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Abstract—Software obfuscation is defined as a transformation of a programP intoT ðPÞsuch that the whitebox and blackbox behaviors of

T ðPÞ are computationally indistinguishable. However, robust obfuscation is impossible to achieve with the existing software only

solutions. This results from the power of the adversary model in Digital Rights Management systems, which is significantly more than in the

traditional security scenarios. The adversary has complete control of the computing node—supervisory privileges along with the full

physical as well as architectural object observational capabilities. In essence, this makes the operating system (or any other layer around

the architecture) untrustworthy. Thus, the trust has to be provided by the underlying architecture. In this paper, we develop an architecture

to support 3D obfuscation through the use of well-known cryptographic methods and show how it provides copy-protection, IP-protection,

and tamper-resistance.

Index Terms—Obfuscation, digital rights management, secure systems architecture.
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1 INTRODUCTION

DIGITAL rights management (DRM) deals with intellec-
tual property (IP) protection and unauthorized copy

protection. Software piracy alone accounted for $13 billion
annual loss [1] to the software industry in 2002. Software
digital rights management traditionally consists of water-
marking, obfuscation, and tamper-resistance. All of these
tasks are made difficult due to the power of adversary. The
traditional security techniques assume the threat to be
external. The system itself is not an adversary. This
provides a safe haven or sanctuary for many security
solutions. However, in DRM domain, the OS itself is not
trustworthy. On the contrary, OS constitutes the primary
and formidable adversary.

Any software-only solution to achieve DRM seems to be
inadequate. In the end, in most scenarios, it reduces to the
problem of last mile wherein only if some small kernel of
values could be isolated from the OS (as an axiom), the
entire schema can be shown to work. At this point, it is
worth noting that even in Microsoft’s next generation
secure computing base (NGSCB) [2], the process isolation
from OS under a less severe adversary model is performed
with hardware help. The NGSCB’s goal is to protect the
process from the OS corrupted by external attacks by
maintaining a parallel OS look-alike called nexus. The nexus,
in turn, relies upon a hardware Security Support Compo-
nent (SSC) for performing cryptographic operations and for
securely storing cryptographic keys.

The trusted computing group consisting of AMD, HP,
IBM, and Intel, among many others, is expected to release
Trusted Platform Module (TPM) [3], to provide the SSC.
The TPM is designed to provide such a root of trust for
storage, for measurement, and for reporting. Hence, we
believe that TPM provides building blocks for the proposed
architecture. However, we identify additional capabilities

needed to support robust 3D obfuscation. The proposed
architecture obfuscation blocks can absorb TPM function-
ality (based on the released TPM 1.2 specifications [4]).

This paper is organized as follows: Section 2 describes
the obfuscation problem and its interaction with the existing
cryptographic solutions. Section 3 discusses earlier pro-
posed research and their drawbacks. Section 4 explains the
basic building blocks of Arc3D and provides a high-level
overview. Section 5 provides operational details of Arc3D
system. We describe various attack scenarios in Section 6.
Section 7 gives the performance analysis of Arc3D. Section 8
concludes the paper.

2 THE PROBLEM

The attributes that need to be supported by a DRM system
are as follows:

1. Associability of Software to a particular CPU.
(copy-protection),

2. Verifiability of the CPU’s authenticity/identity.
(copy-protection, IP-protection),

3. Binary file, conforming to a standardized structure,
should not reveal any IP of the software through static
analysis-based reverse engineering. (IP-protection—
static obfuscation),

4. Any modification of the binary file should make the
software unusable. (IP-protection—tamper-resistance),
and

5. The program execution parameters visible outside
CPU should not reveal any IP of the software.
(IP-protection—dynamic obfuscation)

The first two problems are analogous to the real-life
problem of establishing trust between two parties followed
by secret sharing on a secure encrypted channel. This is a
well-analyzed problem and solutions like Pretty Good
Privacy (PGP) exist which uses a trusted Certification
Authority (CA). This approach has been used in almost all
the earlier research dealing with copy-protection ([5], [6])
and we too will use a similar approach.

The third problem requires prevention (minimization) of
information leak from the static binary file/image. This could
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be viewed as the problem of protecting a message in an
untrustworthy channel. One possible solution is to encrypt
the binary file (the solution adopted by XOM [6] and
ABYSS [5]). An alternative approach would recognize that
the binary file is a sequence of instructions and data, with an
underlying structure. Static obfuscation ([7], [8]) attempts to
exploit a smaller subset of these program level structure
attributes.

The fourth problem requires the binary image to be tamper
resistant. Any modifications to the binary image should be
detectable by the hardware. Message Digest, which is a one-
way hash of the message, could be used to solve this problem.
This once again is a generic solution which is applicable to any
message transaction that does not use any specific properties
of a binary image. We rely upon obfuscation to provide the
tamper-resistance in the following way: Tampering gains an
advantage for the adversary only if the properties of the
tampering point—the specific instruction or data at that
point—are known. However, obfuscation prevents the
adversary from associating program points with specific
desirable properties (such as all the points that have a branch,
call sites, to a specific procedure, or all the data values that
point to a specific address). Hence, most tampering points are
randomly derived, resulting in the disabling of the program,
which we do not consider to be an advantage to the adversary
in the DRM model where the adversary/end user has already
purchased rights to disable the program.

The fifth problem dictates that the CPU not trust anything
outside its own trusted perimeter including any software
layer. The problem is simplified by the fact that CPU can halt
its operations once it detects any untrustworthy behavior.
The attributes of the application program execution trace
space, which the CPU has to protect, can be thought of as
having three dimensions, namely, instructions (content),
addresses at which the instructions are stored (address
sequencing), and the temporal sequence of accesses of these
addresses (second-order address sequencing). All of these
three dimensions have to be protected in order to prevent any
information leakage. This holds true even for data.

3 PREVIOUS RESEARCH

ABYSS [5] was proposed as a software protection archi-
tecture. It supports both protected and unprotected processes.
Protected processes are executed in a protected processor and
are encrypted. Drawbacks of ABYSS include nonscalability
and unexplained OS interactions.

