

TCG

TPM Main
Part 1 Design Principles

Specification Version 1.2
Revision 94
29 March 2006

Contact: tpmwg@trustedcomputinggroup.org

TCG Published
Copyright © TCG 2003 - 2006

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

ii Revision 94 29 March 2006
 TCG Published

Copyright © 2003-2006 Trusted Computing Group, Incorporated.

Disclaimer

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR
ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION OR SAMPLE. Without limitation, TCG disclaims all liability,
including liability for infringement of any proprietary rights, relating to use of information in
this specification and to the implementation of this specification, and TCG disclaims all
liability for cost of procurement of substitute goods or services, lost profits, loss of use, loss
of data or any incidental, consequential, direct, indirect, or special damages, whether under
contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this
specification or any information herein.

No license, express or implied, by estoppel or otherwise, to any TCG or TCG member
intellectual property rights is granted herein.

Except that a license is hereby granted by TCG to copy and reproduce this specification for
internal use only.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information
on specification licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 iii
 TCG Published

Acknowledgement

TCG wishes to thank all those who contributed to this specification. This version builds on
the work published in version 1.1 and those who helped on that version have helped on this
version.

A special thank you goes to the members of the TPM workgroup who had early access to
this version and made invaluable contributions, corrections and support.

David Grawrock

TPM Workgroup chair

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

iv Revision 94 29 March 2006
 TCG Published

Change History

Version Date Description

Rev 50 Jun 2003 Started 30 Jun 2003 by David Grawrock
First cut at the design principles

Rev 52 Jul 2003 Started 15 Jul 2003 by David Grawrock

Moved

Rev 58 Aug 2003 Started 27 Aug 2003 by David Grawrock
All emails through 28 August 2003
New delegation from Graeme merged

Rev 62 Oct 2003 Approved by WG, TC and Board as public release of 1.2

Rev 63 Oct 2003 Started 2 Oct 2003 by David Grawrock
Kerry email 7 Oct “Various items in rev62”
kerry email 10 Oct “Other issues in rev 62”

Changes to audit generation

Rev 64 Oct 2003 Started 12 Oct 2003 by David Grawrock

Removed PCRWRITE usage in the NV write commands
Added locality to transport_out log
Disable readpubek now set in takeownership. DisableReadpubek now deprecated, as the functionality is moot.
Oshrats email regarding DSAP/OSAP sessions and the invalidation of them on delegation changes

Changes for CMK commands.
Oshrats email with minor 63 comments

Rev 65 Nov 2003 Action in NV_DefineSpace to ignore the Booleans in the input structure (Kerry email of 10/30
Transport changes from markus 11/6 email
Set rules for encryption of parameters for OIAP,OSAP and DSAP
Rewrote section on debug PCR to specify that the platform spec must indicate which register is the debug PCR

Orlando FtF decisions
CMK changes from Graeme

Rev 66 Nov 2003 Comment that OSAP tied to owner delegation needs to be treated internally in the TPM as a DSAP session
Minor edits from Monty
Added new GetCapability as requested by PC Specific WG

Added new DP section that shows mandatory and optional
Oshrat email of 11/27
Change PCR attributes to use loc ality selection instead of an array of BOOL’s
Removed transport sessions as something to invalidate when a resource type is flushed.

Oshrat email of 12/3
added checks for NV_Locked in the NV commands
Additional emails from the WG for minor editing fixes

Rev 67 Dec 2003 Made locality_modifier always a 1 size
Changed NV index values to add the reserved bit. Also noticed that the previous NV index values were 10 bytes not 8. Edited
them to correct size.

Audit changes to ensure audit listed as optional and the previous commands properly deleted
Added new OSAP authorization encryption. Changes made with new entity types, new section in DP (bottom of doc) and all
command rewritten to check for the new encryption

Rev 68 Jan 2004 Added new section to identify all changes made for FIPS. Made some FIPS changes on creating and loading of keys
Added change that OSAP encryption IV creation always uses both odd and even nonces

Added SEALX ordinal and changes to TPM_STORED_DATA12 and seal/unseal to support this

Rev 69 Feb 2004 Fixup on stored_data12.

