However, we could easily replace them Bedkin(5,5)gates. requires 1 configuration bit. Thus a total of 39 configuration
The domain of configurations which can be mapped to eabits are needed by the reversible logic of Figure 4.
of the LUTs consists of selections of sdtsandC such that

T N C = 0. For a support set of 5 variables, the number (B Obfuscating the Sequence
. (5 5 5)
unique reversible Toffoli functions 'S<41) +3(2) +2(3) T We can use the reconfigurable permutation unit defined in

X Sectiori IV-C to achieve sequence obfuscation. Note, howeve
4] Each of these terms captures control sets of size 1,243,; o\ though we have shown the circuit for a 10-bit permu-
and 4 respectively. Ignoring control sets of size 1, we gettation, the methodology is applicable to an arbitrary humbe
total of 55 reversible functions. Thus total permutatioac of address bits. We believe that at least 10 address bitstneed
covered by all six of these gates @55)6 ~ 234 There are be permuted in order to have a reasonably large permutation

Toffoli(5,5) Exchanger(3,3) Toffoli(5,5) Toffoli(5,5)

Exchanger(5,8)

Toffoli(5,5) Exchanger(2,2) Toffoli(5,5) Toffoli(5,5)

\ J
Fig. 4. Reconfigurable Bijective Obfuscation Unit

space. The choice of 10-bits is also dictated by the straaifir with N, blocks). However, the association of an OTP with
the software. Software objects, both instruction and data, a cache-block is randomized with thm function. The ¢
viewed by the architecture in various granularities. TheMRA function can be chosen differently for each page to provide
memory resident objects are viewed in the unitpafes The us with a unique OTP per cache-block. This simplifies the
cache resident objects on the other hand are viewed in tiee uhiardware implementation of content obfuscation unit ad, wel
of blocks This argues for the obfuscation boundaries definathce each page is processed uniformly in this unit except
by these units. Hence we obfuscate the sequenceaciie- for the 1 function. Hence a program image will need to
blockswithin a page. Any sequence obfuscation witipiage provide a page of OTPs which will be used for all its pages. It
level needs to interact with the page management moduleatdo needs to specify a unique mapping functigrper page.
the OS. If the obfuscated sequence crossepdigeboundary, Since we already have the reconfigurable permutation logic
the permutation functionrf) has to be exposed to the OSof Section IV-C in Arc3D, we can use it to implement the
This is the reason why we cannot obfuscate sequencesfuiction i as well. This results in 39-bits per page overhead
pages. In the other direction, permuting the sequencestnf stor the specification of the content obfuscation. Note that t
units of cache-blocks seriously affects the locality of mac OTP based content encryption can be easily replaced by any
resulting in severe performance degradation. Moreovecesi other bijective function.
the contents of a cache-block are obfuscated, the infoomati
leak through the preserved, original sequence of cache sub- .
blocks is minimized. Considering pagesize of 64KB with E.bObfuscatmg Temporal Order (Second-Order Address Se-
64B cache-blocksas is the case with Alpha-21264, we geguences)
1024 cache-blockper pagej.e., 10-bits of obfuscation. The second-order address sequences are derived from
iterative control constructs within a program. Consider
a loop of k instructions which is iteratedN times.

E. Obfuscating the Contents The expected address sequence in such an execution
In cryptography, the@ne time padOTP), sometimes known is {l0,0):l(10)s---:lk-1.0} + {lo1):lw - lk-1p}s -+
as theVernam cipheris a theoretically unbreakable methodlion-1);l(1n-1),--->lk-1n—1)} Where I;j denotes theijth

of encryption where the plaintext is transformed (for exé&mp instruction in the loop body in thgt™" loop iteration. In
XOR) with a randonpad of the same length as the plaintextthis sequence, if an adversary is able to tag the bound-
The structure of the software objects determines the piiotec aries of loop iteration, a strong correlation exists be-
granularities once again. We can consider a program aswaen successive iteration tracé$),l11),---,l -1} and
sequence of fixed sized messages, cache-blockslIf we {lg);1),l(1141),--->lk-11+1)} In fact, instructionly occurs
have unique OTPs for each one of the cache-blocks in timethe same relative order from the loop sequence start point
software, the contents are completely protected. However,both (or all) the iterations. This allows an adversary to
the storage and management of that many OTPs is higlgrementally build up information on the sequencing. What
inefficient. Nonetheless, we at least have to guarantee teaer sequence ordering is learnt in iteratibns valid for
everycache-blockwithin a pagehas a unique OTP. This is toall the other iterations. The second-order address sequenc
overcome the weakness in HIDE (as explained in Section Itibfuscation strives to eliminate such correlations betwbe
Figurel1). If the adversary-visible contents of the memomyrder traces from any two iterations.
locations are changed after each permutation (as with eniqu Interestingly, the second-order address sequence olifusca
cache-block OTP per page), thembit permutation is 2 is an inherent property of a typical computer architectune i
strong. This is in contrast with the strength of the order gflementation. The access pattern we observe outside the CPU
2" exhibited by the original HIDE scheme. is naturally obfuscated due to various factors lis@ching

