
1

Architecture Support for 3D Obfuscation
Mahadevan Gomathisankaran and Akhilesh Tyagi

Electrical and Computer Engineering
Iowa State University

Ames, IA 50011
{gmdev,tyagi}@iastate.edu

Abstract— Software obfuscation is defined as a transformation
of a program P into T (P) such that the whitebox and black-
box behaviors of T (P) are computationally indistinguishable.
However, robust obfuscation is impossible to achieve with the
existing software only solutions. This results from the power of
the adversary model in Digital Rights Management systems which
is significantly more than in the traditional security scenarios.
The adversary has complete control of the computing node -
supervisory privileges along with the full physical as well as
architectural object observational capabilities. In essence, this
makes the operating system (or any other layer around the
architecture) untrustworthy. Thus the trust has to be provided
by the underlying architecture. In this paper, we develop an
architecture to support 3-D obfuscation through the use of well
known cryptographic methods and show how it provides copy-
protection, IP-protection and tamper-resistance.

Index Terms— Obfuscation, Digital rights management, Secure
systems architecture.

I. I NTRODUCTION

D IGITAL rights management (DRM) deals with intel-
lectual property (IP) protection and unauthorized copy

protection. Software piracy alone accounted for $13 billion
annual loss [1] to the software industry in 2002. Software dig-
ital rights management traditionally consists of watermarking,
obfuscation, and tamper-resistance. All of these tasks aremade
difficult due to the power of adversary. The traditional security
techniques assume the threat to be external. The system itself
is not an adversary. This provides asafe havenor sanctuary
for many security solutions. However, in DRM domain, the
OS itself is not trustworthy. On the contrary, OS constitutes
the primary and formidable adversary.

Any software-only solution to achieve DRM seems to be
inadequate. In the end, in most scenarios, it reduces to the
problem of last mile wherein only if some small kernel of
values could be isolated from the OS (as an axiom), the entire
schema can be shown to work. At this point, it is worth
noting that even in the Microsoft’s next generation secure
computing base (NGSCB) [2], the process isolation from
OS under a less severe adversary model is performed with
hardware help. The NGSCB’s goal is to protect the process
from the OS corrupted by external attacks by maintaining
a parallel OS look-alike callednexus. The nexus in turn
relies upon a hardware Security Support Component (SSC) for
performing cryptographic operations and for securely storing
cryptographic keys.

This work is supported in part by IBM PhD Fellowship.

The trusted computing group consisting of AMD, HP,
IBM, and Intel among many others is expected to release
trusted platform module (TPM) [3], to provide the SSC. The
TPM is designed to provide such a root of trust for storage,
for measurement, and for reporting. Hence, we believe that
TPM provides building blocks for the proposed architecture.
However, we identify additional capabilities needed to support
robust 3D obfuscation. The proposed architecture obfuscation
blocks can absorb TPM functionality (based on the released
TPM 1.2 specifications [4]).

This paper is organized as follows. Section II describes
the obfuscation problem and its interaction with the existing
cryptographic solutions. Section III discusses earlier proposed
research and their drawbacks. Section IV explains the basic
building blocks ofArc3D and provides a high level overview.
Section V provides operational details ofArc3D system. We
describe various attack scenarios in Section VI. Section VII
gives the performance analysis ofArc3D. Section VIII con-
cludes the paper.

II. T HE PROBLEM

The attributes that need to be supported by a DRM system
are as follows.

1) Associability of Software to a particular CPU. (copy-
protection)

2) Verifiability of the CPU’s authenticity/identity. (copy-
protection, IP-protection)

3) Binary file, conforming to a standardized structure,
should not reveal any IP of the software through static
analysis based reverse engineering. (IP-protection –
static obfuscation)

4) Any modification of the binary file should make the
software unusable. (IP-protection – tamper-resistance)

5) The program execution parameters visible outside CPU
should not reveal any IP of the software. (IP-protection
– dynamic obfuscation)

The first two problems are analogous to the real life
problem of establishing trust between two parties followed
by secret sharing on a secure encrypted channel. This is a
well analyzed problem and solutions like Pretty Good Privacy
(PGP) exist which uses a trusted Certification Authority (CA).
This approach has been used in almost all the earlier research
dealing with copy-protection ([5], [6]) and we too will use a
similar approach.

The third problem requires prevention (minimization) of
information leak from the static binary file/image. This could

http://www-306.ibm.com/software/info/university/fellowship/phd/

2

be viewed as the problem of protecting a message in an
untrustworthy channel. One possible solution is to encryptthe
binary file (the solution adopted by XOM [6] and ABYSS
[5]). An alternative approach would recognize that the binary
file is a sequence of instructions and data, with an underlying
structure. Static obfuscation ([7], [8]) attempts to exploit a
smaller subset of these program level structure attributes.

The fourth problem requires the binary image to be tamper
resistant. Any modifications to the binary image should be
detectable by the hardware. Message Digest, which is a one-
way hash of the message could be used to solve this problem.
This once again is a generic solution which is applicable to any
message transaction that does not use any specific properties
of a binary image. We rely upon obfuscation to provide the
tamper-resistance in the following way. Tampering gains an
advantage for the adversary only if the properties of the
tampering point - the specific instruction or data at that point -
are known. However, obfuscation prevents the adversary from
associating program points with specific desirable properties
(such as all the points that have a branch, call sites, to a specific
procedure or all the data values that point to a specific address).
Hence most tampering points are randomly derived resulting
in the disabling of the program, which we do not consider to
be an advantage to the adversary in the DRM model where
the adversary/end user has already purchased rights to disable
the program.

The fifth problem dictates that the CPU not trust anything
outside its own trusted perimeter including any software layer.
The problem is simplified by the fact that CPU can halt its
operations once it detects any untrustworthy behavior. The
attributes of the application program execution trace space,
which the CPU has to protect, can be thought of as having
three dimensions, namely, instructions (content), addresses at
which the instructions are stored (address sequencing), and
the temporal sequence of accesses of these addresses (second-
order address sequencing). All of these three dimensions have
to be protected in order to prevent any information leakage.
This holds true even for data.

III. PREVIOUS RESEARCH

ABYSS [5] was proposed as a software protection archi-
tecture. It supports bothprotectedandunprotectedprocesses.
Protected processes are executed in aprotected processorand
are encrypted. Drawbacks of ABYSS include non-scalability
and unexplained OS interactions.

XOM [6] is a compartmentalized - a process in one compart-
ment cannot access data from another compartment - machine.
Application is encrypted with a symmetric key which in turn
is encrypted with public asymmetric key of XOM. HIDE [9]
is an extension of XOM. It points out the fact that XOM does
not protect the time order of the address trace. Hence even
if the instructions (and data) themselves are encrypted, the
address trace gives the adversary power to deduce the control
flow graph (CFG).

Goldreich and Ostrovsky [10] offered one of the first
schemes for software protection. They extended the oblivious
Turing machine model to oblivious RAMs. An oblivious RAM

presents a memory access footprint that does not depend on
the program input. This prevents information leak about the
program CFG. Oblivious RAM requiresO(

√
m) steps for each

original memory access. This is a very high overhead for
present day architectures.