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 v
 TCG Published

Removed magic4 from the GPIO
Added in section 34 of DP further discussion of versioning and getcap
DP todo section cleaned up
Changed store_privkey in migrate_asymkey

Moved text for getcapabilities – hopefully it is easier to read and follow through on now.

Rev 70 Mar 2004 Rewrite structure doc on PCR selection usage.

New getcap to answer questions regarding TPM support for pcr selection size

Rev 71 Mar 2004 Change terms from authorization data to AuthData.

Rev 72 Mar 2004 Zimmermann’s changes for DAA

Added TPM_Quote2, this includes new structure and ordinal
Updated key usage table to include the 1.2 commands
Added security properties section that links the main spec to the conformance WG guidelines (in section 1)

Rev 73 Apr 2004 Changed CMK_MigrateKey to use TPM_KEY12 and removed two input parameters
Allowed TPM_Getcapability and TPM_GetTestResult to execute prior to TPM_Startup when in failure mode

Rev 74 May 2004 Minor editing to reflect comments on web site.
Locked spec and submitted for IP review

Rev 76 Aug 2004 All comments from the WG

Included new SetValue command and all of the indexes to make that work

Rev 77 Aug 2004 All comments from the WG

Rev 78 Oct 2004 Comments from WG. Added new getcaps to report and query current TPM version

Rev 82 Jan 2005 All changes from emails and minutes (I think).

Rev 84 Feb 2005 Final changes for 1.2 level 2

Rev 88 Aug 2005 Eratta level 2 release candidate

Rev 91 Sept. 2005 Update to Figure 9 (b) in section 9.2 by Tasneem Brutch

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

vi Revision 94 29 March 2006
 TCG Published

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 vii
 TCG Published

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

viii Revision 94 29 March 2006
 TCG Published

Table of Contents
1. Scope and Audience...1

1.1 Key words ...1
1.2 Statement Type ...1

2. Description...2
2.1 TODO (notes to keep the editor on track) ..2
2.2 Questions ..2

2.2.1 Delegation Questions ..6
2.2.2 NV Questions..10

3. Protection ..12
3.1 Introduction ...12
3.2 Threat ...13
3.3 Protection of functions ..13
3.4 Protection of information ..13
3.5 Side effects ...14
3.6 Exceptions and clarifications...14

4. TPM Architecture..16
4.1 Interoperability...16
4.2 Components..16

4.2.1 Input and Output ...17
4.2.2 Cryptographic Co-Processor ..17

4.2.2.1 RSA Engine...18
4.2.2.2 Signature Operations ..18
4.2.2.3 Symmetric Encryption Engine ...18
4.2.2.4 Using Keys ..19

4.2.3 Key Generation...19
4.2.3.1 Asymmetric – RSA ...20
4.2.3.2 Nonce Creation..20

4.2.4 HMAC Engine...20
4.2.5 Random Number Generator ...21

4.2.5.1 Entropy Source and Collector..22
4.2.5.2 State Register..22
4.2.5.3 Mixing Function ..23
4.2.5.4 RNG Reset ..23

4.2.6 SHA-1 Engine ...23
4.2.7 Power Detection..24

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 ix
 TCG Published

4.2.8 Opt-In ...24
4.2.9 Execution Engine ..25
4.2.10 Non-Volatile Memory ...26

4.3 Data Integrity Register (DIR)...26
4.4 Platform Configuration Register (PCR)..26

5. Endorsement Key Creation ...29
5.1 Controlling Access to PRIVEK ..29
5.2 Controlling Access to PUBEK...30

6. Attestation Identity Keys..31
7. TPM Ownership ...32

7.1 Platform Ownership and Root of Trust for Storage ...32
8. Authentication and Authorization Data ...33

8.1 Dictionary Attack Considerations ..34
9. TPM Operation ...36

9.1 TPM Initialization & Operation State Flow ..37
9.1.1 Initialization...37

9.2 Self-Test Modes ..39
9.2.1 Operational Self-Test...41

9.3 Startup ..45
9.4 Operational Mode ..45

9.4.1 Enabling a TPM ..47
9.4.2 Activating a TPM ...48
9.4.3 Taking TPM Ownership ...49

9.4.3.1 Enabling Ownership ...50
9.4.4 Transitioning Between Operational States...51

9.5 Clearing the TPM...51
10. Physical Presence..53
11. Root of Trust for Reporting (RTR)..55

11.1 Platform Identity...55
11.2 RTR to Platform Binding...56
11.3 Platform Identity and Privacy Considerations ...56
11.4 Attestation Identity Keys...56