In order to provide a unique OTP per cache-block perefetching and several otheprediction mechanisms aimed
page, one option is to generate a random OTP mask firimproving the performance. But these architecture featu
each cache-block for each page. A more efficient solutioare also controllable, directly or indirectly, by the OS and
however, is to pre-generatd, OTPs for every cache-block other layers of software. For example, the adversary could
within a page OTPb;j] masks for 0< bj < Ny for a cache flush the cache after every instruction execution. This eesd

the obfuscation effect afachenon-existent. To overcome suchvery similar to the PGP model of trust establishment and is
OS directed attacks, it is sufficient to have a reasonabbdsizshown in Figure 6.

protected-cachén the architecture which igrivileged (only An important point to note here is that the trust es-
accessible to secure processes). We expeatheof the same tablishment and the key management mechanisms do not
size as apage in our case 64KB, should be able to maskonstitute the crux ofArc3D architecture. Arc3D could use

the effects of loops. Encrypted or content-obfuscatache- any model/policy for this purpose. We use this model for
blocksalready obfuscate CFGs (within the cache-block). Thiustration purposes only. It could very well be adapted to
is because a 64B cache-block contains 16 instructions if wee the TPM [3] model.

assume instructions of length 32-bits. 2) Binary Image GenerationSoftware vendor receiveés
from the CPU. It queries the CA to derive the architecture
V. ARC3D IN OPERATION level specifications of the CPU, relevant for static obftisca

We have developed and described all the building blockdlich include details such asache-blocksize, minimum
of Arc3D in Section|IV. In this section, we explain itsSUpportedpage size. Software vendor generates the binary

operation with respect to the software interactions in ietalll® targeted at the appropriate cache-block and page sizes.

from software distribution to the management of a protect@§nerates two sets of random configurations per page. One

process by the OS using the APIs providedAng3D. configuration is to obfuscate the sequence cathe-block
addresses within a page) and the second configuration is

A Software Distribution to obfuscate the association of OTPs witiche-bloclkaddress
' (T%,). The content obfuscation requires the software vendor to
Arc3D provides bothtamper-resistanceand IP-protection fyrther generate a page sized OTOTR, OTR[b] for all
through obfuscation. Hence, a software vendor should bes bi < Np). These functions can then be used along with the

able to obfuscate the static image of a binary executabfg>GA obfuscation unitin a CPU or with a software simulation
Moreover, a mechanism to distribute tiseatic obfuscation of jts behavior to generate the obfuscated binary file.

configuration from the vendor t&rc3D needs to be supported.

This configuration constitutes the shared secret between Klgorithm 1 Page Obfuscation Functiopageobfuscate
vendor andArc3D. Trust has to be established between3D Required Functions

and the vendor in order to share this secret. Once the trust I%;fu (tgonf-se'=addf> <= Reconfigurable Obfuscation Unit

established, the binary image along with the relevant cenfig otr,, « array of oTP

uration can be transferred #rc3D. page < input page A
confeq< contsel for sequence obfuscation

contont <= confsel for content obfuscation

4) N, <= number ofcache blocksn a page
Outputs
1: page < output of page
CPU S/w Vendor Function
for k=0toN,—1do
out = Fopt (Con ke k)
I = Fobf <C0n%om~,k)
OTP=O0TR[l]
page[out] = page[k] ® OTP
end for
Although this kind of obfuscation is applicable to any binar
. + 1 . . .
3: E . Identity image, the software vendor could enforce additional priger
on the target CPUs. For instance, it can restrict the digioh
- ~ only to those machines which have a certain minimzanhe-
Fig. 6. Three party trust model block size andpage size, as both these parameters affect

the strength of obfuscation. A suggested minimum for these

1) Trust EstablishmentWe assume that there exist proparameters is @ and 64B respectively. The basis of static
tected elements within the CPU which are accessible only dbfuscation is a page obfuscation functiggageobfuscat®
the architecture, and not to any other entities. We alsonassuwhich takes an input page, an OTP page, and configurations
that every CPU has anique identity namely, itspublic- for both address-sequence and content obfuscation funsctio
private key pair(Ex",Ec7). This key pair is stored in the It produces an obfuscated output page. The outline of this
protected space of the CPU. A TPM’s endorsement key paigorithm is shown in Algorithm-1. The algorithm fatatic
constitutes such an identity. Public part of this key pBirt, obfuscationis shown in Algorithm-2.
is distributed to acertification authority(CA). CA verifies the For every protected page the software vendor genegatgs
CPU vendor’s authenticity, associatgs"™ with CPU vendor’s the configuration for sequence obfuscation (corresponding
identity and other information (such as model number, pad 1), and Son, the configuration for content obfuscation
number, etc.). Any party entering a transaction with the CP{dorresponding torg,). It uses pageobfuscateto obfuscate
(such as a software vendor) can query the CA Vi in the page, and associate the configuration information \wigh t
order to establish trust in the CPU. Since CA is a trustgghge. This is shown in Algorithm-2. Even for pages which
entity, the data provided by CA can also be trusted. This &e not loaded, an obfuscation function could be associated