DS5002FP [11] is a secure 8-bit microcontroller from Dallas
Semiconductor which uses bus-encryption. The DS5002FP
implements three on-chip block-cipher functionsEA for 17-bit
address-bus encryption,ED for 8-bit data-bus encryption , and
E−1

D for 8-bit data-bus decryption. The encryption functions
are fixed unless changed by uploading a new secret key.
This allows the adversary to build up information by running
the program multiple times and observing its behavior. Kuhn
[12] proposed such an attack to extract the secrets stored in
DS5002FP microcontroller.

A. Obfuscation

We use the termobfuscationin a different way than the
earlier literature ([13], [14]). We refer to any obfuscation
mechanism that hides the control flow from static analysis
through a binary image or CFG transformation asstatic
obfuscation. However, these obfuscation mechanisms cannot
defeat an adversary with access to architecturally visible
parameters such as memory address bus. Our use of term
obfuscationrefers to schemes that hide dynamic execution
model parameters as well. Note that in our obfuscation model,
even the instructions themselves can be transformed into
potentially invalid ones.

Addr Addr Content

A

B

Z

Z

A

B

Permutation Function

Content

Fig. 1. Weakness of HIDE approach

B. Analysis

Almost all of the earlier research, except HIDE, does not
hide the temporal sequencing of memory accesses. Neither
do these solutions exploit the software specific properties.
The solution proposed by HIDE to prevent information leak
through the address and memory bus is weak. This is because
the adversary can see the contents of the memory before
and after an address-permutation. It is possible because the
encryption function applied to the contents is not address
dependent. Hence, for instance, if the contents at two distinct
addressesAi and A j are also distinctCAi and CA j then the
following information leak path exists. For a program sequence
within a loop, when instructions reoccur at the address and
instruction buses, HIDE permutes the addresses within a page
for the second (or subsequent) iteration. IfAi is permuted
to a new addressπ(Ai) the contents atπ(Ai) would still
appear asCAi . Hence a simple comparison would be able

3

to determine the permutationπ . Figure 1 illustrates this fact.

Thus it takes only
N (N+1)

2
comparisons to reverse-engineer

the permutation, whereN is the permutation size. Assuming
that there are 1024 cache-blocks in a page, the strength of
such a permutation is less than 220. Even in the chunk mode,
which performs these permutations in a group of pages, the
complexity grows only linearly, and hence could be easily
broken.

The proposed architectureArc3D addresses all these issues.
Moreover, computational efficiency of proposed methods is a
key criterion for inclusion inArc3D. We make use of soft-
ware structure to provide obfuscation and tamper-resistance
efficiently.

REG CPU

Virtual Address

IL1 DL1

P P
DTLB

Obfuscation Unit
RSA

RNG

Arc3D
Controller

Protected
Memory

Content

PROT

SHA−1

3DES

ITLBxp xp

Pconf Conf Pconf ConfPhyscal
Page

Physcal
Page

IL2

p

ST REG

Physical Address

Fig. 2. Overall Schema ofArc3D Architecture

IV. PROPOSEDARCHITECTURE: ARC3D

The overallArc3D architecture is shown in Figure 2. The
main affected components of the microarchitecture are the
ones that handle virtual-addresses. These components include
the translation lookaside buffer (TLB) and page table entries
(PTE). We first describe the objectives of the obfuscation
schema.

A. Obfuscation Schema

The goal of obfuscation is to remove the correlation between
1) the CFG and the static binary image.
2) the static binary image and the dynamic execution

image.
Traditional static obfuscation techniques try to obscure disas-
sembling and decompilation stages to remove the correlation
between the static image and the CFG. But these techniques
are transparent to architecture and do not remove the corre-
lation between the static image and the dynamic execution
image. Thus an adversary monitoring the address traces could
very well extract the CFG.

We usearchitecture awareobfuscation of bothsequenceand
contentto achieve this goal. Static obfuscation, or obfuscation

Address Content

1 I1
2 I2
3 I3
.
.
.

.

.

.
N IN

Address Content

1 CS(Iπ−1
S (1)

)

2 CS(Iπ−1
S (2)

)

3 CS(Iπ−1
S (3)

)

.

.

.
.
.
.

N CS(Iπ−1
S (N)

)

Address Content

1 CD(CS(Iπ−1
D (π−1

S (1))
)

2 CD(CS(Iπ−1
D (π−1

S (2))
)

3 CD(CS(Iπ−1
D (π−1

S (3))
)

.

.

.
.
.
.

N CD(CS(Iπ−1
D (π−1

S (N))
)

πS,CS

πD,CD

Fig. 3. Static and Dynamic obfuscation

of the static binary image, is achieved by permuting the
instruction sequence withπS and obfuscating the instructions
with Cs. Another pair of sequence permutation and content
obfuscation functions which are dynamically chosen,πD and
CD, help achieve dynamic obfuscation. These four functions,
πS,Cs,πD and CD form the program secret which is guarded
by the trusted component of the architecture. Figure 3 shows
these obfuscation functions in operation.

B. Overall Schema

As stated earlier, Figure 2 shows the global schema for
the proposed architecture. The shaded areas are the additional
components ofArc3D over the base architecture. Shading hues
also indicate the access rights as follows. The lightly shaded
areas contain information accessible to the outside world,
i.e., OS. The darkly shaded areas contain secret information
accessible only toArc3D. Arc3D has two execution modes,
namelyprotected and unprotected mode. It has a protected
register spaceREGp which is accessible only to a protected
process.

The core of Arc3D functionality is obfuscation. It is
achieved by modifying the virtual-address translation path -
translation look aside buffer (TLB) - of the base architecture.
In addition to holding the virtual-address to physical-address
mapping, page table entry (PTE), the TLB has the obfuscation
configuration (Pcon f). This Pcon f is essentially the shared
secretsCS, CD, πS, πD in encrypted form. In order to avoid
frequent decryption,Ar3D stores them in decrypted form in
Con f section of TLBxp. This section of TLB is updated
whenever a new PTE is loaded intoTLBxp. Arc3D assumes
parallel address translation paths for data and instructions, and
hence Figure 2 shows DTLB and ITLB separately.

4

The address translation for a protected process occurs in
the obfuscation unit. Sections IV-D and IV-E explain in
detail the address sequence and content obfuscation algorithms
respectively.Arc3D uses the same logic for both static and
dynamic obfuscations. The basis of these obfuscations is the
permutation function which is explained in Section IV-C.
Arc3D has a protected L2 cache, which is accessible only to a
protected process, thus providing temporal order obfuscation.

Arc3D controller provides the following interfaces (APIs)
which enable the interactions of a protected process with the
OS.

1) start prot process: Allocate the necessary resources and
initialize a protected process.

2) exit prot process: Free the protected resources allocated
for the current protected process.

3) ret prot process: Return to the current protected process
from an interrupt handler.

4) restore prot process: Restore a protected process after
a context switch.

5) trans f er prot process: Fork the current protected pro-
cess.

These APIs and their usage are explained in detail in
Section V.

C. Reconfigurable Bijective Function Unit

Obfuscation unit is a major component ofArc3D. This unit
is responsible for generatingbijection functionsπ . There are
2n! possiblen-bit reversible functions. Reconfigurable logic is
well-suited to generate a large dynamically variable subset of
these reversible functions. Figure 4 shows one such schema
for permutation of 10 address bits (specifying a page consist-
ing of 1024 cache-blocks). Before explaining the blocks of

Figure 4, we observe that there are
(

22n
)n

possible functions
implemented in an×n look up table (LUT) orn n-LUTs. But
only a subset of them are bijective. We wish to implement
only reversible (conservative) gates ([15], [16]) with LUTs.