11.4.1 AIK Creation ...57
11.4.2 AIK Storage ..58

12. Root of Trust for Storage (RTS)...59
12.1 Loading and Unloading Blobs ...59

13. Transport Sessions and Authorization Protocols ...60

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

x Revision 94 29 March 2006
 TCG Published

13.1 Authorization Session Setup...62
13.2 Parameter Declarations for OIAP and OSAP Examples ..63

13.2.1 Object-Independent Authorization Protocol (OIAP) ..65
13.3 Object-Specific Authorization Protocol (OSAP)..67
13.4 Authorization Session Handles ...71
13.5 Authorization-Data Insertion Protocol (ADIP)...72
13.6 AuthData Change Protocol (ADCP)...75
13.7 Asymmetric Authorization Change Protocol (AACP)...76

14. FIPS 140 Physical Protection ..77
14.1 TPM Profile for FIPS Certification..77

15. Maintenance ..78
15.1 Field Upgrade..79

16. Proof of Locality ...81
17. Monotonic Counter ...82
18. Transport Protection ...85

18.1 Transport encryption and authorization..87
18.1.1 MGF1 parameters ...89
18.1.2 HMAC calculation..89
18.1.3 Transport log creation..90
18.1.4 Additional Encryption Mechanisms ...90

18.2 Transport Error Handling..90
18.3 Exclusive Transport Sessions ...91
18.4 Transport Audit Handling..92

18.4.1 Auditing of wrapped commands ...92
19. Audit Commands ..94

19.1 Audit Monotonic Counter..96
20. Design Section on Time Stamping...97

20.1 Tick Components...97
20.2 Basic Tick Stamp...98
20.3 Associating a TCV with UTC...98
20.4 Additional Comments and Questions .. 100

21. Context Management ... 103
22. Eviction.. 105
23. Session pool .. 106
24. Initialization Operations ... 107
25. HMAC digest rules.. 109
26. Generic authorization session termination rules .. 110

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 xi
 TCG Published

27. PCR Grand Unification Theory .. 111
27.1 Validate Key for use... 114

28. Non Volatile Storage ... 116
28.1 NV storage design principles .. 117

28.1.1 NV Storage use models ... 117
28.2 Use of NV storage during manufacturing ... 119

29. Delegation Model ... 120
29.1 Table Requirements... 120
29.2 How this works .. 121
29.3 Family Table.. 123
29.4 Delegate Table .. 124
29.5 Delegation Administration Control ... 125

29.5.1 Control in Phase 1... 126
29.5.2 Control in Phase 2... 127
29.5.3 Control in Phase 3... 127

29.6 Family Verification ... 127
29.7 Use of commands for different states of TPM .. 129
29.8 Delegation Authorization Values ... 129

29.8.1 Using the authorization value ... 130
29.9 DSAP description .. 130

30. Physical Presence.. 134
30.1 Use of Physical Presence... 134

31. TPM Internal Asymmetric Encryption ... 136
31.1.1 TPM_ES_RSAESOAEP_SHA1_MGF1... 136
31.1.2 TPM_ES_RSAESPKCSV15... 137
31.1.3 TPM_ES_SYM_CNT... 137
31.1.4 TPM_ES_SYM_OFB ... 137

31.2 TPM Internal Digital Signatures .. 138
31.2.1 TPM_SS_RSASSAPKCS1v15_SHA1... 138
31.2.2 TPM_SS_RSASSAPKCS1v15_DER.. 138
31.2.3 TPM_SS_RSASSAPKCS1v15_INFO ... 138
31.2.4 Use of Signature Schemes .. 138

32. Key Usage Table .. 140
33. Direct Anonymous Attestation ... 142

33.1 TPM_DAA_JOIN ... 142
33.2 TPM_DAA_Sign .. 144
33.3 DAA Command summary ... 144

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

xii Revision 94 29 March 2006
 TCG Published

33.3.1 TPM setup .. 145
33.3.2 JOIN... 145
33.3.3 SIGN.. 149

34. General Purpose IO.. 152
35. Redirection... 153
36. Structure Versioning ... 154
37. Certified Migration Key Type ... 156