Algorithm 2 Static Obfuscation Functiorstat.ob fuscate

Inputs

Np < number of pages in the binary

Page,r < array of pages

Function

p < temporary page

Generate random page of OTETR)

for k=0toN,—1do

if Pageyr (K] to be protectedhen

Generate randorfieq
Generate randorfcont
Pageur (K- Poont = Ks{Sseqy Sont}, HMAC
p= pageob fuscatéSieq Scom. OT R, Pageur)

needs the ke¥s. This is achieved by encryptings with E,*

and distributing it along with the software. Now only the CPU
with the private keyEy~ can decrypt the distributed image to
extractKs. The entry point of the program also needs to be
guarded. Several attacks are possible if the adversand coul
change the entry point. Hence, the entry point is also eedyp
with Ks. Once again we need to use HMAC to detect any
tampering. HenceS, i, the authorization section, consists of
Ex " {Ks, PCstart}, HMAC. These extended sections are shown

o 2Gan (K =P in Figure[7. The complete algorithm for software distributi
end for is shown in Algorithm-3.

B. Management of Protected Process
Note thatArc3D needs a standardized mechanism to garner

these functions. This could be done by extending the standar We now explain the OS use Of thRaC3D APIS to manage
a protected process. We will also show how seamlessly it can

binary format, like ELF, to hold the sections containing the ™. : - ; o
: . . . integrated with the existing systems while providing the
configurations. The configurations have to be guarded, an) .
Uarantees ofamper-resistancand copy-protection

hence need to be encrypted before being stored with P ; j .
binary image. The software vendor has to generate aKcey, 1) Starting a Protected Process: Arc3ias two execution

specific to this installation to support such encryption.pEge m'(t)P?eS'£ 1) prote_lcted af“?' (Zt)h n(())rrsnal, Wh'd][. arev\%nfor(iﬁd
level configurationsSseq and Sont, are encrypted with this without necessanly requinng the cooperation. en the

Ks. And HMAC [19] of these encrypted configurations is alsg)S creates a process corresponding to a protected program,

generated. HMAC is a keyed hash which will alléwc3D to It has to r_ead the special sections containtign and per-
detect any tampering of the encrypted configurationsP.&t page qonﬂguratlorPconf. Arc3D has an extended transiation
represent the encrypted configurations and its HMAC and ||89k§\3|de_buffer TLB"F’)_ n order to load these per-page
Scont represent the section containifg,n; of all the pages. configurations. The decision whether to extend the page tabl

The new binary format should carry encrypted configuratior? try (g)ﬂf) \\;Vvlth thes.((ej conflguramn 'ts’ OS ang_ar:c:\rlltec_r_ul_rs
and its HMAC for every protected page. The page containi pendent. he gcl)nj' ber '?hn arcft| ec ureHln w Kt:h (§S
the cache-block OTPs also needs to be stored. This pag gses are nhandled by the software. Hence the can
also encrypted withKs. Its HMAC is computed as well. A maintain these associations in a data structure differem f

new sectiortoTp is created in the binary file and the encrypte TI(EjSH This W'”t b? Zﬁ'c'ent i V.erty_ltiw pro:re]chjeq proc?Isses
OTP page and its HMAC are added o it. and hence protected pages) exist. This method is equally we

applicable to a hardware managed TLB wherein all the PTEs
have to follow the same structure.

Sections with
Obfuscated page

Reserved

Reserved

Reserved

-

Fig. 7.

Extended Binary Format

Algorithm 3 Software Distribution
1: GetEc* from CPU

(~
C i | \
B%gYergr:r?at Sauth Stont Sore The QS, before starting the process, has to upglate extended

: TLB with Peony, for each protected page. Additionally, for
P L every protected page, the OS has to set the protected mode
Ec{PCan } Ke{Sseqs Sont} K {OTP) yp page, D

bit P. This will be used by the architecture to decide whether
to use the obfuscation function. Note that by entrusting the
OS to set theP bit, we have not compromised any security.
The OS does not gain any information or advantage by
misrepresenting thé bit. For example, by misrepresenting
a protected page as unprotected, the execution sequerice wil
fail as both instructions and address sequences will agpear
be corrupted. This is followed by the OS provididgc3D
with a pointer toS,+» and a pointer t&orp.

The OS executestart prot_processto start the protected
process execution. This caus@sc3D to transition to pro-
tected mode. Arc3D decryptsS,yth and checks its validity

2: Contact CA and validate&, by generating its HMAC. If there is any mismatch between

3. Generateks the computed and stored HMACs, it raises an exception and
4: Generateconf_seqconf_cont for every page to be protected

5. GenerateOT P page goes out ofprotected mode. If HMACs match, theirc3D

?f ggrféf;t‘gusgigea 40 it 1o binary fle can start the process execution frdCsar. However, the

. ith .