Definition 1: A Toffoli gate, Toffoli(n,n)(C,T), is
defined over a support set{x1,x2, . . . ,xn} as follows.
Let the control set C = {xi1,xi2, . . . ,xik} and the
target set T = {x j} be such thatC ∩ T = /0. The
mapping is given by Toffoli(n,n)(C,T)[x1,x2, . . . ,xn] =
[x1,x2, . . . ,x j−1,z,x j+1, . . . ,xn] where z = x j ⊕
(xi1∧xi2∧ . . . ∧xik).

Both Fredkin [15] and Toffoli [17] have defined classes
of reversible gates. We useToffoli(5,5) gates with 5-input
bits and 5-output bits in our scheme as shown in Figure 4.
However, we could easily replace them byFredkin(5,5)gates.
The domain of configurations which can be mapped to each
of the LUTs consists of selections of setsT andC such that
T ∩ C = /0. For a support set of 5 variables, the number of

unique reversible Toffoli functions is 4

(

5
1

)

+3

(

5
2

)

+2

(

5
3

)

+
(

5
4

)

. Each of these terms captures control sets of size 1,2,3,

and 4 respectively. Ignoring control sets of size 1, we get a
total of 55 reversible functions. Thus total permutation space
covered by all six of these gates is(55)6 ≈ 234. There are

several redundant configurations in this space. We estimated
the redundancy through statistical analysis to be less than
0.3%.

The exchanger blocks shown in Figure 4 perform aswap
operation. It has two sets of inputs and two sets of outputs.
The mapping function isSok = Sik if X = 0, andSok = Sik̄
if X = 1, where,Sik is the input set,Sok is the output set,
X is configuration bit, andk is 0 or 1. Sinceexchangeis also
bijective, the composition ofToffoli gates andexchangersleads
to a bijective function with large population diversity. Other
interesting routing structures may also guarantee bijections.
But a typical FPGA routing matrix configuration will require
extensive analysis to determine if a given routing configuration
is bijective. One point to note here is that we chose to imple-
ment a 10bit permutation function withToffoli(5,5) gates
instead of a direct implementation ofToffoli(10,10). This is
because ann-LUT requires 2n configuration bits and hence 10-
LUTs are impractical in the reconfigurable computing world.

f0 f1 f2 f3
f63

C0 C1 C2 C3 C4 C5

A0A1A2A3A4

B0B1B2B3B4

config
TOFFOLI(5,5)

Fig. 5. Configuration Selection for each LUT

Having fixed the reconfigurable logic to perform the ob-
fuscation (permutation), we need to develop a schema for the
LUT configuration. A simple mechanism would be to store all
the 55 possible configurations at each of the LUTs (similar to
DPGA of DeHon [18]). In addition to 4input bits, each LUT
will also have6 configuration bitsto choose from one of the
55 configurations (assuming some configurations are repeated
to fill the 64 locations), as shown in Figure 5. In Figure 5
A0A1A2A3A4 represent the input address bits,f0, f1, f2, . . . , f63

represent the 64 configurations, andC0C1C2C3C4C5 represent
the configuration bits. Each of theexchangerblocks also
requires 1 configuration bit. Thus a total of 39 configuration
bits are needed by the reversible logic of Figure 4.

D. Obfuscating the Sequence

We can use the reconfigurable permutation unit defined in
Section IV-C to achieve sequence obfuscation. Note, however,
that even though we have shown the circuit for a 10-bit permu-
tation, the methodology is applicable to an arbitrary number
of address bits. We believe that at least 10 address bits needto
be permuted in order to have a reasonably large permutation

5

Toffoli(5,5)

Toffoli(5,5) Toffoli(5,5)

Toffoli(5,5) Toffoli(5,5)

Toffoli(5,5)

Exchanger(3,3)

Exchanger(2,2)

Exchanger(5,5)

Fig. 4. Reconfigurable Bijective Obfuscation Unit

space. The choice of 10-bits is also dictated by the structure of
the software. Software objects, both instruction and data,are
viewed by the architecture in various granularities. The RAM
memory resident objects are viewed in the units ofpages. The
cache resident objects on the other hand are viewed in the units
of blocks. This argues for the obfuscation boundaries defined
by these units. Hence we obfuscate the sequence ofcache-
blockswithin a page. Any sequence obfuscation withinpage
level needs to interact with the page management module of
the OS. If the obfuscated sequence crosses thepageboundary,
the permutation function (π) has to be exposed to the OS.
This is the reason why we cannot obfuscate sequences of
pages. In the other direction, permuting the sequences of sub-
units of cache-blocks seriously affects the locality of cache
resulting in severe performance degradation. Moreover, since
the contents of a cache-block are obfuscated, the information
leak through the preserved, original sequence of cache sub-
blocks is minimized. Considering apagesize of 64KB with
64B cache-blocks, as is the case with Alpha-21264, we get
1024cache-blocksper page,i.e., 10-bits of obfuscation.

E. Obfuscating the Contents

In cryptography, theone time pad(OTP), sometimes known
as theVernam cipher, is a theoretically unbreakable method
of encryption where the plaintext is transformed (for example,
XOR) with a randompad of the same length as the plaintext.
The structure of the software objects determines the protection
granularities once again. We can consider a program as a
sequence of fixed sized messages,i.e., cache-blocks. If we
have unique OTPs for each one of the cache-blocks in the
software, the contents are completely protected. However,
the storage and management of that many OTPs is highly
inefficient. Nonetheless, we at least have to guarantee that
everycache-blockwithin a pagehas a unique OTP. This is to
overcome the weakness in HIDE (as explained in Section III,
Figure 1). If the adversary-visible contents of the memory
locations are changed after each permutation (as with unique
cache-block OTP per page), thenn-bit permutation is 2n!
strong. This is in contrast with the strength of the order of
2n exhibited by the original HIDE scheme.

In order to provide a unique OTP per cache-block per
page, one option is to generate a random OTP mask for
each cache-block for each page. A more efficient solution,
however, is to pre-generateNb OTPs for every cache-block
within a page (OTP[bi] masks for 0≤ bi < Nb for a cache

with Nb blocks). However, the association of an OTP with
a cache-block is randomized with theπc function. Theπc

function can be chosen differently for each page to provide
us with a unique OTP per cache-block. This simplifies the
hardware implementation of content obfuscation unit as well,
since each page is processed uniformly in this unit except
for the πc function. Hence a program image will need to
provide a page of OTPs which will be used for all its pages. It
also needs to specify a unique mapping functionπc per page.
Since we already have the reconfigurable permutation logic
of Section IV-C in Arc3D, we can use it to implement the
function πc as well. This results in 39-bits per page overhead
for the specification of the content obfuscation. Note that the
OTP based content encryption can be easily replaced by any
otherbijective function.