XOM [6] is a compartmentalized—a process in one
compartment cannot access data from another compart-
ment—machine. Application is encrypted with a symmetric
key which, in turn, is encrypted with public asymmetric key
of XOM. HIDE [9] is an extension of XOM. It points out the fact
that XOM does not protect the time order of the address trace.
Hence, even if the instructions (and data) themselves are
encrypted, the address trace gives the adversary power to
deduce the control flow graph (CFG).

Goldreich and Ostrovsky [10] offered one of the first
schemes for software protection. They extended the obliv-
ious Turing machine model to oblivious RAMs. An
oblivious RAM presents a memory access footprint that
does not depend on the program input. This prevents
information leak about the program CFG. Oblivious RAM

requires Oð
ffiffiffiffiffi
m
p
Þ steps for each original memory access. This

is a very high overhead for present day architectures.
DS5002FP [11] is a secure 8-bit microcontroller from

Dallas Semiconductor which uses bus-encryption. The
DS5002FP implements three on-chip block-cipher functions
EA for 17-bit address-bus encryption, ED for 8-bit data-bus
encryption, and E�1

D for 8-bit data-bus decryption. The
encryption functions are fixed unless changed by uploading
a new secret key. This allows the adversary to build up
information by running the program multiple times and
observing its behavior. Kuhn [12] proposed such an attack
to extract the secrets stored in a DS5002FP microcontroller.

3.1 Obfuscation

We use the term obfuscation in a different way than the
earlier literature ([13], [14]). We refer to any obfuscation
mechanism that hides the control flow from static analysis
through a binary image or CFG transformation as static
obfuscation. However, these obfuscation mechanisms cannot
defeat an adversary with access to architecturally visible
parameters, such as a memory address bus. Our use of the
term obfuscation refers to schemes that hide dynamic
execution model parameters as well. Note that, in our
obfuscation model, even the instructions themselves can be
transformed into potentially invalid ones.

3.2 Analysis

Almost all of the earlier research, except HIDE, does not hide
the temporal sequencing of memory accesses. Neither do
these solutions exploit the software specific properties. The
solution proposed by HIDE to prevent information leak
through the address and memory bus is weak. This is because
the adversary can see the contents of the memory before and
after an address-permutation. It is possible because the
encryption function applied to the contents is not address
dependent. Hence, for instance, if the contents at two distinct
addresses Ai and Aj are also distinct CAi

and CAj
then the

following information leak path exists. For a program
sequence within a loop, when instructions reoccur at the
address and instruction buses, HIDE permutes the addresses
within a page for the second (or subsequent) iteration. IfAi is
permuted to a new address �ðAiÞ the contents at �ðAiÞwould
still appear asCAi

. Hence, a simple comparison would be able
to determine the permutation �. Fig. 1 illustrates this fact.
Thus, it takes only N Nþ1ð Þ

2 comparisons to reverse-engineer
the permutation, whereN is the permutation size. Assuming
that there are 1,024 cache-blocks in a page, the strength of
such a permutation is less than 220. Even in the chunk mode,
which performs these permutations in a group of pages, the
complexity grows only linearly and, hence, could be easily
broken.
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The proposed architecture Arc3D addresses all these
issues. Moreover, computational efficiency of proposed
methods is a key criterion for inclusion in Arc3D. We make
use of software structure to provide obfuscation and
tamper-resistance efficiently.

4 PROPOSED ARCHITECTURE: ARC3D

The overall Arc3D architecture is shown in Fig. 2. The main
affected components of the microarchitecture are the ones
that handle virtual-addresses. These components include
the translation lookaside buffer (TLB) and page table
entries (PTE). We first describe the objectives of the
obfuscation schema.

4.1 Obfuscation Schema

The goal of obfuscation is to remove the correlation between

1. the CFG and the static binary image and
2. the static binary image and the dynamic execution

image.

Traditional static obfuscation techniques try to obscure
disassembling and decompilation stages to remove the
correlation between the static image and the CFG. But these
techniques are transparent to architecture and do not
remove the correlation between the static image and the
dynamic execution image. Thus, an adversary monitoring
the address traces could very well extract the CFG.

We use architecture aware obfuscation of both sequence and
content to achieve this goal. Static obfuscation or obfuscation
of the static binary image is achieved by permuting the
instruction sequence with�S and obfuscating the instructions
with Cs. Another pair of sequence permutation and content
obfuscation functions which are dynamically chosen, �D and
CD, help achieve dynamic obfuscation. These four functions,
�S ,Cs, �D, andCD form the program secret which is guarded
by the trusted component of the architecture. Fig. 3 shows
these obfuscation functions in operation.

4.2 Overall Schema

As stated earlier, Fig. 2 shows the global schema for the
proposed architecture. The shaded areas are the additional

components of Arc3D over the base architecture. Shading
hues also indicate the access rights as follows: The lightly
shaded areas contain information accessible to the outside
world, i.e., OS. The darkly shaded areas contain secret
information accessible only to Arc3D. Arc3D has two
execution modes, namely, protected and unprotected mode.
It has a protected register space REGp which is accessible
only to a protected process.

The core of Arc3D functionality is obfuscation. It is
achieved by modifying the virtual-address translation
path—translation look aside buffer (TLB)—of the base
architecture. In addition to holding the virtual-address to
physical-address mapping, page table entry (PTE), the TLB
has the obfuscation configuration (Pconf ). This Pconf is
essentially the shared secrets CS; CD; �S; �D in encrypted
form. In order to avoid frequent decryption, Ar3D stores them
in decrypted form in Conf section of TLBxp. This section of
TLB is updated whenever a new PTE is loaded into TLBxp.
Arc3D assumes parallel address translation paths for data
and instructions and, hence, Fig. 2 shows DTLB and ITLB
separately.

The address translation for a protected process occurs in
the obfuscation unit. Sections 4.4 and 4.5 explain in detail
the address sequence and content obfuscation algorithms,
respectively. Arc3D uses the same logic for both static and
dynamic obfuscations. The basis of these obfuscations is
the permutation function which is explained in Section 4.3.
Arc3D has a protected L2 cache, which is accessible only to
a protected process, thus providing temporal order
obfuscation.

