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Abstract

A secure, tamperproof execution environment is critical
for trustworthy network computing. Newly emerging hard-
ware, such as those developed as part of the TCPA and Pal-
ladium initiatives, enables operating systems to implement
such an environment through Merkle hash trees. We exam-
ine the selection of optimal parameters, namely blocksize
and tree depth, for Merkle hash trees based on the size of the
memory region to be protected and the number of memory
updates between updates of the hash tree. We analytically
derive an expression for the cost of updating the hash tree,
show that there is an optimal blocksize for the leaves of a
Merkle tree for a given filesize and update interval that min-
imizes the cost of update operations, and describe a general
method by which the parameters of such a tree can be de-
termined optimally.

1. Introduction

Trustworthy network computing fundamentally requires
the ability to reason about the state of a computation on
remote nodes. Such reasoning relies on two mechanisms.
First, a node needs to be able to represent the state of a local
computation such that other nodes in the network can make
an intelligent decision on whether or not to trust the results
of that computation. Previous work on attestation [8, 10, 1]
addresses precisely this issue; a certificate chain rooted in
secure hardware can attest that a given version of the op-
erating system executed a particular version of an applica-
tion. Using such a certificate chain, a remote game server,
for instance, may decide to permit (or reject) a client at-
tempting to connect to the game with a good (or hacked)
game client. Similar intelligent trust decisions on whether
a client will obey a desired protocol may be made in other
distributed computing settings, including peer-to-peer sys-

tems and ad hoc networks, using the same mechanism. In
essence, the certificate chain can establish that certain pred-
icates over the code, usually represented compactly through
code version numbers or cryptographic hashes, hold at a
certain point in time.

But attesting to the state of a client at a given point in
time is not sufficient to establish trust. A second mech-
anism, namely, an isolated, secure, tamperproof execu-
tion environment, is required to reason about the state of
the computation subsequent to the attestation. In the ex-
ample above, a game server should allow clients to con-
nect only if their binary is verified to not be hacked at
the time of connection (achieved through attestation), and
if the connected game client can execute in a tamper-
proof environment where the binary cannot be modified af-
ter connection (achieved through tamperproof execution).
This latter mechanism has been the subject of much re-
cent work [12, 11, 18, 6, 7], buoyed by the emergence of
hardware support for secure execution in general-purpose
computers [19] and industry support for secure execution
as in Microsoft’s Palladium [4]. All mechanisms for tam-
perproof execution proposed to date rely on costly crypto-
graphic hashes to detect modifications to memory; however,
none minimize the cost of hashing.

This paper focuses on the use of cryptographic hashes
to secure memory against unauthorized modifications, and
derives an expression for optimal hash parameters. A well
known method to ensure that the contents of a data struc-
ture stored in untrusted storage (memory, disk or tertiary
storage) have not been tampered with is to compute a hash
of that data upon creation and store the hash in a secure
location. The next time an element in the data structure is
used, the hash is recomputed and checked against the stored
hash; unauthorized modifications to the data structure will
be caught through a hash mismatch. However, this naı̈ve
use of hashing can become extremely expensive when used
on large data structures.
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Merkle hash trees have been proposed as a means to re-
duce the cost for hashing large data structures[14, 15]. They
are used to take a secure summary snapshot of a memory
region, which can then be used to detect tampering. A
memory region is divided into smaller blocks, the hashes
of which form the leaf hashes at the leaves of a complete
binary tree. The value of an inner node of the tree, an inner
hash, is obtained by concatenating and hashing the values
of its child nodes. After a set of updates to a memory re-
gion that constitute a transaction, a new secure summary
snapshot of the data structure is obtained by incrementally
recomputing the leaf hashes corresponding to the modified
blocks, as well as the inner hashes from each modified leaf
to the root of the tree. Once a new Merkle hash tree is com-
puted, the hashes can be stored in a secure location, such as
a secure coprocessor, and used to ascertain the integrity of
the data structure kept in ordinary memory. Overall, Merkle
hash trees constitute a very simple and effective way to take
a secure summary snapshot of a data structure.

The blocksize is the critical parameter of a Merkle hash
tree. A large blocksize reduces the depth of the tree at the
cost of increasing the leaf hash cost. A small blocksize
makes leaf hashes cheaper to compute, though it also in-
creases the depth of the tree, and correspondingly, the time
spent computing inner hashes.

This paper examines the optimal selection of blocksize
for Merkle hash trees. We derive an analytical model that
describes the cost of incremental updates to a Merkle hash
tree given the total size of a memory region to be protected
and the number of modified memory locations in each trans-
action, and we can numerically determine the blocksize that
minimizes the cost of performing updates to the tree. This,
in turn, enables an efficient mechanism for implementing
tamperproof execution using commodity memory and stor-
age devices.