F. Obfuscating Temporal Order (Second-Order Address Se-
quences)

The second-order address sequences are derived from
iterative control constructs within a program. Consider
a loop of k instructions which is iteratedN times.
The expected address sequence in such an execution
is {I(0,0), I(1,0), . . . , I(k−1,0)} , {I(0,1), I(1,1), . . . , I(k−1,1)}, . . . ,
{I(0,N−1), I(1,N−1), . . . , I(k−1,N−1)} where Ii, j denotes theith

instruction in the loop body in thejth loop iteration. In
this sequence, if an adversary is able to tag the bound-
aries of loop iteration, a strong correlation exists be-
tween successive iteration traces:{I(0,l), I(1,l), . . . , I(k−1,l)} and
{I(0,l+1), I(1,l+1), . . . , I(k−1,l+1)}. In fact, instructionI0 occurs
in the same relative order from the loop sequence start point
in both (or all) the iterations. This allows an adversary to
incrementally build up information on the sequencing. What-
ever sequence ordering is learnt in iterationl is valid for
all the other iterations. The second-order address sequence
obfuscation strives to eliminate such correlations between the
order traces from any two iterations.

Interestingly, the second-order address sequence obfuscation
is an inherent property of a typical computer architecture im-
plementation. The access pattern we observe outside the CPU
is naturally obfuscated due to various factors likecaching,
prefetching, and several otherprediction mechanisms aimed
at improving the performance. But these architecture features
are also controllable, directly or indirectly, by the OS and
other layers of software. For example, the adversary could
flush the cache after every instruction execution. This renders

6

the obfuscation effect ofcachenon-existent. To overcome such
OS directed attacks, it is sufficient to have a reasonably sized
protected-cachein the architecture which isprivileged (only
accessible to secure processes). We expect acacheof the same
size as apage, in our case 64KB, should be able to mask
the effects of loops. Encrypted or content-obfuscatedcache-
blocksalready obfuscate CFGs (within the cache-block). This
is because a 64B cache-block contains 16 instructions if we
assume instructions of length 32-bits.

V. A RC3D IN OPERATION

We have developed and described all the building blocks
of Arc3D in Section IV. In this section, we explain its
operation with respect to the software interactions in detail,
from software distribution to the management of a protected
process by the OS using the APIs provided byArc3D.

A. Software Distribution

Arc3D provides bothtamper-resistanceand IP-protection
through obfuscation. Hence, a software vendor should be
able to obfuscate the static image of a binary executable.
Moreover, a mechanism to distribute thestatic obfuscation
configuration from the vendor toArc3D needs to be supported.
This configuration constitutes the shared secret between the
vendor andArc3D. Trust has to be established betweenArc3D
and the vendor in order to share this secret. Once the trust is
established, the binary image along with the relevant config-
uration can be transferred toArc3D.

k1: E+

CPU S/w Vendor

k2: E+

k3: E+ , IdentityCA

Fig. 6. Three party trust model

1) Trust Establishment:We assume that there exist pro-
tected elements within the CPU which are accessible only to
the architecture, and not to any other entities. We also assume
that every CPU has aunique identity, namely, its public-
private key pair (Ek

+
,Ek
−). This key pair is stored in the

protected space of the CPU. A TPM’s endorsement key pair
constitutes such an identity. Public part of this key pair,Ek

+,
is distributed to acertification authority(CA). CA verifies the
CPU vendor’s authenticity, associatesEk

+ with CPU vendor’s
identity and other information (such as model number, part
number, etc.). Any party entering a transaction with the CPU
(such as a software vendor) can query the CA withEk

+ in
order to establish trust in the CPU. Since CA is a trusted
entity, the data provided by CA can also be trusted. This is

very similar to the PGP model of trust establishment and is
shown in Figure 6.

An important point to note here is that the trust es-
tablishment and the key management mechanisms do not
constitute the crux ofArc3D architecture.Arc3D could use
any model/policy for this purpose. We use this model for
illustration purposes only. It could very well be adapted to
use the TPM [3] model.

2) Binary Image Generation:Software vendor receivesEk
+

from the CPU. It queries the CA to derive the architecture
level specifications of the CPU, relevant for static obfuscation
which include details such ascache-blocksize, minimum
supportedpage size. Software vendor generates the binary
file targeted at the appropriate cache-block and page sizes.It
generates two sets of random configurations per page. One
configuration is to obfuscate the sequence ofcache-block
addresses within a page (πS) and the second configuration is
to obfuscate the association of OTPs withcache-blockaddress
(πcs). The content obfuscation requires the software vendor to
further generate a page sized OTP (OTPs, OTPs[bi] for all
0≤ bi < Nb). These functions can then be used along with the
FPGA obfuscation unit in a CPU or with a software simulation
of its behavior to generate the obfuscated binary file.

Algorithm 1 Page Obfuscation Function:pageobfuscate
Required Functions
Fob f (con f sel,addr)⇐ Reconfigurable Obfuscation Unit
Inputs
OTParr ⇐ array of OTP
pagei ⇐ input page
con fseq⇐ conf sel for sequence obfuscation
con fcont⇐ conf sel for content obfuscation
Nb⇐ number ofcache blocksin a page
Outputs
pageo⇐ output of page
Function
for k = 0 to Nb−1 do

out = Fob f (con fseq,k)
l = Fob f (con fcont,k)
OTP= OTParr [l]
pageo[out] = pagei [k]⊕OTP

end for

Although this kind of obfuscation is applicable to any binary
image, the software vendor could enforce additional properties
on the target CPUs. For instance, it can restrict the distribution
only to those machines which have a certain minimumcache-
block size andpage size, as both these parameters affect
the strength of obfuscation. A suggested minimum for these
parameters is 64B and 64KB respectively. The basis of static
obfuscation is a page obfuscation function (pageobfuscate)
which takes an input page, an OTP page, and configurations
for both address-sequence and content obfuscation functions.
It produces an obfuscated output page. The outline of this
algorithm is shown in Algorithm-1. The algorithm forstatic
obfuscationis shown in Algorithm-2.

For every protected page the software vendor generatesSseq,
the configuration for sequence obfuscation (corresponding
to πS), and Scont, the configuration for content obfuscation
(corresponding toπcs). It uses pageobfuscateto obfuscate
the page, and associate the configuration information with the
page. This is shown in Algorithm-2. Even for pages which
are not loaded, an obfuscation function could be associated.

7

Algorithm 2 Static Obfuscation Function:stat ob f uscate
Inputs
Np⇐ number of pages in the binary
Pagearr ⇐ array of pages
Function
p⇐ temporary page
Generate random page of OTP (OTPs)
for k = 0 to Np−1 do

if Pagearr [k] to be protectedthen
Generate randomSseq
Generate randomScont
Pagearr [k].pcon f = Ks{Sseq,Scont},HMAC
p = pageob fuscate(Sseq,Scont,OTPs,Pagearr [k])
Pagearr [k] = p

end if

end for

Note thatArc3D needs a standardized mechanism to garner
these functions. This could be done by extending the standard
binary format, like ELF, to hold the sections containing the
configurations. The configurations have to be guarded, and
hence need to be encrypted before being stored with the
binary image. The software vendor has to generate a key,Ks,
specific to this installation to support such encryption. All page
level configurations,Sseq and Scont, are encrypted with this
Ks. And HMAC [19] of these encrypted configurations is also
generated. HMAC is a keyed hash which will allowArc3D to
detect any tampering of the encrypted configurations. LetPcon f

represent the encrypted configurations and its HMAC and let
Scon f represent the section containingPcon f of all the pages.
The new binary format should carry encrypted configurations
and its HMAC for every protected page. The page containing
the cache-block OTPs also needs to be stored. This page is
also encrypted withKs. Its HMAC is computed as well. A
new sectionSOTP is created in the binary file and the encrypted
OTP page and its HMAC are added to it.