The Arc3D controller provides the following interfaces
(APIs) which enable the interactions of a protected process
with the OS.

1. start prot process: Allocate the necessary resources
and initialize a protected process.

2. exit prot process: Free the protected resources allo-
cated for the current protected process.
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3. ret prot process: Return to the current protected
process from an interrupt handler.

4. restore prot process: Restore a protected process
after a context switch.

5. transfer prot process: Fork the current protected
process.

These APIs and their usage are explained in detail in
Section 5.

4.3 Reconfigurable Bijective Function Unit

Obfuscation unit is a major component of Arc3D. This unit
is responsible for generating bijection functions �. There are
2n! possible n-bit reversible functions. Reconfigurable logic
is well-suited to generate a large dynamically variable
subset of these reversible functions. Fig. 4 shows one such
schema for permutation of 10 address bits (specifying a
page consisting of 1,024 cache-blocks). Before explaining the
blocks of Fig. 4, we observe that there are 22n

� �n
possible

functions implemented in a n� n lookup table (LUT) or n
n-LUTs. But, only a subset of them are bijective. We wish to
implement only reversible (conservative) gates ([15], [16])
with LUTs.

Definition 1. A Toffoli gate,Toffoliðn; nÞðC; T Þ, is defined over a
support set fx1; x2; . . . ; xng as follows: Let the control set C ¼
fxi1; xi2; . . . ; xikg and the target set T ¼ fxjg be such that
C \ T ¼ ;. The mapping is given by Toffoliðn; nÞðC; T Þ
½x1; x2; . . . ; xn� ¼ ½x1; x2; ; xj�1; z; xjþ1; ; xn�, where z ¼ xj �
xi1 ^ xi2 ^ . . . ^ xikð Þ.

Both Fredkin and Toffoli [15] and Toffoli [17] have
defined classes of reversible gates. We use Toffoli(5,5) gates
with 5-input bits and 5-output bits in our scheme, as shown
in Fig. 4. However, we could easily replace them by
Fredkin(5,5) gates. The domain of configurations which can
be mapped to each of the LUTs consists of selections of sets T
andC such that T \ C ¼ ;. For a support set of five variables,
the number of unique reversible Toffoli functions is
4 5

1

� �
þ 3 5

2

� �
þ 2 5

3

� �
þ 5

4

� �
. Each of these terms captures control

sets of size 1, 2, 3, and 4, respectively. Ignoring control sets of
size 1, we get a total of 55 reversible functions. Thus, total
permutation space covered by all six of these gates is
55ð Þ6� 234. There are several redundant configurations in

this space. We estimated the redundancy through statistical
analysis to be less than 0.3 percent.

The exchanger blocks shown in Fig. 4 perform a swap
operation. It has two sets of inputs and two sets of outputs.
The mapping function is Sok ¼ Sik if X ¼ 0, and Sok ¼ Si�kk if
X ¼ 1, where, Sik is the input set, Sok is the output set, X is
configuration bit, and k is 0 or 1. Since exchange is also

bijective, the composition of Toffoli gates and exchangers
leads to a bijective function with large population diversity.
Other interesting routing structures may also guarantee
bijections. But, a typical FPGA routing matrix configuration
will require extensive analysis to determine if a given
routing configuration is bijective. One point to note here is
that we chose to implement a 10 bit permutation function
with Toffolið5; 5Þ gates instead of a direct implementation
of Toffolið10; 10Þ. This is because an n-LUT requires 2n

configuration bits and, hence, 10-LUTs are impractical in the
reconfigurable computing world.

Having fixed the reconfigurable logic to perform the
obfuscation (permutation), we need to develop a schema for
the LUT configuration. A simple mechanism would be to
store all the 55 possible configurations at each of the LUTs
(similar to DPGA of DeHon [18]). In addition to 4 input bits,
each LUT will also have six configuration bits to choose from
one of the 55 configurations (assuming some configurations
are repeated to fill the 64 locations), as shown in Fig. 5. In
Fig. 5, A0A1A2A3A4 represent the input address bits,
f0; f1; f2; . . . ; f63 represent the 64 configurations and
C0C1C2C3C4C5 represent the configuration bits. Each of
the exchanger blocks also requires 1 configuration bit. Thus, a
total of 39 configuration bits are needed by the reversible
logic of Fig. 4.

4.4 Obfuscating the Sequence

We can use the reconfigurable permutation unit defined in
Section 4.3 to achieve sequence obfuscation. Note, however,
that even though we have shown the circuit for a 10-bit
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permutation, the methodology is applicable to an arbitrary
number of address bits. We believe that at least 10 address
bits need to be permuted in order to have a reasonably large
permutation space. The choice of 10-bits is also dictated by
the structure of the software. Software objects, both
instruction and data, are viewed by the architecture in
various granularities. The RAM memory resident objects
are viewed in the units of pages. The cache resident objects
on the other hand are viewed in the units of blocks. This
argues for the obfuscation boundaries defined by these
units. Hence, we obfuscate the sequence of cache-blocks
within a page. Any sequence obfuscation within page level
needs to interact with the page management module of the
OS. If the obfuscated sequence crosses the page boundary,
the permutation function (�) has to be exposed to the OS.
This is the reason why we cannot obfuscate sequences of
pages. In the other direction, permuting the sequences of
subunits of cache-blocks seriously affects the locality of
cache resulting in severe performance degradation. More-
over, since the contents of a cache-block are obfuscated, the
information leak through the preserved, original sequence
of cache sub-blocks is minimized. Considering a page size of
64 KB with 64 B cache-blocks, as is the case with Alpha-21264,
we get 1,024 cache-blocks per page, i.e., 10-bits of obfuscation.