8 GenerateSon and add it to binary file address sequence generated at the address bus will expose
9: Generatefore and add it to binary file the s function through one-to-one correspondence with the
10: Send the binary file to CPU static binary image sequence. This compromises the static

obfuscation. As explained in HIDE [9], the address sequence

In order for the CPU to be able to decrypt the program, information suffices to reverse engineer the IP without even

knowing the actual instructions. Henotc3D performs one Cp functions extremely unlikely. To ensure such i (Cp)
more level of obfuscation, calledynamic obfuscatignon refresh on every context switcfi,LB[k].Prot is cleared for all
protected pages to avoid these scenarios. the entries whenevetart prot_procesds called or a protected
Dynamic obfuscatioms very similar to thestatic obfusca- process is restored. A state regis&F is allocated to the
tion. It consists of two independent obfuscation functions pg@rocess and added t8,,n. The usage of this register is
page, one to obfuscate the sequenceamhe-bloclkaddresses, explained in Section V-B.5. Availability of this registeuts
and the other to obfuscate the contentsathe-blocksWhen a limit on total number of protected processes active at any
start_prot_processs executedArc3D generates an OTP pagepoint in time inArc3D. After the dynamic obfuscation is done,
(OTR). This OTR needs to be stored in memory so that ithe process is started froRCsart as given byS,th. The steps
can be reloaded at a later point after a context switch. We ugseolved in start prot_processare shown in Algorithm-5.
the sectionSotp to storeOT Ry. Arc3D has sufficient internal
space to hold bot®TR andOTR; at the same time. It readsAlgorithm 5 start_prot_process
Sotp and decryptOT R, validates the HMAC, and then loads 1: change torotected mode
it into the obfuscation engine. It then encryf¥ Ry with Sgggéﬁgz’r‘]ﬂ‘\’;'l'f;ﬁ
Ks and generates its HMAC which is appendedsrp. We GenerateDT Ry and append t&orp
assume that the space foT R, in the sectiorSorp has already gﬁf‘&'{‘g@fﬁg’ctaft‘;’ alli
been allocated at compile time. : Allocate ST to the process and add it &un
Arc3D then scans the TLB and validat®qgns for every 8: set PC toPCyan
protected page that has been loaded in the main memory. Tt

then generate®seq and Deont configurations (corresponding 2y Memory AccessOnce a process is started it generates
to m and 1) for each one of those pages and appendssequence of instruction and data addresses. Like any high
them to theirPeont. TLBxp which has been extended to hom{;erformance architecture, we assume separate TLBs, ITLB
Peont, also has protected space per TLB entry which only,q o1 B, for instruction and data. Hence the loading preces
Arc3D can access. This space will be used AKc3D 10 gypiained earlier occurs parallely in both ITLB and DTLB.
store the decryptedseq Sont; Dseq Deont cONfigurations, so the TLB js the key component of the obfuscation unit.
that decryption need not be done for every TLB acc@ss3D hg gpfuscation functions are applied only during virtual t
contains temporary buffer of twice theagesize to perform pysical memory mapping. The address generation procedure
the obfu_scatlon. Hence |_t reads a complete_: page _from RAM outlined in Algorithm-6. Two stages of,p; are in the
and appliepageobfuscatiorand then stores it back in RAM. comptation path for the physical address. This makes TLB
Algorithm for dynamic obfuscation is shown in Algor'thm'4-latency higher than the single cycle latency of a typical TLB
access. Hence, L1 caches of both instruction and data are
madevirtually taggedand virtually addressedo reduce the
',I“Tpt;i number of TLB entries performance impact due to TLB latency. The L1 cache tags

pi <= page to be obfuscated, read from RAM are extended with grotectionbit, which is accessible only to
po < obfuscated page

Nogkwd

Algorithm 4 Dynamic Obfuscation Functiomtynobfuscate

OTR, « array of dynamic OTP Arc3D. This bit is set whenever the cache line is filled with

Function data from a protected page. The access to protected cache-

forifszl_g“t(‘]’_,L\‘TisLBsgéhi% blo_c_ks is restricted_onl_y in protect_ed mode. In_ order to have
if TLB[K].prot=NULL then efficient context switching mechanism we usede-through

Decrypt and validat@:on+
if Dseq, Dcont €Xistthen
Po = pageunob fuscatéDseq Deont, OT Ry,temp)

L1 cache. Thus, at any point in time L2 and L1 are in synch.

oph 1O Algorithm 6 TLBy, Access Functiontlbxp_access
Generate nevDseq Deont v_page< input virtual page address
Append it toPeont v_block < input virtual block address
TLBIK]. prot = {Sseq Scont; Dseqy Deont} p.addr < output physical address
Read the page i k «— TLB index of hit and page exists in RAM
Po = pageob fuscatéDseq Deont; OT Ry, pi) if TLBK].P is setthen
Write backtemp, p-block= Fopt(Dseq Fobf(Sseq V-block))
end if else
end if p-block= v_block

end if

p-addr= TLBk]. p-page+ p-block

end for

The TLB[K].Prot structure is the protected section of TLB
entry and is cleared every time a new TLB entry is written. TLB and L1 cache are accessed parallely. TLB is read in
Hence the functiordyn.obfuscateis invoked on every TLB two stages. The first stage reads the normal portion of TLB and
miss. If the page has already been subjected to dynartlie second stage reads the extended and protected portion of
obfuscation,Arc3D first performs the inverse operation (deTLB. This way the second stage access can be direct mapped
obfuscation). It then generates new obfuscation configamsit and hence could be energy-efficient. If L1 access is a hih the
to perform dynamic obfuscation. This causes the dynanii¢.B access is stopped atagq. If L1 access is a miss, then
obfuscation functions to be very short livede., changing TLB access proceeds as shown in the functibrp_accessin
on every page fault. It makes reverse engineeringofand Arc3DL2 cache igphysically tagged and physically addressed