37.1 Certified Migration Requirements.. 156
37.2 Key Creation ... 157
37.3 Migrate CMK to a MA... 157
37.4 Migrate CMK to a MSA... 158

38. Revoke Trust.. 159
39. Mandatory and Optional Functional Blocks... 161
40. Optional Authentication Encryption .. 164
41. 1.1a and 1.2 Differences ... 166

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 1
 TCG Published

1. Scope and Audience 1
The TPCA main specification is an industry specification that enables trust in computing 2
platforms in general. The main specification is broken into parts to make the role of each 3
document clear. A version of the specification (like 1.2) requires all parts to be a complete 4
specification. 5

A TPM designer MUST be aware that for a complete definition of all requirements necessary 6
to build a TPM, the designer MUST use the appropriate platform specific specification for all 7
TPM requirements. 8

1.1 Key words 9

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” 10
“SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in the chapters 2-10 11
normative statements are to be interpreted as described in [RFC-2119]. 12

1.2 Statement Type 13

Please note a very important distinction between different sections of text throughout this 14
document. You will encounter two distinctive kinds of text: informative comment and 15
normative statements. Because most of the text in this specification will be of the kind 16
normative statements, the authors have informally defined it as the default and, as such, 17
have specifically called out text of the kind informative comment They have done this by 18
flagging the beginning and end of each informative comment and highlighting its text in 19
gray. This means that unless text is specifically marked as of the kind informative 20
comment, you can consider it of the kind normative statements. 21

For example: 22

Start of informative comment 23

This is the first paragraph of 1–n paragraphs containing text of the kind informative 24
comment ... 25

This is the second paragraph of text of the kind informative comment ... 26

This is the nth paragraph of text of the kind informative comment ... 27

To understand the TCG specification the user must read the specification. (This use of 28
MUST does not require any action). 29

End of informative comment 30

This is the first paragraph of one or more paragraphs (and/or sections) containing the text 31
of the kind normative statements ... 32

To understand the TCG specification the user MUST read the specification. (This use of 33
MUST indicates a keyword usage and requires an action). 34

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

2 Revision 94 29 March 2006
 TCG Published

2. Description 35
The design principles give the basic concepts of the TPM and generic information relative to 36
TPM functionality. 37

A TPM designer MUST review and implement the information in the TPM Main specification 38
(parts 1-4) and review the platform specific document for the intended platform. The 39
platform specific document will contain normative statements that affect the design and 40
implementation of a TPM. 41

A TPM designer MUST review and implement the requirements, including testing and 42
evaluation, as set by the TCG Conformance Workgroup. The TPM MUST comply with the 43
requirements and pass any evaluations set by the Conformance Workgroup. The TPM MAY 44
undergo more stringent testing and evaluation. 45

The question section keeps track of questions throughout the development of the 46
specification and hence can have information that is no longer current or moot. The 47
purpose of the questions is to track the history of various decisions in the specification to 48
allow those following behind to gain some insight into the committees thinking on various 49
points. 50

2.1 TODO (notes to keep the editor on track) 51

 52

2.2 Questions 53

How to version the flag structures? 54

I suggest that we simply put the version into the structure and pass it back in the 55
structure. Add the version information into the persistent and volatile flag structures. 56

When using the encryption transport failures are easy to see. Also the watcher on the line 57
can tell where the error occurred. If the failure occurs at the transport level the response 58
is an error (small packet) and it is in the clear. If the error occurs during execution of the 59
command then the response is a small encrypted packet. Should we expand the packet 60
size or simply let this go through? 61

Not an issue. 62

Do we restrict the loading of a counter to once per TPM_Startup(Clear)? 63

Yes once a counter is set it must remain the same until the next successful startup. 64

Does the time stamp work as a change on the tag or as a wrapped command like the 65
transport protection. 66

While possibly easier at the HW level the tag mechanism seems to be harder at the SW 67
level as to what commands are sent to the TPM. The issue of how the SW presents 68
the TS session to the SW writer is not an issue. This is due to the fact that however 69
the session is presented to the SW writer the writer must take into account which 70
commands are being time stamped and how to manage the log etc. So accepting a 71
mechanism that is easy for the HW developer and having the SW manage the 72
interface is a sufficient direction. 73