4.5 Obfuscating the Contents

In cryptography, the one time pad (OTP), sometimes known as
the Vernam cipher, is a theoretically unbreakable method of
encryption where the plaintext is transformed (for example,
XOR) with a random pad of the same length as the plaintext.
The structure of the software objects determines the protec-
tion granularities once again. We can consider a program as a
sequence of fixed sized messages, i.e., cache-blocks. If we have
unique OTPs for each one of the cache-blocks in the software,
the contents are completely protected. However, the storage
and management of that many OTPs is highly inefficient.
Nonetheless, we at least have to guarantee that every cache-
block within a page has a unique OTP. This is to overcome the
weakness in HIDE (as explained in Section 3, Fig. 1). If the
adversary-visible contents of the memory locations are
changed after each permutation (as with unique cache-block
OTP per page), then n-bit permutation is 2n! strong. This is in
contrast with the strength of the order of 2n exhibited by the
original HIDE scheme.

In order to provide a unique OTP per cache-block per page,
one option is to generate a random OTP mask for each cache-
block for each page. A more efficient solution, however, is to
pregenerate Nb OTPs for every cache-block within a page
(OTP ½bi� masks for 0 � bi < Nb for a cache with Nb blocks).
However, the association of an OTP with a cache-block is
randomized with the �c function. The �c function can be
chosen differently for each page to provide us with a unique
OTP per cache-block. This simplifies the hardware imple-
mentation of content obfuscation unit as well since each page
is processed uniformly in this unit except for the �c function.
Hence, a program image will need to provide a page of OTPs
which will be used for all its pages. It also needs to specify a
unique mapping function �c per page. Since we already have
the reconfigurable permutation logic of Section 4.3 in Arc3D,
we can use it to implement the function�c as well. This results
in39-bitsperpageoverheadfor thespecificationof thecontent
obfuscation. Note that the OTP-based content encryption can
be easily replaced by any other bijective function.

4.6 Obfuscating Temporal Order (Second-Order
Address Sequences)

The second-order address sequences are derived from
iterative control constructs within a program. Consider a
loop of k instructions which is iteratedN times. The expected
address sequence in such an execution is fIð0;0Þ; Ið1;0Þ; . . . ;
Iðk�1;0Þg, fIð0;1Þ; Ið1;1Þ; . . . ; Iðk�1;1Þg; . . . ; fIð0;N�1Þ; Ið1;N�1Þ; . . . ;
Iðk�1;N�1Þg, where Ii;j denotes the ith instruction in the loop
body in the jth loop iteration. In this sequence, if an adversary
is able to tag the boundaries of loop iteration, a strong
correlation exists between successive iteration traces:
fIð0;lÞ; Ið1;lÞ; . . . ; Iðk�1;lÞg and fIð0;lþ1Þ; Ið1;lþ1Þ; . . . ; Iðk�1;lþ1Þg. In
fact, instruction I0 occurs in the same relative order from the
loop sequence start point in both (or all) the iterations. This
allows an adversary to incrementally build up information on
the sequencing. Whatever sequence ordering is learned in
iteration l is valid for all the other iterations. The second-order
address sequence obfuscation strives to eliminate such
correlations between the order traces from any two iterations.

Interestingly, the second-order address sequence obfusca-
tion is an inherent property of a typical computer architecture
implementation. The access pattern we observe outside the
CPU is naturally obfuscated due to various factors like
caching, prefetching, and several other prediction mechanisms
aimed at improving the performance. But, these architecture
features are also controllable, directly or indirectly, by the OS
and other layers of software. For example, the adversary
could flush the cache after every instruction execution. This
renders the obfuscation effect of cache nonexistent. To
overcome such OS directed attacks, it is sufficient to have a
reasonably sized protected-cache in the architecture which is
privileged (only accessible to secure processes). We expect a
cache of the same size as a page, in our case 64 KB, should be
able to mask the effects of loops. Encrypted or content-
obfuscated cache-blocks already obfuscate CFGs (within the
cache-block). This is because a 64 B cache-block contains
16 instructions if we assume instructions of length 32-bits.

5 ARC3D IN OPERATION

We have developed and described all the building blocks of
Arc3D in Section 4. In this section, we explain its operation
with respect to the software interactions in detail, from
software distribution to the management of a protected
process by the OS using the APIs provided by Arc3D.

5.1 Software Distribution

Arc3D provides both tamper-resistance and IP-protection
through obfuscation. Hence, a software vendor should be
able to obfuscate the static image of a binary executable.
Moreover, a mechanism to distribute the static obfuscation
configuration from the vendor to Arc3D needs to be
supported. This configuration constitutes the shared secret
between the vendor and Arc3D. Trust has to be established
between Arc3D and the vendor in order to share this secret.
Once the trust is established, the binary image along with
the relevant configuration can be transferred to Arc3D.

5.1.1 Trust Establishment

We assume that there exist protected elements within the
CPU which are accessible only to the architecture, and not to
any other entities. We also assume that every CPU has a
unique identity, namely, its public-private key pair (Ek

þ; Ek
�).
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This key pair is stored in the protected space of the CPU. A
TPM’s endorsement key pair constitutes such an identity.
Public part of this key pair,Ek

þ, is distributed to a certification
authority (CA). CA verifies the CPU vendor’s authenticity,
associates Ek

þ with the CPU vendor’s identity and other
information (such as model number, part number, etc.). Any
party entering a transaction with the CPU (such as a software
vendor) can query the CA withEk

þ in order to establish trust
in the CPU. Since CA is a trusted entity, the data provided by
CA can also be trusted. This is very similar to the PGP model
of trust establishment and is shown in Fig. 6.

An important point to note here is that the trust
establishment and the key management mechanisms do
not constitute the crux of Arc3D architecture. Arc3D could
use any model/policy for this purpose. We use this model
for illustration purposes only. It could very well be adapted
to use the TPM [3] model.

5.1.2 Binary Image Generation

The software vendor receives Ek
þ from the CPU. It queries

the CA to derive the architecture level specifications of the
CPU, relevant for static obfuscation which include details
such as cache-block size and the minimum supported page size.
The software vendor generates the binary file targeted at the
appropriate cache-block and page sizes. It generates two sets
of random configurations per page. One configuration is to
obfuscate the sequence of cache-block addresses within a page
(�S) and the second configuration is to obfuscate the
association of OTPs with cache-block address ð�csÞ. The content
obfuscation requires the software vendor to further generate
a page sized OTP (OTPs, OTPs½bi� for all 0 � bi < Nb). These
functions can then be used along with the FPGA obfuscation
unit in a CPU or with a software simulation of its behavior to
generate the obfuscated binary file.