kE {PCstart }
+

Ks{Sseq , Scont }

Ks{Sseq , Scont }

SOTP

sK {OTP}

sK {OTP}

k
+

{K s }E

Sections with
Obfuscated pages

Conventional
Binary Format Sauth

Reserved

HMAC

Sconf

HMAC

Reserved Reserved

HMAC

Fig. 7. Extended Binary Format

Algorithm 3 Software Distribution
1: Get Ek

+ from CPU
2: Contact CA and validateEk

+

3: GenerateKs

4: Generatecon f seq,con f cont for every page to be protected
5: GenerateOTP page
6: Do stat ob fuscate
7: GenerateSauth and add it to binary file
8: GenerateScon f and add it to binary file
9: GenerateSOT P and add it to binary file

10: Send the binary file to CPU

In order for the CPU to be able to decrypt the program, it

needs the keyKs. This is achieved by encryptingKs with Ek
+

and distributing it along with the software. Now only the CPU
with the private keyEk

− can decrypt the distributed image to
extractKs. The entry point of the program also needs to be
guarded. Several attacks are possible if the adversary could
change the entry point. Hence, the entry point is also encrypted
with Ks. Once again we need to use HMAC to detect any
tampering. Hence,Sauth, the authorization section, consists of
Ek

+{Ks,PCstart},HMAC. These extended sections are shown
in Figure 7. The complete algorithm for software distribution
is shown in Algorithm-3.

B. Management of Protected Process

We now explain the OS use of theArc3D APIs to manage
a protected process. We will also show how seamlessly it can
be integrated with the existing systems while providing the
guarantees oftamper-resistanceandcopy-protection.

1) Starting a Protected Process: Arc3Dhas two execution
modes, (1) protected and (2) normal, which are enforced
without necessarily requiring the OS cooperation. When the
OS creates a process corresponding to a protected program,
it has to read the special sections containingSauth and per-
page configurationPcon f. Arc3D has an extended translation
lookaside buffer (TLBxp) in order to load these per-page
configurations. The decision whether to extend the page table
entry (PTE) with these configuration is, OS and architecture
dependent. We consider an architecture in which the TLB
misses are handled by the software. Hence the OS can
maintain these associations in a data structure different from
PTEs. This will be efficient if very few protected processes
(and hence protected pages) exist. This method is equally well
applicable to a hardware managed TLB wherein all the PTEs
have to follow the same structure.

The OS, before starting the process, has to update extended
TLB with Pcon f, for each protected page. Additionally, for
every protected page, the OS has to set the protected mode
bit P. This will be used by the architecture to decide whether
to use the obfuscation function. Note that by entrusting the
OS to set theP bit, we have not compromised any security.
The OS does not gain any information or advantage by
misrepresenting theP bit. For example, by misrepresenting
a protected page as unprotected, the execution sequence will
fail as both instructions and address sequences will appearto
be corrupted. This is followed by the OS providingArc3D
with a pointer toSauth and a pointer toSOTP.

The OS executesstart prot processto start the protected
process execution. This causesArc3D to transition topro-
tected mode. Arc3D decryptsSauth and checks its validity
by generating its HMAC. If there is any mismatch between
the computed and stored HMACs, it raises an exception and
goes out ofprotected mode. If HMACs match, thenArc3D
can start the process execution fromPCstart. However, the
address sequence generated at the address bus will expose
the πS function through one-to-one correspondence with the
static binary image sequence. This compromises the static
obfuscation. As explained in HIDE [9], the address sequence
information suffices to reverse engineer the IP without even

8

knowing the actual instructions. Hence,Arc3D performs one
more level of obfuscation, calleddynamic obfuscation, on
protected pages to avoid these scenarios.

Dynamic obfuscationis very similar to thestatic obfusca-
tion. It consists of two independent obfuscation functions per
page, one to obfuscate the sequence ofcache-blockaddresses,
and the other to obfuscate the contents ofcache-blocks. When
start prot processis executed,Arc3D generates an OTP page
(OTPd). This OTPd needs to be stored in memory so that it
can be reloaded at a later point after a context switch. We use
the sectionSOTP to storeOTPd. Arc3D has sufficient internal
space to hold bothOTPs andOTPd at the same time. It reads
SOTP and decryptsOTPs, validates the HMAC, and then loads
it into the obfuscation engine. It then encryptsOTPd with
Ks and generates its HMAC which is appended toSOTP. We
assume that the space forOTPd in the sectionSOTP has already
been allocated at compile time.

Arc3D then scans the TLB and validatesPcon f for every
protected page that has been loaded in the main memory. It
then generatesDseq and Dcont configurations (corresponding
to πD and πcd) for each one of those pages and appends
them to theirPcon f. TLBxp which has been extended to hold
Pcon f, also has protected space per TLB entry which only
Arc3D can access. This space will be used byArc3D to
store the decryptedSseq, Scont, Dseq, Dcont configurations, so
that decryption need not be done for every TLB access.Arc3D
contains temporary buffer of twice thepagesize to perform
the obfuscation. Hence it reads a complete page from RAM
and appliespageobfuscationand then stores it back in RAM.
Algorithm for dynamic obfuscation is shown in Algorithm-4.

Algorithm 4 Dynamic Obfuscation Function:dyn ob f uscate
Inputs
NTLB⇐ number of TLB entries
pi ⇐ page to be obfuscated, read from RAM
po⇐ obfuscated page
OTPd⇐ array of dynamic OTP
Function
for k = 0 to NTLB−1 do

if TLB[k].P is setthen
if TLB[k].prot = NULL then

Decrypt and validatePcon f
if Dseq,Dcont exist then

po = pageunob fuscate(Dseq,Dcont,OTPd,tempi)
pi = tempo

end if
Generate newDseq,Dcont
Append it toPcon f

TLB[k].prot = {Sseq,Scont,Dseq,Dcont}
Read the page inpi

po = pageob fuscate(Dseq,Dcont,OTPd, pi)
Write backtempo

end if
end if

end for

The TLB[k].Prot structure is the protected section of TLB
entry and is cleared every time a new TLB entry is written.
Hence the functiondyn obfuscateis invoked on every TLB
miss. If the page has already been subjected to dynamic
obfuscation,Arc3D first performs the inverse operation (de-
obfuscation). It then generates new obfuscation configurations
to perform dynamic obfuscation. This causes the dynamic
obfuscation functions to be very short lived,i.e., changing
on every page fault. It makes reverse engineering ofπD and

CD functions extremely unlikely. To ensure such a (πD, CD)
refresh on every context switch,TLB[k].Prot is cleared for all
the entries wheneverstart prot processis called or a protected
process is restored. A state registerSTi is allocated to the
process and added toSauth. The usage of this register is
explained in Section V-B.5. Availability of this register puts
a limit on total number of protected processes active at any
point in time inArc3D. After the dynamic obfuscation is done,
the process is started fromPCstart as given bySauth. The steps
involved in start prot processare shown in Algorithm-5.