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 3
 TCG Published

When returning time information do we return the entire time structure or just the time 74
and have the caller obtain all the information with a GetCap call? 75

All time returns will use the entire structure with all the details. 76

Do we want to return a real clock value or a value with some additional bits (like a 77
monotonic value with a time value)? 78

Add a count value into the time structure. 79

Do we need NTP or is SNTP sufficient? 80

The TPM will not run the time protocol itself. What the TPM will do is accept a value 81
from outside software and a hash of the protocols that produced the value. This 82
allows the platform to use whatever they want to set the value from secure time to 83
the local PC clock. 84

Can an owner destroy a TPM by issuing repeated CreateCounter commands? 85

A TPM may place a throttle on this command to avoid burn issues. It MUST not be 86
possible to burn out the TPM counter under normal operating conditions. The 87
CreateCounter command is limited to only once per successful 88
TPM_Startup(ST_CLEAR). 89

This answer is now somewhat moot as the command to createcounter is now owner 90
authorized. This allows the owner to decide when to authorize the counter creation. 91
As there are only 4 counters available it is not an issue with having the owner 92
continue to authorize counters. 93

What happens to a transport session (log etc.) on an S3? 94

Should these be the same as the authorization sessions? The saving of a transport 95
session across S3 is not a security concern but is a memory concern. The TPM MUST 96
clear the transport session on TPM_Startup(CLEAR) and MAY clear the session on 97
TPM_Startup(any). 98

While you can’t increment or create a new counter after startup can you read a counter 99
other than the active one? 100

You may read other counters 101

When we audit a command that is not authorized should we hash the parameters and 102
provide that as part of the audit event, currently they are set to null. 103

We should hash parameters of non-authorized commands 104

There is a fundamental problem with the encryption of commands in the transport and 105
auditing. If we cover a command we have no way to audit, if we show the command then 106
it isn’t protected. Can we expose the command (ordinal) and not the parameters? 107

If the owner has requested that a function be audited then the execute transport return 108
will include sufficient information to produce the audit entry. 109

How to set the time in the audit structure and tell the log what is going on. 110

The time in the audit structure is set to nulls except when audit occurs as part of a 111
transport session. In that case the audit command is set from the time value in the 112
TPM. 113

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

4 Revision 94 29 March 2006
 TCG Published

Is there a limit to the number of locality modifiers? 114

Yes, the TPM need only support a maximum of 4 modifiers. The definition of the 115
modifiers is always a platform specific issue. 116

How do we evict various resources? 117

There are numerous eviction routines in the current spec. We will deprecate the various 118
types and move to TPM_Flushxxx for all resource types. 119

Can you flush a saved context? 120

Yes, you must be able to invalidate saved contexts. This would be done by making sure 121
that the TPM could not load any saved context. 122

What is the value of maintaining the clock value when the time is not incrementing? Can 123
this be due to the fact that the time is now known to be at least after the indicated time? 124

Moot point now as we don’t keep the clock value at 125

Should we change the current structures and add the tag? 126

TODO 127

Can we have a bank of bits (change bi t locality) for each of the 4 levels of locality? 128

Now 129

How do we find out what sessions are active? Do we care? 130

I would say yes we care and we should use the same mechanism that we do for the keys. 131
A GetCap that will return the handles. 132

Can we limit the transport sessions to only one? 133

No, we should have as a minimum 2 sessions. One gets into deadlocks and such so the 134
minimum should be 2. 135

Does the TPM need to keep the audit structure or can it simply keep a hash? 136

The TPM just keeps the audit digest and no other information. 137

What happens to an OSAP session if the key associated with it is taken off chip with a 138
"SaveContext"? What happens if the key saveContext occurs after an OSAP auth context 139
that is already off chip? How do you later connect the key to the auth session (without 140
having to store all sorts of things on chip)? Are we really honestly convinced that we've 141
thought of all the possible ramifications of saving and restoring auth sessions? And is it 142
really true that all the things we say about a saved auth session do/should apply to a 143
saved key (which is to say is there really a single loadContext command and a single 144
context structure)? 145