Hence, no special protection is needed for the L2 cache. @storeprot processfirst garnersST andKs from S, p. Then
an L2 cache access to an instruction in the middle of a cachiee keyOT P[ST| @ Ks is used to decrypt the restored context.
block, the relative intra-block sequence information iskied This mechanism is very similar to the one used in all the
to an observer adversary on the L1-L2 cache boundary. Givearlier research such as ABYSS and XOM.
that for a 64B cache-block size, there are 16 instructiomsseh 6) Supporting fork: In order to fork a protected process,
sequencing information is open to exposure. One way torlesgbe OS has to invokéransferprot processAPI. This causes
this vulnerability is to have L1 cache only issue L2 cachex newST to be allocated to the forked child process. It then
block addresses. The cache-block offset can be retaindueby makes a copy of process context similarseveprot process
L1 cache for later decoding. Hence the address traces eisibhndling. Thus the parent and the child processes could be
at L1-L2 cache boundary will appear to be L2 cache-blodkfferentiated byArc3D. The OS has to make a copy &hrp
address aligned. This would increase the latency but as fee the child process.
discuss later, this increase will not be very high. Once the7) Exiting a Protected Proces3iVhen a protected process
data is received from the L2 cache or memory, iXi®Red finishes execution, the OS has to invakét prot processAPI
with bothOT Ry andOT R to get the actual content in plaintextto relinquish theST. This is the only resource that limits the
which is then stored in an L1 cache line. number of protected processes allowed infan3D system.

3) Execution: Arc3Dhas a set of protected registerddenceArc3D is susceptible to denial-of-service (DOS) kind
(REG) to support protected process execution. This registef attacks.
set is accessible only in the protected mode. The protected) Protected Cache: Arc3bas a protected direct mapped
process can use the normal registers to communicate wlith cache of page sizd,e., 64KB. This protected cache is
the OS and other unprotected applications. If two protecteded to obfuscate the second-order address sequencesonly f
processes need to communicate Beaureway, then they have instructions, as temporal order doesn’t have any meanitty wi
to use elaborate protocols to establish common obfuscati@spect to data. Whenever there is an IL1 miss in protected
functions. Data sharing can also occur through a shareétsecnode, Arc3D sends a request th2prr. Since L2prqt i on-
embedded into two applications by the software vendor ahip, the access latency will be small. We assume it to be 1
advance. cycle. If there is a miss il2pt then L2 is accessed.2prot

4) Interrupt Handling: Only instructions from a protectedis also invalidated whenever a protected process is started
page can be executed in protected mode. Hence any calrastored.
system services, such as dynamic linked libraries, reguire
a state change. Any interrupt caus@e3D to go out of VI. DISCUSSION
protected mode. Before transitioning to normal modiE3D A Assumptions

updates PC field iy with the current PC. Thus a protected In this section we state and justify the underlying assump-

process context could be suspended in the background while .)
. . o tions for Arc3D. The first and foremost of our assumptions
the interrupt handler is running in the unprotected modeeliVh.

the interrupt handler is done, it can execrgeprot_processo is that everyArc3D processor has a unique identity (TPM's

etur ot prtected proceD ke e RC o, =11 0T AEED G meufatrer con uee s
and restarts from that point. This allows for efficient imtgt 9 Y- Y

Functions (PUF) [20] have been proposed for this purpose.

23,”;"8?,' E)Ltjégtrgén trr;iégtsiréuq_th?sndlerééhsogssnc;czuflgvseta"éM,s secure crypto-processor [21] provides a mechanism
P P : ’ based on packaging for storing secrets within the processor

any overhead in a context switch from protected to unpretect naironment. Xilinx [22] in its CPLD devices uses metal laye

processes. But when the OS wants to load another protecgend dual access mechanisms to obfuscate the stored secrets.

process the current protected process’ context must bel save . .
5) Saving and Restoring Protected Context: Ara3ports The nextissue is the extent of damage due to the exposure of
) Arc3D identity secret. If an adversary is able to gain access to

saveprot_ processAPI to save the current protected procest?1 L
) : e stored secret, then all the programs that were disgtbior
context. This cause&rc3D to write Ks{REGy} + HMAC and that particular instance @&rc3D could be decrypted. Once the

Sauth into the memory given by the OS. The OS when restorin - - . . .
the protected process, should provide pointers to these daéérlogram plaintext is obtained it can be executed in Arg3D

structures througkestoreprot_process Arc3D can be enabled machine in unprqtepted mode.. Hence t_he ability to proteg:t th
stored secrets within the architecture is of paramount impo

to detectreplay attacks by including an association of tim : X .
with the saved contexts. A set of OTP registers called stg?ence iInArc3D design. However, the programs distributed to

OTP registers are required withiArc3D for this purpose. and encrypted for othekrc3D platforms_are not compromised
These registers are the same size Kas The number of by the exposure of the secrets of a given platform.

these registers depends on how many protected processes .