Algorithm 1. Page Obfuscation Function: page_obfuscate

Required Functions

Fobf conf sel; addrð Þ ( Reconfigurable Obfuscation Unit

Inputs

OTParr ( array of OTP
pagei ( input page

confseq ( conf_sel for sequence obfuscation

confcont ( conf_sel for content obfuscation

Nb ( number of cache blocks in a page

Outputs

pageo ( output of page

Function

for k ¼ 0 to Nb � 1 do

out ¼ Fobf confseq; k
� �

l ¼ Fobf confcont; kð Þ
OTP ¼ OTParr½l�
pageo½out� ¼ pagei½k� �OTP

end for

Although this kind of obfuscation is applicable to any
binary image, the software vendor could enforce additional
properties on the target CPUs. For instance, it can restrict the
distribution only to those machines which have a certain
minimum cache-block size and page size, as both these
parameters affect the strength of obfuscation. A suggested
minimum for these parameters is 64 B and 64 KB, respectively.
The basis of static obfuscation is a page obfuscation function
(page_obfuscate) which takes an input page, an OTP page, and
configurations for both address-sequence and content obfus-
cation functions. It produces an obfuscated output page. The
outline of this algorithm is shown in Algorithm 1. The
algorithm for static obfuscation is shown in Algorithm 2.

Algorithm 2. Static Obfuscation Function: stat obfuscate

Inputs

Np ( number of pages in the binary

Pagearr ( array of pages

Function

p( temporary page

Generate random page of OTP (OTPs)
for k ¼ 0 to Np � 1 do

if Pagearr½k� to be protected then

Generate random Sseq
Generate random Scont
Pagearr½k�:pconf ¼ KsfSseq; Scontg; HMAC

p ¼ page obfuscateðSseq; Scont; OTPs; Pagearr½k�Þ
Pagearr½k� ¼ p

end if

end for

For every protected page the software vendor generates
Sseq, the configuration for sequence obfuscation (correspond-
ing to �S), andScont, the configuration for content obfuscation
(corresponding to �cs ). It uses page_obfuscate to obfuscate the
page and associate the configuration information with the
page. This is shown in Algorithm 2. Even for pages which are
not loaded, an obfuscation function could be associated. Note
that Arc3D needs a standardized mechanism to garner these
functions. This could be done by extending the standard
binary format, like ELF, to hold the sections containing the
configurations. The configurations have to be guarded and,
hence, need to be encrypted before being stored with the
binary image. The software vendor has to generate a key,Ks,
specific to this installation to support such encryption. All
page level configurations, Sseq and Scont, are encrypted with
this Ks. An HMAC [19] of these encrypted configurations is
also generated. HMAC is a keyed hash which will allow
Arc3D to detect any tampering of the encrypted configura-
tions. LetPconf represent the encrypted configurations and its
HMAC and let Sconf represent the section containing Pconf of
all the pages. The new binary format should carry encrypted
configurations and its HMAC for every protected page. The
page containing the cache-block OTPs also needs to be stored.
This page is also encrypted with Ks. Its HMAC is computed
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as well. A new sectionSOTP is created in the binary file and the
encrypted OTP page and its HMAC are added to it.

Algorithm 3. Software Distribution

1: Get Ek
þ from CPU

2: Contact CA and validate Ek
þ

3: Generate Ks

4: Generate conf seq; conf cont for every page to be protected
5: Generate OTP page

6: Do stat obfuscate

7: Generate Sauth and add it to binary file

8: Generate Sconf and add it to binary file

9: Generate SOTP and add it to binary file

10: Send the binary file to CPU

In order for the CPU to be able to decrypt the program, it
needs the key Ks. This is achieved by encrypting Ks with
Ek
þ and distributing it along with the software. Now only

the CPU with the private key Ek
� can decrypt the

distributed image to extract Ks. The entry point of the
program also needs to be guarded. Several attacks are
possible if the adversary could change the entry point.
Hence, the entry point is also encrypted with Ks. Once
again we need to use HMAC to detect any tampering.
Hence, Sauth, the authorization section, consists of
Ek
þfKs; PCstartg; HMAC. These extended sections are

shown in Fig. 7. The complete algorithm for software
distribution is shown in Algorithm 3.

5.2 Management of Protected Process

We now explain the OS use of the Arc3D APIs to manage a

protected process. We will also show how seamlessly it can

be integrated with the existing systems while providing the

guarantees of tamper-resistance and copy-protection.

5.2.1 Starting a Protected Process

Arc3D has two execution modes, 1) protected and 2)
normal, which are enforced without necessarily requiring
the OS cooperation. When the OS creates a process
corresponding to a protected program, it has to read the
special sections containing Sauth and per-page configuration
Pconf . Arc3D has an extended translation lookaside buffer
(TLBxp) in order to load these per-page configurations. The
decision whether to extend the page table entry (PTE) with
these configuration is OS and architecture dependent. We
consider an architecture in which the TLB misses are
handled by the software. Hence, the OS can maintain these

associations in a data structure different from PTEs. This
will be efficient if very few protected processes (and, hence,
protected pages) exist. This method is equally well
applicable to a hardware managed TLB wherein all the
PTEs have to follow the same structure.

The OS, before starting the process, has to update
extended TLB with Pconf , for each protected page. Addi-
tionally, for every protected page, the OS has to set the
protected mode bit P . This will be used by the architecture
to decide whether to use the obfuscation function. Note that
by entrusting the OS to set the P bit, we have not
compromised any security. The OS does not gain any
information or advantage by misrepresenting the P bit. For
example, by misrepresenting a protected page as unpro-
tected, the execution sequence will fail as both instructions
and address sequences will appear to be corrupted. This is
followed by the OS providing Arc3D with a pointer to Sauth
and a pointer to SOTP .