Algorithm 5 start prot process
1: Change toprotected mode
2: ReadSauth and validate
3: ReadSOTP and validate
4: GenerateOTPd and append toSOT P
5: ClearTLB[i].prot for all i
6: Call dyn ob fuscate
7: Allocate STi to the process and add it toSauth

8: Set PC toPCstart

2) Memory Access:Once a process is started it generates
a sequence of instruction and data addresses. Like any high
performance architecture, we assume separate TLBs, ITLB
and DTLB, for instruction and data. Hence the loading process
explained earlier occurs parallely in both ITLB and DTLB.
The TLB is the key component of the obfuscation unit.
The obfuscation functions are applied only during virtual to
physical memory mapping. The address generation procedure
is outlined in Algorithm-6. Two stages ofFob f are in the
computation path for the physical address. This makes TLB
latency higher than the single cycle latency of a typical TLB
access. Hence, L1 caches of both instruction and data are
madevirtually taggedand virtually addressedto reduce the
performance impact due to TLB latency. The L1 cache tags
are extended with aprotectionbit, which is accessible only to
Arc3D. This bit is set whenever the cache line is filled with
data from a protected page. The access to protected cache-
blocks is restricted only in protected mode. In order to have
efficient context switching mechanism we use awrite-through
L1 cache. Thus, at any point in time L2 and L1 are in synch.

Algorithm 6 TLBxp Access Function:tlbxp access
v page⇐ input virtual page address
v block⇐ input virtual block address
p addr⇐ output physical address
k← TLB index of hit and page exists in RAM
if TLB[k].P is setthen

p block= Fob f(Dseq,Fob f(Sseq,v block))
else

p block= v block
end if

p addr= TLB[k].p page+ p block

TLB and L1 cache are accessed parallely. TLB is read in
two stages. The first stage reads the normal portion of TLB and
the second stage reads the extended and protected portion of
TLB. This way the second stage access can be direct mapped
and hence could be energy-efficient. If L1 access is a hit, then
TLB access is stopped atstage1. If L1 access is a miss, then
TLB access proceeds as shown in the functiontlbxp access. In
Arc3DL2 cache isphysically tagged and physically addressed.

9

Hence, no special protection is needed for the L2 cache. On
an L2 cache access to an instruction in the middle of a cache-
block, the relative intra-block sequence information is leaked
to an observer adversary on the L1-L2 cache boundary. Given
that for a 64B cache-block size, there are 16 instructions whose
sequencing information is open to exposure. One way to lessen
this vulnerability is to have L1 cache only issue L2 cache-
block addresses. The cache-block offset can be retained by the
L1 cache for later decoding. Hence the address traces visible
at L1-L2 cache boundary will appear to be L2 cache-block
address aligned. This would increase the latency but as we
discuss later, this increase will not be very high. Once the
data is received from the L2 cache or memory, it isXORed
with bothOTPd andOTPs to get the actual content in plaintext
which is then stored in an L1 cache line.

3) Execution: Arc3D has a set of protected registers
(REGp) to support protected process execution. This register
set is accessible only in the protected mode. The protected
process can use the normal registers to communicate with
the OS and other unprotected applications. If two protected
processes need to communicate in asecureway, then they have
to use elaborate protocols to establish common obfuscation
functions. Data sharing can also occur through a shared secret
embedded into two applications by the software vendor in
advance.

4) Interrupt Handling: Only instructions from a protected
page can be executed in protected mode. Hence any call to
system services, such as dynamic linked libraries, requires
a state change. Any interrupt causesArc3D to go out of
protected mode. Before transitioning to normal mode,Arc3D
updates PC field inSauth with the current PC. Thus a protected
process context could be suspended in the background while
the interrupt handler is running in the unprotected mode. When
the interrupt handler is done, it can executeret prot processto
return to the protected process.Arc3D takes the PC fromSauth

and restarts from that point. This allows for efficient interrupt
handling. But from the interrupt handler, the OS could start
other unprotected processes. This wayArc3D does not have
any overhead in a context switch from protected to unprotected
processes. But when the OS wants to load another protected
process the current protected process’ context must be saved.

5) Saving and Restoring Protected Context: Arc3Dexports
saveprot processAPI to save the current protected process
context. This causesArc3D to write Ks{REGp}+HMAC and
Sauth into the memory given by the OS. The OS when restoring
the protected process, should provide pointers to these data
structures throughrestoreprot process. Arc3D can be enabled
to detectreplay attacks by including an association of time
with the saved contexts. A set of OTP registers called state
OTP registers are required withinArc3D for this purpose.
These registers are the same size asKs. The number of
these registers depends on how many protected processes
need to be supported simultaneously. Thestart prot process
allocates a state OTP registerSTi. This association indexSTi
is also stored withinSauth. Each instance ofsaveprot process
generates a state OTP valueOTP[STi] which is stored inSTi.
The saved context is encrypted with the key given by the
XOR of Ks and OTP[STi]. Symmetrically, an instantiation of

restoreprot processfirst garnersSTi andKs from Sauth. Then
the keyOTP[STi]⊕Ks is used to decrypt the restored context.
This mechanism is very similar to the one used in all the
earlier research such as ABYSS and XOM.

6) Supporting fork: In order to fork a protected process,
the OS has to invoketransferprot processAPI. This causes
a newSTi to be allocated to the forked child process. It then
makes a copy of process context similar tosaveprot process
handling. Thus the parent and the child processes could be
differentiated byArc3D. The OS has to make a copy ofSOTP

for the child process.
7) Exiting a Protected Process:When a protected process

finishes execution, the OS has to invokeexit prot processAPI
to relinquish theSTi. This is the only resource that limits the
number of protected processes allowed in anArc3D system.
HenceArc3D is susceptible to denial-of-service (DOS) kind
of attacks.

8) Protected Cache: Arc3Dhas a protected direct mapped
L2 cache of page size,i.e., 64KB. This protected cache is
used to obfuscate the second-order address sequences only for
instructions, as temporal order doesn’t have any meaning with
respect to data. Whenever there is an IL1 miss in protected
mode,Arc3D sends a request toL2prot. SinceL2prot is on-
chip, the access latency will be small. We assume it to be 1
cycle. If there is a miss inL2prot then L2 is accessed.L2prot

is also invalidated whenever a protected process is startedor
restored.

VI. D ISCUSSION

A. Assumptions

In this section we state and justify the underlying assump-
tions for Arc3D. The first and foremost of our assumptions
is that everyArc3D processor has a unique identity (TPM’s
EK like identity). Arc3D device manufacturer can use various
methodologies to embed the identity. Silicon Physical Random
Functions (PUF) [20] have been proposed for this purpose.
IBM’s secure crypto-processor [21] provides a mechanism
based on packaging for storing secrets within the processor
environment. Xilinx [22] in its CPLD devices uses metal layers
and dual access mechanisms to obfuscate the stored secrets.

The next issue is the extent of damage due to the exposure of
Arc3D identity secret. If an adversary is able to gain access to
the stored secret, then all the programs that were distributed for
that particular instance ofArc3D could be decrypted. Once the
program plaintext is obtained it can be executed in anyArc3D
machine in unprotected mode. Hence the ability to protect the
stored secrets within the architecture is of paramount impor-
tance inArc3D design. However, the programs distributed to
and encrypted for otherArc3D platforms are not compromised
by the exposure of the secrets of a given platform.

B. Attack Scenarios

In this section we argue thatArc3D achieves our initial
goals, namely,copy-protection, tamper-resistanceand IP-
protection. Several attacks causing information leak in various
dimensions could be combined to achieve the adversary’s goal.
These attacks could be classified into two categories — attacks

10

that targetArc3D to manipulate its control or reveal its secrets.
If the adversary is successful in either getting the stored
secret (Ek

−) or in changing the control logic, the security
assurances built uponArc3D could be breached. But these
type of attacks have to be based onhardware, as there are
no software control handles intoArc3D. There are several
possible hardware attacks, like Power Profile Analysis attacks,
Electro magnetic signal attacks. The scope of this paper is not
to provide solutions to these attacks. Hence we assume that
Arc3D is designed with resistance to these hardware attacks.