need to be supported simultaneously. Tiart prot process B- Attack Scenarios

allocates a state OTP regist8f. This association inde$T In this section we argue thairc3D achieves our initial

is also stored withirg, . Each instance afaveprot process goals, namely,copy-protection tamper-resistanceand IP-
generates a state OTP valOF P[ST] which is stored inST. protection Several attacks causing information leak in various
The saved context is encrypted with the key given by thdimensions could be combined to achieve the adversaryls goa
XOR of Ks and OT P[ST]. Symmetrically, an instantiation of These attacks could be classified into two categories —lattac

10

that targetArc3D to manipulate its control or reveal its secrets. When the adversary knows the internals of the underlying
If the adversary is successful in either getting the storedchitecture, another form of attack is possible. This fafm
secret Ex~) or in changing the control logic, the securityattack denies resources that are essential for the fuiretjon
assurances built upoArc3D could be breached. But theseof the underlying architecture. For example, XOM maintains
type of attacks have to be based bardware as there are a session table and has to storenatating registenvalue per

no software control handles intdrc3D. There are several session-id. This mutating register is used to prevent aphaye
possible hardware attacks, like Power Profile Analysisck#ta attacks. This kind of architecture has an inherent linotati
Electro magnetic signal attacks. The scope of this papestis on the number of processes it can suppiogt, the scalability

to provide solutions to these attacks. Hence we assume tisatie. Thus an attacker could exhaust these resources &ed ma
Arc3D is designed with resistance to these hardware attackbe architecture non-functional. This kind of attack is bk

The second type of attacks are white-box attacks. Such iamArc3D as well on the state OTP register file. We could let the
attack tries to modify the interfaces é8frc3D to the external context-saveand context-restorebe embedded in the storage
world, to modify the control. The guarantees that are prestid root of trust in a TPM like model. Such a model will allow
by Arc3D to the software in protected mode of executioArc3D to perform in a stateless fashion which can prevent the
are 3D obfuscation for protected pages based on the unigasource exhaustion attacks.
identity per CPU. Protected mode of execution guarantess th
the control is not transferred to any unauthorized code dlwhi
is undetected)Arc3D will fault when an instruction from
an unprotected page or from a page that was protected wittSinceArc3D seamlessly fits into the existing memory hier-
different Ks is fetched in protected mode. This will preventirchy as an extended TLB, the latency causediaBD should
attacks of the buffer overflow kind. 3D obfuscation providelse minimal. We used Simplescalar [23] Alpha simulator with
us both IP-protection and tamper-resistance. IP-prateds memory hierarchy as shown in Figure 2 to do the performance
achieved because at every stage of its life, the binary inmgesimulation. We did two sets of simulations with different
made to look different, hence reducing the correlation thasktency parameters, Alpha 21264 and Intel XSCALE 80200
information leaks to the maximum extent possible. as shown in Tablg I.

Correlation based attacks are the ones where an adversaffhree latencies are added c3D, namely, extended
builds up information about the program behavior throughLB access, increased access time to L2 because of sending
repeated program executions. Such techniques [12] have berly block address to L2, and latency to read the pages and
successfully used against commercial secure microcdertrolobfuscate them on every TLB miss. The first component gets
DS5002FP [11]. InArc3D such attacks are prevented, as thabsorbed in L1 cache access latency for both the systems,
dynamic obfuscation functions are chosen at random foyeverssuming that the extended TLB access increases the TLB
process run, which prevents incremental information gain. access latency by 2 cycles. The major component is the

Tampering could be performed by many means. But all oéading time ofpageand writing it back to the memory. Since
them have to modify the image of the process. Since evashfuscation is just an XOR operation, we can assume it takes
cache-block in every protected page potentially could reaveone cycle. These facts along with the assumption that these
different OTP, the probability that the adversary couldems pages are transferred in and out’%t3D at the peak memory
a valid content is extremely small. Applications can ob&isc bandwidth, lead to a latency increase of Q20 cycles in the
new pages that are created at run-time by designating thease of Alpha-2164 and 9800 cycles in the case of XSCALE.
as protected. Applications can further maintain some forthe simulation was run with Spec2000 [26] benchmarks for
of Message Digest for sensitive data, because obfuscatBillion instructions by fast-forwarding the first 500 nidlh
only makes it harder to make any educated guess, whifestructions.
random modification of data is still possible. In the case of Table[1l shows that the performance impact on XSCALE
instructions, the probability that a random guess woulanfor80200 memory hierarchy with higher number of TLB misses
avalid instruction at a valid program point is extremely smaliis greater than the impact on Alpha 21264 memory hierarchy.