This paper makes two contributions. First, it shows that
there is a minimum update cost that can be achieved by a
hash tree through careful selection of the blocksize at the
leaves of the tree. Second, it derives this optimal blocksize
given simple parameters, easily determined in practice. The
choice of optimal parameters for tamperproof memory in
turn leads to efficient systems for secure, trustworthy execu-
tion. Surprisingly, the optimal parameters in many common
settings differ from natural choices that designers may be
tempted to pick, such as the native cacheline or page size.

In the next section, we discuss related work in the ar-
eas of tamper-proof memory and Merkle trees. Section 3
describes our system model to help put the problem in con-
text. An analytical model of the problem results, and impli-
cations for implementing tamperproof execution hardware,
the cornerstone of trusted network computing, are presented
in Section 4, and Section 5 summarizes the contribution and
concludes.

2. Related Work

Merkle trees were originally presented as a method in
which two entities can agree on a shared secret using a pub-
lic key infrastructure [14, 15], but have since been used in
a variety of other applications including fast digital signa-
ture schemes for flows and multicasts [22] and verification
of signatures on read only file systems [5] Blum et al. [2]
use Merkle hash trees to provide general memory integrity,
in a manner similar to the system model used in this pa-
per; however, this work does not examine how to determine
the hash blocksize. There has also been some work focused
on the integrity of persistent storage in databases [13] and
DRM systems [16].

Recent work on trustworthy execution platforms [12, 11,
17, 6, 18, 4] has examined practical mechanisms for attes-
tation [10, 23, 20] and tamperproof execution. This work
spans a large space including the design of secure copro-
cessors and security enhancements to ordinary processors
to provide a trustworthy execution environment, the attes-
tation of the underlying system to the integrity of its appli-
cations, the structure of the underlying operating system to
provide secure attestation, and finally, on the trustworthi-
ness of applications.

The eXecute Only Memory (XOM) architecture [12]
provides a trusted environment for applications through ad-
ditional hardware in the processor that creates an isolated,
secure, tamperproof execution environment to applications.
The additional hardware encrypts memory and register val-
ues as they are transferred into and out of the processor.
This additional hardware enables tamperproof execution
guarantees to be provided to applications without having to
trust the underlying operating system [11]. XOM, however,
suffers from replay attacks in which data in a compartment
can be replaced by old data from that compartment. The
memory integrity scheme described in this paper can com-
plement the XOM architecture to efficiently provide tam-
perproof memory immunity from replays.

Terra [6] takes a different approach to trusted execution
by providing each application a virtual machine to execute
on, managed by a trusted virtual machine monitor. When
seeking to verify some amount of data, Terra divides the
data into blocks to avoid the high cost of hashing a large
object, computes hashes of each block, and then stores the
hash of these hashes into the VM descriptor, essentially cre-
ating a tree with two levels and a high branching factor. The
scheme we propose in this paper can be used to replace the
memory integrity scheme used in Terra with an efficient,
optimal approach.

AEGIS [18] can run with a security kernel on top of the
hardware, similar to Microsoft’s Palladium [4], or without
trusting the OS, similar to XOM [11]. The memory integrity
scheme used by AEGIS is a Merkle hash tree, integrated
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within the memory hierarchy [7]. AEGIS provides an effi-
cient hardware implementation of Merkle trees by embed-
ding the hash values in processor caches, but does not con-
sider the optimal parameters for the hash tree. Our work
can inform architects of secure processors on how to effi-
ciently determine hash block sizes, which interact with the
determination of cacheline sizes.

Other techniques have been introduced to provide mem-
ory integrity. A fractal-based approach [9] has been pro-
posed to minimize the traversal of a Merkle hash tree; this
work also takes the Merkle hash tree as a given and does
not examine the selection of blocksize for the hash tree. In-
cremental multiset hash functions [3] have been proposed
as a means to improve memory integrity verification perfor-
mance through quick updates to logs in trusted storage, to
be verified at a later time. This work focuses on sequences
of reads and writes, and outperforms a hash tree only in the
case of infrequent memory verification.

3. System Model

The motivation for our work comes from the desire to de-
velop a small trustworthy operating system that can provide
applications a safe environment in which to execute. We
have been building a new operating system, called Nexus,
that provides attestation and secure, tamperproof execution
based on the TCPA hardware (known as the TPM) [19].
While the design and implementation of this system is be-
yond the scope of this paper, we outline the system in order
to provide a context for the use of Merkle hash trees to pro-
vide tamperproof execution.