The second type of attacks are white-box attacks. Such an
attack tries to modify the interfaces ofArc3D to the external
world, to modify the control. The guarantees that are provided
by Arc3D to the software in protected mode of execution
are 3D obfuscation for protected pages based on the unique
identity per CPU. Protected mode of execution guarantees that
the control is not transferred to any unauthorized code (which
is undetected).Arc3D will fault when an instruction from
an unprotected page or from a page that was protected with
different Ks is fetched in protected mode. This will prevent
attacks of the buffer overflow kind. 3D obfuscation provides
us both IP-protection and tamper-resistance. IP-protection is
achieved because at every stage of its life, the binary imageis
made to look different, hence reducing the correlation based
information leaks to the maximum extent possible.

Correlation based attacks are the ones where an adversary
builds up information about the program behavior through
repeated program executions. Such techniques [12] have been
successfully used against commercial secure microcontroller
DS5002FP [11]. InArc3D such attacks are prevented, as the
dynamic obfuscation functions are chosen at random for every
process run, which prevents incremental information gain.

Tampering could be performed by many means. But all of
them have to modify the image of the process. Since every
cache-block in every protected page potentially could havea
different OTP, the probability that the adversary could insert
a valid content is extremely small. Applications can obfuscate
new pages that are created at run-time by designating them
as protected. Applications can further maintain some form
of Message Digest for sensitive data, because obfuscation
only makes it harder to make any educated guess, while
random modification of data is still possible. In the case of
instructions, the probability that a random guess would form
a valid instruction at a valid program point is extremely small.

Another form of tampering - splicing attack - uses valid
cipher texts from different locations. This attack is not likely
to succeed because everycache-blockin every page has a
unique OTP and everypagehas a unique address obfuscation
function. This makes it hard for the adversary to find two
cache-blockswith the same OTP. Another common attack is
replay attack, where valid cipher text of a different instance of
the same application is presented (replayed) to the CPU. As
we discussed earlier, this attack is prevented by XORingKs

with a randomly generated OTP which is kept in theArc3D
state. This value is used as a key to encrypt theprotected
process’ context. Thus when restoring a protected context,
Arc3D makes sure that bothSauth and saved context are from
the same run.

When the adversary knows the internals of the underlying
architecture, another form of attack is possible. This formof
attack denies resources that are essential for the functioning
of the underlying architecture. For example, XOM maintains
a session table and has to store amutating registervalue per
session-id. This mutating register is used to prevent any replay
attacks. This kind of architecture has an inherent limitation
on the number of processes it can support,i.e., the scalability
issue. Thus an attacker could exhaust these resources and make
the architecture non-functional. This kind of attack is possible
in Arc3Das well on the state OTP register file. We could let the
context-saveand context-restorebe embedded in the storage
root of trust in a TPM like model. Such a model will allow
Arc3D to perform in a stateless fashion which can prevent the
resource exhaustion attacks.

VII. PERFORMANCEANALYSIS

SinceArc3D seamlessly fits into the existing memory hier-
archy as an extended TLB, the latency caused byArc3Dshould
be minimal. We used Simplescalar [23] Alpha simulator with
memory hierarchy as shown in Figure 2 to do the performance
simulation. We did two sets of simulations with different
latency parameters, Alpha 21264 and Intel XSCALE 80200
as shown in Table I.

Three latencies are added byArc3D, namely, extended
TLB access, increased access time to L2 because of sending
only block address to L2, and latency to read the pages and
obfuscate them on every TLB miss. The first component gets
absorbed in L1 cache access latency for both the systems,
assuming that the extended TLB access increases the TLB
access latency by 2 cycles. The major component is the
reading time ofpageand writing it back to the memory. Since
obfuscation is just an XOR operation, we can assume it takes
one cycle. These facts along with the assumption that these
pages are transferred in and out ofArc3D at the peak memory
bandwidth, lead to a latency increase of 12,000 cycles in the
case of Alpha-2164 and 96,000 cycles in the case of XSCALE.
The simulation was run with Spec2000 [26] benchmarks for
2 Billion instructions by fast-forwarding the first 500 million
instructions.

Table II shows that the performance impact on XSCALE
80200 memory hierarchy with higher number of TLB misses
is greater than the impact on Alpha 21264 memory hierarchy.
On Alpha 21264 the performance impact is less than 1% for
most of the benchmarks.

VIII. C ONCLUSION

Software obfuscation is a key technology in IP-protection.
However, software only solutions (such as compiler transfor-
mations of control flow or insertion of redundant basic blocks
or data structure transformations) often do not have robustness
of crypto methods. Complete control flow obfuscation methods
such as Cloakware [27] have the limitation that they cannot
hide the correct control flow information from the prying eyes
of the OS/end user. An additional weakness in these schemes
is that observation of repeated dynamic execution often gives

11

TABLE I

MEMORY HIERARCHY SIMULATION PARAMETERS

Param Alpha 21264 [24] Intel XSCALE
80200 [25]

L1 64KB, 2 way,
64B, 3 cyc

32KB, 32-way,
32B, 3 cyc

ITLB/
DTLB

128 fully associa-
tive, 1 cyc

32 fully associa-
tive, 1 cyc

L2 1MB, 1 way, 16
cyc

256K, 8 way, 8
cyc

Memory Lat 130 cyc, 4
bytes/cyc

Lat 32 cyc, 4
bytes/6 cyc

Peak
B/w

7.1 GB/s 800 MB/s

Page sz 64KB 64KB

TABLE II

SIMULATION RESULTS

XSCALE 80200
Bench IL1 Missrate DL1

Missrate
ITLB
Misses

DTLB
Misses

%CPI
Increase

bzip 0.0000 0.0225 2 256408 479
eon 0.0000 0.0020 10 12 0.145
gcc 0.0037 0.0510 28 110636 509
twolf 0.0000 0.0728 7 31 0.128
crafty 0.0009 0.0051 6 15627 73.4
gzip 0.0000 0.0231 3 1906 10.6
parser 0.0000 0.0354 5 50663 245

Alpha 21264
Bench IL1 Missrate DL1

Missrate
ITLB
Misses

DTLB
Misses

%CPI
Increase

bzip 0.0000 0.0185 2 113 0.12
eon 0.0000 0.0008 10 12 0.02
gcc 0.0019 0.0272 29 1804 0.97
twolf 0.0000 0.0508 7 31 0.01
crafty 0.0002 0.0123 6 33 0.02
gzip 0.0000 0.0125 3 1906 1.12
parser 0.0000 0.0210 5 1121 0.74
vpr 0.0000 0.0444 5 51 0.05

away the obfuscation secrets (such as control flow ordering or
data structure sequencing).

We propose a minimal architecture,Arc3D, to support
efficient obfuscation of both static binary file system image
and dynamic execution traces. This obfuscation covers three
aspects: address sequences, contents, and second-order address
sequences (patterns in address sequences exercised by the first
level of loops). We describe the obfuscation algorithm and
schema, its hardware needs, and their performance impact.
We also discuss the robustness provided by the proposed
obfuscation schema.