Another form of tampering - splicing attack - uses vali®©n Alpha 21264 the performance impact is less than 1% for
cipher texts from different locations. This attack is n&ely most of the benchmarks.
to succeed because evergche-blockin every page has a
uniqgue OTP and evergagehas a unique address obfuscation
function. This makes it hard for the adversary to find two
cache-blockswith the same OTP. Another common attack is Software obfuscation is a key technology in IP-protection.
replay attack where valid cipher text of a different instance oHowever, software only solutions (such as compiler transfo
the same application is presented (replayed) to the CPU. ations of control flow or insertion of redundant basic bbck
we discussed earlier, this attack is prevented by XOR{gg or data structure transformations) often do not have rolasst
with a randomly generated OTP which is kept in #he3D of crypto methods. Complete control flow obfuscation method
state. This value is used as a key to encrypt phatected such as Cloakware [27] have the limitation that they cannot
process’ context. Thus when restoring a protected conteligle the correct control flow information from the prying sye
Arc3D makes sure that botg,;, and saved context are fromof the OS/end user. An additional weakness in these schemes
the same run. is that observation of repeated dynamic execution ofteagyiv

VIl. PERFORMANCEANALYSIS

VIII. CONCLUSION

11

TABLE Il
SIMULATION RESULTS

XSCALE 80200
Bench | IL1 Missrate | DL1 ITLB DTLB %CPI
TABLE | ‘ ‘ Missrate ‘ Misses ‘ Misses ‘ Increase
MEMORY HIERARCHY SIMULATION PARAMETERS bzip 0.0000 0.0225 2 256408 479
eon 0.0000 0.0020 10 12 0.145
‘ Param ‘ Alpha 21264 [24] lsn(;gloo [;(SS]CA"E gce 0.0037 0.0510 28 110636 509
twolf 0.0000 0.0728 7 31 0.128
L1 64KB, 2 way, | 32KB, 32-way, crafty | 0.0009 0.0051 6 15627 73.4
64B,3cyc | 32B,3¢cyc 9Zip | 0.0000 0.0231 3 1906 106
ITLB/ 1_28 fully associa- 3_;2 fully associa- parser | 0.0000 0.0352 3 £0663 545
DTLB tive, 1 cyc tive, 1 cyc
2 IMB, 1 way, 16 | 256K, 8 way, 8 Alpha 21264
cye cye Bench | LI Missrate | DL1 TLB DTLB %CPI
Memory | Lat 130 cyc, 4| Lat 32 cyc, 4 ‘ ‘ Missrate ‘ Misses ‘ Misses ‘ Increase
bytes/cyc bytes/6 cyc -
Seak —1GBls 500 MBls bzip 0.0000 0.0185 2 113 0.12
Bl eon | 0.0000 0.0008 10 12 0.02
Page sz | 64KB SIKE gcc | 0.0019 0.0272 29 1804 0.97
twolf 0.0000 0.0508 7 31 0.01
crafty 0.0002 0.0123 6 33 0.02
ozip 0.0000 0.0125 3 1906 112
parser | 0.0000 0.0210 5 1121 0.74
vpr 0.0000 0.0444 5 51 0.05

away the obfuscation secrets (such as control flow ordening[o1]
data structure sequencing).

We propose a minimal architecturédrc3D, to support [12]
efficient obfuscation of both static binary file system image
and dynamic execution traces. This obfuscation coversethié3l
aspects: address sequences, contents, and second-aheezsad
sequences (patterns in address sequences exercised bgttheg1fi]
level of loops). We describe the obfuscation algorithm and
schema, its hardware needs, and their performance imp

Dallas Semiconductor,DS5002 Secure Microprocessor Chip,” March
2003.

M. G. Kuhn, “Cipher Instruction Search Attack on the BEScryption
Security Microcontroller DS5002FPIEEE Trans. Computersvol. 47,
no. 10, pp. 1153-1157, 1998.

Christian Collberg and Clark Thomborson and Douglaswlo
“A Taxonomy of Obfuscating Transformations,” Departmerit @om-
puter Science, University of Auckland, Tech. Rep. 148, @97

C. Linn and S. K. Debray, “Obfuscation of executable &ad improve
resistance to static disassembly.”ACM Conference on Computer and
Communications Securit2003, pp. 290-299.

?ﬂg} E. Fredkin and T. Toffoli, “Conservative Logicfhternational Journal

We also discuss the robustness provided by the proposed of Theoretical Physigsvol. 21(3/4), April 1982.

obfuscation schema. [16]
A reliable method of distributing obfuscation keys is neiade[m

in our system. The same method can be used for safe and au-

thenticated software distribution to provide copy-prtitat. A [18]
robust obfuscation also prevents tampering by rejectiragra t
pered instruction at an adversary desired program poihtavit

extremely high probability. Hence obfuscation and deiveat [19]

tamper-resistance provide IP-protection. Consequeatt3D [20]

offers complete architecture support for copy-protectoml

IP-protection, the two key ingredients of software DRM. 211
REFERENCES

[1] “Business Software Alliance, 8th Annual BSA Global Swdtre Piracy [22]
Study. Trends in Software Piracy 1994-2002.” 2003. [23]

[2] “Next-generation secure computing base,” 2003. [GglinAvailable:
http://www.microsoft.com/ngsch

[8] TCPA, “Trusted Platform Module,” 2003. [24]

[4] “TPM Design Principles - Version 1.2,” October 2003.

[5] S. R. White and L. Comerford, “ABYSS: An Architecture f8oftware [25]
Protection,” IEEE Trans. Software Engvol. 16, no. 6, pp. 619-629,
1990. [26]

[6] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh). C. [27]

Mitchell, and M. Horowitz, “Architectural Support for Comnd Tamper
Resistant Software,” iIMSPLOS 2000, pp. 168-177.