The Nexus is a secure native operating system that pro-
vides trustworthy attestation and tamperproof execution ser-
vices to its applications. It is arranged as a highly compo-
nentized system, where each component operates in a sepa-
rate, isolated execution environment. The small size of the
Nexus reduces the amount of code that operates with system
privileges, permits the base system to be audited, and most
importantly, enables the principle of least privilege to be
used effectively in practice. Whereas in a monolithic oper-
ating system, all applications are dependent on, and need to
trust, the implementation of all services in the kernel, Nexus
applications need to trust only those components that they
directly interact with. Figure 1 illustrates the structure of
the Nexus.

The Nexus provides interfaces by which secure certifi-
cate chains, rooted in the platform key embedded in the
TPM hardware, can be extended to applications. The plat-
form key is a key embedded by the manufacturer from
which other keys can be derived and using which certificate
chains can be extended from the boot loader all the way to
applications. This, in turn, enables the Nexus to sign cer-
tificates that say “The hardware manufacturer attests that it

Hardware

Nexus

Applications

DIR

App 1

App 2

Figure 1. The Nexus provides a protected
memory abstraction. Each application may
have differently sized protected memory re-
gions with different update characteristics,
requiring different configurations of Merkle
hash trees for efficient checking. The tree is
stored in data integrity registers (DIR) in the
trusted coprocessor that is part of the newly
emerging TCPA standard.

booted this particular version of the Nexus, which attests
that it executed this version of the game client.” These cer-
tificates enable remote nodes to make informed trust deci-
sions.

As discussed before, extending trust based on a certifi-
cate requires that the system be capable of retaining predi-
cates established at the time of certificate generation. The
Nexus does this by creating a tamperproof execution envi-
ronment, where the contents of memory can only be modi-
fied by the applications that have been authorized to modify
them. The Nexus protects memory regions against tamper-
ing by computing a Merkle hash tree over each region and
storing parts of the hash tree in the secure TPM hardware.
The Nexus provides a very general interface by which ap-
plications direct the kernel to create a protected memory
region of a given size, using a given blocksize. A toolkit,
located in user space, is responsible for determining the op-
timal blocksize for the Merkle hash tree - thus, the interface
is general-purpose, and the complexity of blocksize selec-
tion is left out of the kernel. The technique, shown below,
is used by the toolkit to determine the optimal blocksize for
the Merkle hash tree. We note that many of the other tam-
perproof execution schemes cited in Section 2 could use the
same technique to determine the optimal blocksize in their
use of Merkle hash trees.
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Figure 2. A Merkle tree constructed on top of
f bytes of memory using a hash function h.

4. Analytical Model and Results

In this section, we derive an expression for the cost of
maintaining a Merkle hash tree in the presence of uniformly
distributed updates, and describe a process by which the
optimal blocksize of the tree can be determined. The full
derivation can be found in an accompanying technical re-
port [21].

Without loss of generality, consider an application wish-
ing to create and use a tamperproof memory region. We will
call the size of this memory the filesize in bytes, denoted by
f . We wish to divide the memory region into blocks and
build a Merkle hash tree over them in order to achieve an
efficient hashing based memory integrity implementation,
as shown in Figure 2.

Our goal is to determine the optimal blocksize, b (in
bytes), for the leaves of the tree. The Merkle tree con-
structed on top of the memory region is a complete binary
tree, which yields the following expression, where d is the
depth of the tree, that relates the blocksize to the size of the
memory region and the depth of the tree:

f = b 2d

We assume, without loss of generality, that the memory
region can be modified n times between updates to the hash
tree that protects the region. n can be conservatively set to
one, which will yield a data structure over which the hash
tree is recomputed after every modification. In some set-
tings, where the protected data structure in the tamperproof
region is being modified as part of a transaction, there may
be more than one modification between subsequent recom-

putations of the hash tree. The use of the n parameter cap-
tures such transactions, and n > 1 enables performance to
be increased where timely updates to the secure summary
are not necessary.

There are two components contributing to the cost of
committing an update to a memory region. First, every leaf
responsible for the block on which a modification is made
must recompute its hash. Then, every interior node on the
path from the affected leaf to the root of the tree must re-
compute its hash value.

4.1. Cost of Hashing: Hl(b) and Hi

Each of the 2d leaf nodes in the tree is thus responsible
for computing the hash of a block of size b bytes. We model
the cost of this hashing operation, referred to as the cost of
a leaf hash in µseconds, by:

Hl(b) = αb + β

Our motivation for choosing a linear model for the cost
of hashing a data block of size b is based on experimen-
tal measurements of the SHA1 hash function performed on
an Intel R© Pentium R© 4 CPU 1700MHz machine, which
yielded parameters α = 0.0122348 µsec/byte and β = 1
µsec.