Saved context a reliable indication of the linkage between the OSAP and the key. When 146
saving save auth then key, on load key then auth. Auth session checks for the key 147
and if not found fails. 148

Why is addNonce an output of 16.5 loadContext? 149

If it's wrong, it's a little late to find out now - why not have it as an input and have the 150
TPM return an error if the encrypted addNonce doesn't match the input? The thought 151
was that the nonce area might not be a nonce but was information that the caller 152

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 5
 TCG Published

could put in. If they use it as a nonce fine, but they could also use it as a label or 153
sequence number or … any value the caller wanted 154

Is there a memory endurance problem with contextNonceSession? 155

contextNonceSession does not have to be saved across S3 states so there is no 156
endurance problem. 157

Is there a memory endurance problem with contextNonceKey? 158

contextNonceKey only changes on TPM_Startup(ST_Clear) so it’s endurance is the same 159
as a PCR. 160

The debate continues about restoring a resource’s handle during TPM_LoadContext. 161

Debate ends by having the load context be informed of what the loaders opinion is about 162
the handle. The requestor can indicate that it wishes the same handle and if the TPM 163
can perform that task it does, if it cannot then the load fails. 164

Interesting attack is now available with the new audit close flag on get audit signed. Anyone 165
with access to a signing key can close the audit log. The only requirement on the 166
command is that the key be authorized. While there is no loss of information (as the 167
attacker can always destroy the external log) does the closing of a log make things look 168
different. This does enable a burn out attack. The ability to closeAudit enables a new 169
DenialOfService attack. 170

Resolution: The TPM Owner owns the audit process, so the TPM Owner should have 171
exclusive control over closeAudit. Hence the signing key used to closeAudit must be 172
an AIK. Note that the owner can choose to give this AIK’s AuthData value to the OS, 173
so that the OS can automatically close an audit session during platform power down. 174
But such operations are outside this specification. 175

Should we keep the E function in the tick counter? 176

From Graeme, I would prefer to see these calculations deleted. The calculation starts 177
with one assertion and derives a contradictory assertion. Generally, there seems little 178
value in trying to derive an equality relationship when nothing is known about the 179
path to and from the Time Authority. 180

What is the difference between DIR_Quote and DirReadSigned? 181

Appears to be none so DIR_Quote deleted 182

The tickRate parameter associates tick with seconds and has no way to indicate that the 183
rate is greater than one second. Is this OK? 184

Do we need to allow for tick rates that are slower than once per second. We report in 185
nanoseconds. 186

The TPM MUST support a minimum of 2 authorization sessions. Where do we put this 187
requirement in the spec? 188

Can we find a use for the DIR and BIT areas for locality 0? 189

They have no protections so in many ways they are just extra. We leave this as it is as 190
locality 0 may mean something else on a platform other than a PC. 191

How do we send back the transport log information on each execute transport? 192

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

6 Revision 94 29 March 2006
 TCG Published

It is 64 byes in length and would make things very difficult to include on every 193
command. Change wrappedaudit to be input params, add output parms and the 194
caller has all information necessary to create the structure to add into the digest. 195

The transport log structure is a single structure used both for input and output with the 196
only difference being the setting of ticks to 0 on input and a real value on output, do we 197
need two structures. 198

I believe that a single structure is fine 199

For TPM_Startup(ST_Clear) I added that all keys would be flushed. Is this right? 200

Yes 201

Why have 2 auths for release transport signed? It is an easy attack to simply kill the 202
session. 203

The reason is that an attacker can close the session and get a signature of the session 204
log. We are currently not sure of the level of this attack but by having the creator of 205
the session authorize the signing of the log it is completely avoided. 206

19.3 Action 3 (startup/state) doesn't reference the situation where there is no saved state. 207
My presumption is that you can still run startup/clear, but maybe you have to do a 208
hardware reset? 209

DWG I don't think so. This could be an attack and a way to get the wrong PCR values 210
into the system. The BIOS is taking one path and may not set PCR values. Hence the 211
response is to go into failed selftest mode. 212

What happens to a transport session if a command clears the TPM like revokeTrust 213

This is fine. The transport session is not complete but the session protected the 214
information till the command that changed the TPM. It is impossible to get a log from 215
the session or to sign the session but that is what the caller wanted. 216