D. Aucsmith, “Tamper Resistant Software: An Implemédioi” in
Information Hiding 1996, pp. 317-333.

C. S. Collberg and C. D. Thomborson, “Watermarking, TemProofing,
and Obfuscation-Tools for Software ProtectiofEEE Trans. Software
Eng, vol. 28, no. 8, pp. 735-746, 2002.

X. Zhuang, T. Zhang, and S. Pande, “HIDE: An Infrastruetdor effi-
ciently protecting information leakage on the address’bnsASPLOS
2004, pp. 72-84.

O. Goldreich and R. Ostrovsky, “Software Protectior &imulation on
Oblivious RAMs.”J. ACM vol. 43, no. 3, pp. 431-473, 1996.

(7]
(8]

El

[10]

R. Bennett and R. Landauer, “Fundamental Physical tsiraf Compu-
tation,” Scientific Americanpp. 48-58, July 1985.

T. Toffoli, “Reversible Computing,” MIT Laboratory fo Computer
Science, Tech. Rep. MIT/LCS/TM151/1980, 1980.

A. DeHon, “DPGA-Coupled Microprocessors: Commoditysl for the
Early 21st Century,” inEEE Workshop on FPGAs for Custom Comput-
ing Machines D. A. Buell and K. L. Pocek, Eds. Los Alamitos, CA:
IEEE Computer Society Press, 1994, pp. 31-39.

“HMAC: Internet RFC 2104," February 1997.

B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, ¢8iii Physical
Random Functions,” i€CS '02: Proceedings of the 9th ACM conference
on Computer and communications securifyiew York, NY, USA: ACM
Press, 2002, pp. 148-160.

J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Dods. W.
Smith, and S. Weingart, “Building the IBM 4758 Secure Copssor.”
IEEE Computervol. 34, no. 10, pp. 57-66, 2001.

XCELL Journal Online, “Is Your FPGA Design Secure.”

D. Burger and T. M. Austin, “The SimpleScalar Tool Seersion 2.0.”
Department of Computer Science, University of Wisconsiadidon,
Tech. Rep. 1342, 1997.

Z. Cvetanovic and R. E. Kessler, “Performance analygsishe Alpha
21264-based Compag ES40 system.1SCA 2000, pp. 192-202.
“Intel 80200 Processor based on Intel XSCALE Microdtetture
Datasheet,” January 2003.

“Specbench: SPEC 2000 Benchmarks.”

S. Chow, Y. Gu, H. Johnson, and V. A. Zakharov, “An Appbao
the Obfuscation of Control-Flow of Sequential Computergfams,” in
Proceedings of International Security Conference (ISCecture Notes
in Computer Science, 2200, Springer-Verlag, 2001, pp. 188~

http://global.bsa.org/
http://www.microsoft.com/ngscb
http://www.trustedcomputing.org
https://www.trustedcomputing.org/downloads/Main_TCG_Architecture_v1_1b.zip
http://pdfserv.maxim-ic.com/en/ds/DS5002FP.pdf
http://www.cs.auckland.ac.nz/~collberg/Research/Publications/CollbergThomborsonLow97a/index.html
http://www.rfc-archive.org/getrfc.php?rfc=2104
http://www.xilinx.com/publications/xcellonline/xcell_47/xc_secure47.htm
http://www.specbench.org/osg/cpu2000/

Mahadevan Gomathisankaran received B.E. in
Electronics and Communcation Engineering (1998)
from the Regional Engineering College (now known
as National Institute of Technology), Trichy, and cur-
rently doing his Ph.D. in Computer Engineering at
the lowa State University. His research interests are
Secure & DRM Architectures, Low power design,
and Logic design.

Akhilesh Tyagi received B.E. (Honors) in Electri-
cal and Electronics Engineering from (1981) Birla
Institute of Technology and Science, Pilani followed
by M. Tech. in Computer Engineering (1983) from
Indian Institute of Technology, New Delhi, India. He
received Ph.D. in Computer Science from University
of Washington, Seattle in 1988. He was an assistant
professor with the Department of Computer Science
at the University of North Carolina at Chapel Hill
from August of 1987 to June of 1993. Subsequent
to that, he was with the Department of Computer
Science, and is now with Electrical & Computer EngineeringpD at lowa
State University, Ames, lowa. His research interests tlelMLSI complexity
theory and low energy design, secure & DRM architectures camdpilers.

12

	Introduction
	The Problem
	Previous Research
	Obfuscation
	Analysis

	Proposed Architecture: Arc3D
	Obfuscation Schema
	Overall Schema
	Reconfigurable Bijective Function Unit
	Obfuscating the Sequence
	Obfuscating the Contents
	Obfuscating Temporal Order (Second-Order Address Sequences)

	Arc3D in Operation
	Software Distribution
	Trust Establishment
	Binary Image Generation

	Management of Protected Process
	Starting a Protected Process
	Memory Access
	Execution
	Interrupt Handling
	Saving and Restoring Protected Context
	Supporting fork
	Exiting a Protected Process
	Protected Cache

	Discussion
	Assumptions
	Attack Scenarios

	Performance Analysis
	Conclusion
	References
	Biographies
	Mahadevan Gomathisankaran
	Akhilesh Tyagi