In addition, each of the 2d − 1 interior nodes are respon-
sible for hashing the concatenation of the values of its two
child nodes. Due to the characteristics of Merkle trees, each
of the child nodes contain s bytes, the size of the result of a
hash operation. In the case of SHA1, s = 20 bytes. Thus
the cost (in µsecs) of an inner hash operation is:

Hi = 2αs + β

4.2. Leaf Hash Updates: Ul(b)

In order to determine the number of leaf hashes that must
be recomputed after n uniformly distributed modifications
to a memory region consisting of 2d blocks, we can first
consider the probability of one particular block containing
a modification. The probability that the first modification
is in a different block is 2d−1

2d . We can then calculate the
probability that all n modifications were in our one partic-
ular block and multiply it by the 2d blocks each having an
equal probability of being touched, leaving us with the ex-
pected number of leaf hashes that need to be recomputed
after n modifications, or:

Ul(b) = 2d

(
1 −

(
2d − 1

2d

)n)

Recall that f = b 2d, allowing each d appearing in the
right side of the equation to be written in terms of b as
log2 (f

b ). This substitution has been omitted for clarity.
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4.3. Inner Hash Updates: Ui(b)

The expected number of inner hashes can be computed
in a similar fashion to the leaf hashes. First we consider the
inner nodes comprised of the immediate parents of the leaf
nodes. We can think of each inner node on this level respon-
sible for a “block” twice the size of the original blocks, one
for each of the memory regions covered by the two child
leaf nodes. Then the familiar leaf hash formula will apply
and we can see that the number of inner hashes on the low-
est level of the tree is given by substituting d−1 for d in that
formula. A similar argument applies all the way to the root
of the tree, so we can write the total number of expected
inner hashes as:

Ui(b) =
d−1∑
i=0

2i

(
1 −

(
2i − 1

2i

)n)

The equation can be rewritten as a log term plus a con-
stant plus some other fractions raised to the power d. In
order to make our formula simple, and yet still get an ac-
curate approximation for the number of inner hashes in the
tree, we make the observation that the region we are con-
cerned with is one in which d is relatively large. Thus these
additional terms become largely unimportant, and we can
write the formula for the number of inner hashes as:

Ui(b) ≈ nd −
n∑

i=2

(−1)i

(
n

i

) (
1

1 − 1
2i−1

)

Notice that this can be rewritten in terms of b by substi-
tuting log2 (f

b ) for d.
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4.4. Minimizing Cost

The total cost of updates to a Merkle hash tree after n
modifications can be computed by combining the formulas
for the expected number of leaf hashes and updates to inner
nodes. This yields the following:

C(b) = Ui(b)Hi + Ul(b)Hl(b)

Solving the derivative of this function with respect to b
set equal to zero can yield the critical points, but the expres-
sion does not lend itself readily to an analytical solution.
The roots can be determined, however, using a numerical
method. We use a well known numerical method, Newton’s
method, to find the roots of this equation.

4.5. Results and Implications

The optimal blocksize is dependent on the size of the
memory region to be protected (f ) and the number of up-
dates (n) to the protected region before the hash tree is up-
dated. Figure 4 illustrates that the optimal blocksize has an
asymptote at a constant fraction of the filesize f after which
point the optimal blocksize is equal to f , the total filesize.
Intuitively, this is the point at which enough blocks have
been updated that the overhead of the inner hashes is not
worthwhile, and it is faster to collapse the Merkle hash tree
down to a single leaf hash over the whole region.

A natural tendency when constructing a Merkle tree is to
use architectural constants, such as the native page size or
the processor cache line size, for the block size. Figure 4
shows that such quantities often lead to inefficient choices.
On our platform, the optimal blocksize is much less than
the typical page size for large files, while it is much greater
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than the typical cache line size for small files. Using the
expressions derived above, it is possible to determine the
optimum precisely and pick the block size that minimizes
the cost of updates to the Merkle hash tree.

5. Summary

We have considered the problem of implementing a tam-
perproof memory region abstraction through the use of one-
way hash functions. We examine the use of Merkle hash
trees, whose simplicity makes them ideally suited for an ef-
ficient implementation. Yet the choice of natural parameters
for hash trees, such as the native cacheline size or the native
page size, often lead to inefficiencies and excessive costs
when recomputing the Merkle hash tree.

This paper analytically derives an expression for the cost
of updating the tree, shows that there is an optimal size
given a particular combination of filesize and number of
memory locations affected by each transaction, and devel-
ops a numerical technique for finding the blocksize that op-
timizes the cost of maintaining the tree. This work is di-
rectly applicable to the design of operating system mecha-
nisms, as well as hardware techniques, for providing tam-
perproof memory. We hope that an analysis of the optimal
parameter selection for increasingly ubiquitous Merkle hash
trees will enable the newly available trusted hardware to be
used to its full potential.
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