The OS executes start_prot_process to start the protected
process execution. This causes Arc3D to transition to protected
mode. Arc3D decrypts Sauth and checks its validity by
generating its HMAC. If there is any mismatch between the
computed and stored HMACs, it raises an exception and goes
out of protected mode. If HMACs match, then Arc3D can start
the process execution from PCstart. However, the address
sequence generated at the address bus will expose the
�S function through one-to-one correspondence with the
static binary image sequence. This compromises the static
obfuscation. As explained in HIDE [9], the address sequence
information suffices to reverse engineer the IP without even
knowing the actual instructions. Hence, Arc3D performs one
more level of obfuscation, called dynamic obfuscation, on
protected pages to avoid these scenarios.

Dynamic obfuscation is very similar to the static obfusca-
tion. It consists of two independent obfuscation functions
per page, one to obfuscate the sequence of cache-block
addresses and the other to obfuscate the contents of cache-
blocks. When start prot process is executed, Arc3D generates
an OTP page (OTPd). This OTPd needs to be stored in
memory so that it can be reloaded at a later point after a
context switch. We use the section SOTP to store OTPd.
Arc3D has sufficient internal space to hold both OTPs and
OTPd at the same time. It reads SOTP and decrypts OTPs,
validates the HMAC, and then loads it into the obfuscation
engine. It then encrypts OTPd with Ks and generates its
HMAC which is appended to SOTP . We assume that the
space for OTPd in the section SOTP has already been
allocated at compile time.

Arc3D then scans the TLB and validates Pconf for every
protected page that has been loaded in the main memory. It
then generates Dseq and Dcont configurations (corresponding
to�D and�cd ) for each one of those pages and appends them to
theirPconf . TLBxp which has been extended to holdPconf , also
has protected space per TLB entry which only Arc3D can
access. This space will be used by Arc3D to store the
decrypted Sseq; Scont; Dseq; Dcont configurations, so that de-
cryption need not be done for every TLB access. Arc3D
contains temporary buffer of twice the page size to perform the
obfuscation. Hence, it reads a complete page from RAM and
applies page_obfuscation and then stores it back in RAM.
Algorithm for dynamic obfuscation is shown in Algorithm 4.
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Algorithm 4. Dynamic Obfuscation Function: dyn obfuscate
Inputs
NTLB ( number of TLB entries
pi ( page to be obfuscated, read from RAM
po ( obfuscated page
OTPd ( array of dynamic OTP
Function
for k ¼ 0 to NTLB � 1 do

if TLB½k�:P is set then
if TLB½k�:prot ¼ NULL then

Decrypt and validate Pconf
if Dseq;Dcont exist then
po ¼ page unobfuscateðDseq;Dcont; OTPd; tempiÞ
pi ¼ tempo

end if
Generate new Dseq;Dcont

Append it to Pconf
TLB½k�:prot ¼ fSseq; Scont;Dseq;Dcontg
Read the page in pi
po ¼ page obfuscateðDseq;Dcont; OTPd; piÞ
Write back tempo

end if
end if

end for

The TLB½k�:Prot structure is the protected section of TLB
entry and is cleared every time a new TLB entry is written.
Hence, the function dyn_obfuscate is invoked on every TLB
miss. If the page has already been subjected to dynamic
obfuscation, Arc3D first performs the inverse operation
(deobfuscation). It then generates new obfuscation config-
urations to perform dynamic obfuscation. This causes the
dynamic obfuscation functions to be very short lived, i.e.,
changing on every page fault. It makes reverse engineering of
�D andCD functions extremely unlikely. To ensure such a (�D,
CD) refresh on every context switch, TLB½k�:Prot is cleared
for all the entries whenever start_prot_process is called or a
protected process is restored. A state register STi is allocated
to the process and added to Sauth. The usage of this register is
explained in Section 5.2.5. Availability of this register puts a
limit on total number of protected processes active at any
point in time in Arc3D. After the dynamic obfuscation is done,
the process is started from PCstart as given by Sauth. The steps
involved in start_prot_process are shown in Algorithm 5.

Algorithm 5. start prot process

1: Change to protected mode
2: Read Sauth and validate

3: Read SOTP and validate

4: Generate OTPd and append to SOTP
5: Clear TLB½i�:prot for all i

6: Call dyn obfuscate

7: Allocate STi to the process and add it to Sauth
8: Set PC to PCstart

5.2.2 Memory Access

Once a process is started, it generates a sequence of
instruction and data addresses. Like any high performance
architecture, we assume separate TLBs, ITLB and DTLB, for
instruction and data. Hence, the loading process explained
earlier occurs parallely in both ITLB and DTLB. The TLB is the
key component of the obfuscation unit. The obfuscation
functions are applied only during virtual to physical memory

mapping. The address generation procedure is outlined in
Algorithm 6. Two stages of Fobf are in the computation path
for the physical address. This makes TLB latency higher than
the single cycle latency of a typical TLB access. Hence, L1
caches of both instruction and data are made virtually tagged
and virtually addressed to reduce the performance impact due
to TLB latency. The L1 cache tags are extended with a
protection bit, which is accessible only to Arc3D. This bit is set
whenever the cache line is filled with data from a protected
page. The access to protected cache-blocks is restricted only in
protected mode. In order to have efficient context switching
mechanism, we use a write-through L1 cache. Thus, at any
point in time, L2 and L1 are in synch.