A reliable method of distributing obfuscation keys is needed
in our system. The same method can be used for safe and au-
thenticated software distribution to provide copy-protection. A
robust obfuscation also prevents tampering by rejecting a tam-
pered instruction at an adversary desired program point with an
extremely high probability. Hence obfuscation and derivative
tamper-resistance provide IP-protection. Consequently,Arc3D
offers complete architecture support for copy-protectionand
IP-protection, the two key ingredients of software DRM.

REFERENCES

[1] “Business Software Alliance, 8th Annual BSA Global Software Piracy
Study. Trends in Software Piracy 1994-2002.” 2003.

[2] “Next-generation secure computing base,” 2003. [Online]. Available:
http://www.microsoft.com/ngscb

[3] TCPA, “Trusted Platform Module,” 2003.
[4] “TPM Design Principles - Version 1.2,” October 2003.
[5] S. R. White and L. Comerford, “ABYSS: An Architecture forSoftware

Protection,” IEEE Trans. Software Eng., vol. 16, no. 6, pp. 619–629,
1990.

[6] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,J. C.
Mitchell, and M. Horowitz, “Architectural Support for Copyand Tamper
Resistant Software,” inASPLOS, 2000, pp. 168–177.

[7] D. Aucsmith, “Tamper Resistant Software: An Implementation.” in
Information Hiding, 1996, pp. 317–333.

[8] C. S. Collberg and C. D. Thomborson, “Watermarking, Tamper-Proofing,
and Obfuscation-Tools for Software Protection.”IEEE Trans. Software
Eng., vol. 28, no. 8, pp. 735–746, 2002.

[9] X. Zhuang, T. Zhang, and S. Pande, “HIDE: An Infrastructure for effi-
ciently protecting information leakage on the address bus,” in ASPLOS,
2004, pp. 72–84.

[10] O. Goldreich and R. Ostrovsky, “Software Protection and Simulation on
Oblivious RAMs.” J. ACM, vol. 43, no. 3, pp. 431–473, 1996.

[11] Dallas Semiconductor, “DS5002 Secure Microprocessor Chip,” March
2003.

[12] M. G. Kuhn, “Cipher Instruction Search Attack on the Bus-Encryption
Security Microcontroller DS5002FP.”IEEE Trans. Computers, vol. 47,
no. 10, pp. 1153–1157, 1998.

[13] Christian Collberg and Clark Thomborson and Douglas Low,
“A Taxonomy of Obfuscating Transformations,” Department of Com-
puter Science, University of Auckland, Tech. Rep. 148, jul 1997.

[14] C. Linn and S. K. Debray, “Obfuscation of executable code to improve
resistance to static disassembly.” inACM Conference on Computer and
Communications Security, 2003, pp. 290–299.

[15] E. Fredkin and T. Toffoli, “Conservative Logic,”International Journal
of Theoretical Physics, vol. 21(3/4), April 1982.

[16] R. Bennett and R. Landauer, “Fundamental Physical Limits of Compu-
tation,” Scientific American, pp. 48–58, July 1985.

[17] T. Toffoli, “Reversible Computing,” MIT Laboratory for Computer
Science, Tech. Rep. MIT/LCS/TM151/1980, 1980.

[18] A. DeHon, “DPGA-Coupled Microprocessors: Commodity ICs for the
Early 21st Century,” inIEEE Workshop on FPGAs for Custom Comput-
ing Machines, D. A. Buell and K. L. Pocek, Eds. Los Alamitos, CA:
IEEE Computer Society Press, 1994, pp. 31–39.

[19] “HMAC: Internet RFC 2104,” February 1997.
[20] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon Physical

Random Functions,” inCCS ’02: Proceedings of the 9th ACM conference
on Computer and communications security. New York, NY, USA: ACM
Press, 2002, pp. 148–160.

[21] J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W.
Smith, and S. Weingart, “Building the IBM 4758 Secure Coprocessor.”
IEEE Computer, vol. 34, no. 10, pp. 57–66, 2001.

[22] XCELL Journal Online, “Is Your FPGA Design Secure.”
[23] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version 2.0.”

Department of Computer Science, University of Wisconsin-Madison,
Tech. Rep. 1342, 1997.

[24] Z. Cvetanovic and R. E. Kessler, “Performance analysisof the Alpha
21264-based Compaq ES40 system.” inISCA, 2000, pp. 192–202.

[25] “Intel 80200 Processor based on Intel XSCALE Microarchitecture
Datasheet,” January 2003.

[26] “Specbench: SPEC 2000 Benchmarks.”
[27] S. Chow, Y. Gu, H. Johnson, and V. A. Zakharov, “An Approach to

the Obfuscation of Control-Flow of Sequential Computer Programs,” in
Proceedings of International Security Conference (ISC). Lecture Notes
in Computer Science, 2200, Springer-Verlag, 2001, pp. 144–155.

http://global.bsa.org/
http://www.microsoft.com/ngscb
http://www.trustedcomputing.org
https://www.trustedcomputing.org/downloads/Main_TCG_Architecture_v1_1b.zip
http://pdfserv.maxim-ic.com/en/ds/DS5002FP.pdf
http://www.cs.auckland.ac.nz/~collberg/Research/Publications/CollbergThomborsonLow97a/index.html
http://www.rfc-archive.org/getrfc.php?rfc=2104
http://www.xilinx.com/publications/xcellonline/xcell_47/xc_secure47.htm
http://www.specbench.org/osg/cpu2000/

12

Mahadevan Gomathisankaran received B.E. in
Electronics and Communcation Engineering (1998)
from the Regional Engineering College (now known
as National Institute of Technology), Trichy, and cur-
rently doing his Ph.D. in Computer Engineering at
the Iowa State University. His research interests are
Secure & DRM Architectures, Low power design,
and Logic design.

Akhilesh Tyagi received B.E. (Honors) in Electri-
cal and Electronics Engineering from (1981) Birla
Institute of Technology and Science, Pilani followed
by M. Tech. in Computer Engineering (1983) from
Indian Institute of Technology, New Delhi, India. He
received Ph.D. in Computer Science from University
of Washington, Seattle in 1988. He was an assistant
professor with the Department of Computer Science
at the University of North Carolina at Chapel Hill
from August of 1987 to June of 1993. Subsequent
to that, he was with the Department of Computer

Science, and is now with Electrical & Computer Engineering Dept. at Iowa
State University, Ames, Iowa. His research interests include VLSI complexity
theory and low energy design, secure & DRM architectures andcompilers.

	Introduction
	The Problem
	Previous Research
	Obfuscation
	Analysis

	Proposed Architecture: Arc3D
	Obfuscation Schema
	Overall Schema
	Reconfigurable Bijective Function Unit
	Obfuscating the Sequence
	Obfuscating the Contents
	Obfuscating Temporal Order (Second-Order Address Sequences)

	Arc3D in Operation
	Software Distribution
	Trust Establishment
	Binary Image Generation

	Management of Protected Process
	Starting a Protected Process
	Memory Access
	Execution
	Interrupt Handling
	Saving and Restoring Protected Context
	Supporting fork
	Exiting a Protected Process
	Protected Cache

	Discussion
	Assumptions
	Attack Scenarios

	Performance Analysis
	Conclusion
	References
	Biographies
	Mahadevan Gomathisankaran
	Akhilesh Tyagi