Algorithm 6. TLBxp Access Function: tlbxp access

v page( input virtual page address

v block( input virtual block address

p addr( output physical address
k TLB index of hit and page exists in RAM

if TLB½k�:P is set then

p block ¼ FobfðDseq; FobfðSseq; v blockÞÞ
else

p block ¼ v block end if

p addr ¼ TLB½k�:p pageþ p block
TLB and L1 cache are accessed parallely. TLB is read in two

stages. The first stage reads the normal portion of TLB and the
second stage reads the extended and protected portion of
TLB. This way the second stage access can be direct mapped
and, hence, could be energy-efficient. If L1 access is a hit, then
TLB access is stopped at stage1. If L1 access is a miss, then TLB
access proceeds as shown in the function tlbxp_access. In
Arc3D L2 cache is physically tagged and physically addressed.
Hence, no special protection is needed for the L2 cache. On an
L2 cache access to an instruction in the middle of a cache-
block, the relative intrablock sequence information is leaked
to an observer adversary on the L1-L2 cache boundary. Given
that for a 64 B cache-block size, there are 16 instructions whose
sequencing information is open to exposure. One way to
lessen this vulnerability is to have L1 cache only issue
L2 cache-block addresses. The cache-block offset can be
retained by the L1 cache for later decoding. Hence, the
address traces visible at L1-L2 cache boundary will appear to
be L2 cache-block address aligned. This would increase the
latency but, as we discuss later, this increase will not be very
high. Once the data is received from the L2 cache or memory,
it is XORed with both OTPd and OTPs to get the actual
content in plaintext which is then stored in an L1 cache line.

5.2.3 Execution

Arc3D has a set of protected registers (REGp) to support
protected process execution. This register set is accessible
only in the protected mode. The protected process can use the
normal registers to communicate with the OS and other
unprotected applications. If two protected processes need to
communicate in a secure way, then they have to use elaborate
protocols to establish common obfuscation functions. Data
sharing can also occur through a shared secret embedded into
two applications by the software vendor in advance.

5.2.4 Interrupt Handling

Only instructions from a protected page can be executed in
protected mode. Hence, any call to system services, such as
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dynamic linked libraries, requires a state change. Any
interrupt causes Arc3D to go out of protected mode. Before
transitioning to normal mode, Arc3D updates PC field inSauth
with the current PC. Thus, a protected process context could
be suspended in the background while the interrupt handler
is running in the unprotected mode. When the interrupt
handler is done, it can execute ret_prot_process to return to the
protected process. Arc3D takes the PC from Sauth and restarts
from that point. This allows for efficient interrupt handling.
But, from the interrupt handler, the OS could start other
unprotected processes. This way, Arc3D does not have any
overhead in a context switch from protected to unprotected
processes. But, when the OS wants to load another protected
process, the current protected process’ context must be saved.

5.2.5 Saving and Restoring Protected Context

Arc3D exports save_pro_process API to save the current
protected process context. This causes Arc3D to write
KsfREGpg þHMAC and Sauth into the memory given by
the OS. The OS when restoring the protected process, should
provide pointers to these data structures through restore_
prot_process. Arc3D can be enabled to detect replay attacks by
including an association of time with the savedcontexts. A set
of OTP registers called state OTP registers are required within
Arc3D for this purpose. These registers are the same size as
Ks. The number of these registers depends on how many
protected processes need to be supported simultaneously.
The start_prot_process allocates a state OTP register STi. This
association indexSTi is also stored withinSauth. Each instance
of save_prot_process generates a state OTP value OTP ½STi�
which is stored inSTi. The saved context is encrypted with the
key given by the XOR ofKs andOTP ½STi�. Symmetrically, an
instantiation of restore_prot_process first garners STi and Ks

fromSauth. Then the keyOTP ½STi� �Ks is used to decrypt the
restored context. This mechanism is very similar to the one
used in all the earlier research, such as ABYSS and XOM.

5.2.6 Supporting Fork

In order to fork a protected process, the OS has to invoke
transfer_prot_process API. This causes a newSTi to be allocated
to the forked child process. It then makes a copy of process
context similar to save_prot_process handling. Thus, the parent
and the child processes could be differentiated by Arc3D. The
OS has to make a copy of SOTP for the child process.

5.2.7 Exiting a Protected Process

When a protected process finishes execution, the OS has to
invoke exit_prot_process API to relinquish the STi. This is the
only resource that limits the number of protected processes
allowed in an Arc3D system. Hence, Arc3D is susceptible to
denial-of-service (DOS) kind of attacks.

5.2.8 Protected Cache

Arc3D has a protected direct mapped L2 cache of page size,
i.e., 64KB. This protected cache is used to obfuscate the
second-order address sequences only for instructions, as
temporal order doesn’t have any meaning with respect to
data. Whenever there is an IL1 miss in protected mode, Arc3D
sends a request to L2prot. Since L2prot is on-chip, the access
latency will be small. We assume it to be 1 cycle. If there is a
miss in L2prot then L2 is accessed. L2prot is also invalidated
whenever a protected process is started or restored.

6 DISCUSSION

6.1 Assumptions

In this section, we state and justify the underlying
assumptions for Arc3D. The first and foremost of our
assumptions is that every Arc3D processor has a unique
identity (TPM’s EK like identity). Arc3D device manufac-
turer can use various methodologies to embed the identity.
Silicon Physical Random Functions (PUF) [20] have been
proposed for this purpose. IBM’s secure crypto-processor
[21] provides a mechanism based on packaging for storing
secrets within the processor environment. Xilinx [22] in its
CPLD devices uses metal layers and dual access mechan-
isms to obfuscate the stored secrets.

The next issue is the extent of damage due to the
exposure of the Arc3D identity secret. If an adversary is able
to gain access to the stored secret, then all the programs that
were distributed for that particular instance of Arc3D could
be decrypted. Once the program plaintext is obtained, it can
be executed in any Arc3D machine in unprotected mode.
Hence, the ability to protect the stored secrets within the
architecture is of paramount importance in Arc3D design.
However, the programs distributed to and encrypted for
other Arc3D platforms are not compromised by the
exposure of the secrets of a given platform.

6.2 Attack Scenarios

In this section, we argue that Arc3D achieves our initial
goals, namely, copy-protection, tamper-resistance, and IP-
protection. Several attacks causing information leak in
various dimensions could be combined to achieve the
adversary’s goal. These attacks could be classified into two
categories—attacks that target Arc3D to manipulate its
control or reveal its secrets. If the adversary is successful in
either getting the stored secret (Ek

�) or in changing the
control logic, the security assurances built upon Arc3D
could be breached. But, these type of attacks have to be
based on hardware, as there are no software control handles
into Arc3D. There are several possible hardware attacks,
like power profile analysis attacks and electromagnetic
signal attacks. The scope of this paper is not to provide
solutions to these attacks. Hence, we assume that Arc3D is
designed with resistance to these hardware attacks.

The second type of attacks are white-box attacks. Such an
attack tries to modify the interfaces of Arc3D to the external
world, to modify the control. The guarantees that are
provided by Arc3D to the software in protected mode of
execution are 3D obfuscation for protected pages based on
the unique identity per CPU. Protected mode of execution
guarantees that the control is not transferred to any
unauthorized code (which is undetected). Arc3D will fault
when an instruction from an unprotected page or from a
page that was protected with different Ks is fetched in
protected mode. This will prevent attacks of the buffer
overflow kind. 3D obfuscation provides us both IP-protec-
tion and tamper-resistance. IP-protection is achieved
because at every stage of its life, the binary image is made
to look different, hence reducing the correlation based
information leaks to the maximum extent possible.

Correlation-based attacks are the ones where an adver-
sary builds up information about the program behavior
through repeated program executions. Such techniques [12]
have been successfully used against commercial secure
microcontroller DS5002FP [11]. In Arc3D, such attacks are
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prevented, as the dynamic obfuscation functions are chosen
at random for every process run, which prevents incre-
mental information gain.

Tampering could be performed by many means. But, all
of them have to modify the image of the process. Since
every cache-block in every protected page potentially could
have a different OTP, the probability that the adversary
could insert a valid content is extremely small. Applications
can obfuscate new pages that are created at run-time by
designating them as protected. Applications can further
maintain some form of Message Digest for sensitive data,
because obfuscation only makes it harder to make any
educated guess, while random modification of data is still
possible. In the case of instructions, the probability that a
random guess would form a valid instruction at a valid
program point is extremely small.

Another form of tampering—splicing attack—uses valid
cipher texts from different locations. This attack is not likely
to succeed because every cache-block in every page has a
unique OTP and every page has a unique address obfusca-
tion function. This makes it hard for the adversary to find
two cache-blocks with the same OTP. Another common
attack is replay attack, where valid cipher text of a different
instance of the same application is presented (replayed) to
the CPU. As we discussed earlier, this attack is prevented
by XORing Ks with a randomly generated OTP which is
kept in the Arc3D state. This value is used as a key to
encrypt the protected process’ context. Thus, when restoring
a protected context, Arc3D makes sure that both Sauth and
saved context are from the same run.

When the adversary knows the internals of the under-
lying architecture, another form of attack is possible. This
form of attack denies resources that are essential for the
functioning of the underlying architecture. For example,
XOM maintains a session table and has to store a mutating
register value per session-id. This mutating register is used
to prevent any replay attacks. This kind of architecture has
an inherent limitation on the number of processes it can
support, i.e., the scalability issue. Thus, an attacker could
exhaust these resources and make the architecture non-
functional. This kind of attack is possible in Arc3D as well
on the state OTP register file. We could let the context-save
and context-restore be embedded in the storage root of trust
in a TPM like model. Such a model will allow Arc3D to
perform in a stateless fashion which can prevent the
resource exhaustion attacks.

7 PERFORMANCE ANALYSIS

Since Arc3D seamlessly fits into the existing memory
hierarchy as an extended TLB, the latency caused by Arc3D
should be minimal. We used Simplescalar [23] Alpha
simulator with memory hierarchy as shown in Fig. 2 to do
the performance simulation. We did two sets of simulations
with different latency parameters, Alpha 21264 and Intel
XSCALE 80200 as shown in Table 1.

Three latencies are added by Arc3D, namely, extended
TLB access, increased access time to L2 because of sending
only block address to L2, and latency to read the pages and
obfuscate them on every TLB miss. The first component gets
absorbed in L1 cache access latency for both the systems,
assuming that the extended TLB access increases the TLB
access latency by two cycles. The major component is the
reading time of page and writing it back to the memory.
Since obfuscation is just an XOR operation, we can assume
it takes one cycle. These facts, along with the assumption
that these pages are transferred in and out of Arc3D at the
peak memory bandwidth, lead to a latency increase of
12,000 cycles in the case of Alpha 2164 and 96,000 cycles in
the case of XSCALE. The simulation was run with Spec2000
[26] benchmarks for two billion instructions by fast-
forwarding the first 500 million instructions.

Table 2 shows that the performance impact on XSCALE
80200 memory hierarchy with higher number of TLB misses
is greater than the impact on Alpha 21264 memory
hierarchy. On Alpha 21264, the performance impact is less
than 1 percent for most of the benchmarks.

8 CONCLUSION

Software obfuscation is a key technology in IP-protection.
However, software only solutions (such as compiler transfor-
mations of control flow or insertion of redundant basic blocks
or data structure transformations) often do not have robust-
ness of crypto methods. Complete control flow obfuscation
methods such as Cloakware [27] have the limitation that they
cannot hide the correct control flow information from the
prying eyes of the OS/end user. An additional weakness in
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these schemes is that observation of repeated dynamic
execution often gives away the obfuscation secrets (such as
control flow ordering or data structure sequencing).

We propose a minimal architecture, Arc3D, to support
efficient obfuscation of both static binary file system image
and dynamic execution traces. This obfuscation covers three
aspects: address sequences, contents, and second-order
address sequences (patterns in address sequences exercised
by the first level of loops). We describe the obfuscation
algorithm and schema, its hardware needs, and their
performance impact. We also discuss the robustness
provided by the proposed obfuscation schema.

A reliable method of distributing obfuscation keys is
needed in our system. The same method can be used for
safe and authenticated software distribution to provide
copy-protection. A robust obfuscation also prevents tam-
pering by rejecting a tampered instruction at an adversary
desired program point with an extremely high probability.
Hence, obfuscation and derivative tamper-resistance pro-
vide IP-protection. Consequently, Arc3D offers complete
architecture support for copy-protection and IP-protection,
the two key ingredients of software DRM.
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