2.2.1 Delegation Questions 217

Is loading the table by untrusted process ok? Does this cause a problem when the new table 218
is loaded and permissions change? 219

Yes, the fill table can be done by any process. A TPM Owner wishing to validate the table 220
can perform the operations necessary to gain assurance of the table entries. 221

Are the permissions for a table row sensitive? 222

Currently we believe not but there are some attack models that knowing the permissions 223
makes the start of the attack easier. It does not make the success of the attack any 224
easier. Example if I know that a single process is the only process in the table that 225
has the CreateAIK capability then the attacker only attempts to break into the single 226
process and not all others. 227

What software is in use to modify the table? 228

The table can be updated by any software or process given the capability to manage the 229
table. Three likely sources of the software would be a BIOS process, an applet of a 230
trusted process and a standalone self-booting (from CD-ROM) management 231
application. 232

Who holds the TPM Owner password? 233

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 7
 TCG Published

There is no change to the holding of the TPM Owner token. The permissions do allow the 234
creation of an application that sets the TPM Owner token to a random value and 235
then seals the value to the application. 236

How are these changes created such that there is minimal change to the current TPM? 237

This works by using the current authorization process and only making changes in the 238
authorization and not for each and every command. 239

What about S3 and other events? 240

Permissions, once granted, are non-volatile. 241

The permission bit to changeOwnerAuth (bit 11) gives rise to the functionality that the SW 242
that has this bit can control the TPM completely. This includes removing control from 243
the TPM Owner as the TPM Owner value will now be a random value only known to SW. 244
There are use models where this is good and bad, do we want this functionality? 245

Pros and cons of physical enable table when TPM Owner is present – Pro physically present 246
user can make SW play fair. Con – physically present user can override the desires of a 247
TPM Owner. 248

Do we need to reset TPM_PERMISSION_KEY at some time? 249

We know that the key is NOT reset on TPM_ClearOwner. 250

What is the meaning of using permission table in an OIAP and OSAP mode? 251

Delegate table can be used in either OIAP or OSAP mode. 252

Can you grant permissions without assigning the permissions to a specific process? 253

Yes, do a SetRow with a PCR_SELECTION of null and the permissions are available to 254
any process. 255

Do we need a ClearTableOwner? 256

I would assert that we do not need this command. The TPM Owner can perform SetRow 257
with NULLS four times and creates the exact same thing. Not having this command 258
lowers the number of ordinals the TPM is required to support. 259

There are some issues with the currently defined behavior of familyID and the 260
verificationCount. 261

Talked to David for 30 mins. We decided that maxFamilyID is set to zero at 262
manufacture, and incremented for every FamTable_SetRow 263

It is the responsibility of DelTable_SetRow to set the appropriate familyID 264

DelTable_SetRow fails if the provided familyID is not active and present somewhere in 265
the FamTable 266

FillTable works differently. It effectively resets the family table (invalidating all active 267
rows) and sets up as many rows as are needed based on the number of families 268
specified in FillTable 269

This still needs a bit of work. Presumably the caller of FillTable uses a “fake” familyID, 270
and this is changed to the actual familyID when the fill happens 271

There are some issues with the verificationCount. 272

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

8 Revision 94 29 March 2006
 TCG Published

Uber-issue. If none of the rows in the table are allowed to create other rows and export 273
them, then the “sign” of the table is meaningful 274

If one of the rows is allowed to create and export new rows, is there any real meaning to 275
“the current set of exported rows?” (i.e. SW can just up and make new rows). 276

Should section 4.4, TPM_DelTable_ClearTable), section 4.5 (TPM_DelTable_SetEnable), and 277
section 4.7 (TPM_DelTable_Set_Admin) all say “there must be UNAMBIGUOUS evidence 278
of the presence of physical access…” Is this okay? 279

Answer: No, group agreed to change UNAMBIGUOUS to BEST EFFORT in all three 280
sections. 281

Is FamilyID a sensitive value? 282

If so, why? Agreement: FamilyID is not a sensitive value. 283

Should TPM_TakeOwnership be included in permissions bits (see bit 12 in section 3.1)? 284

Enables a better administrative monitor and may enable user to take ownership easier. 285
Agreement leave it in and change informative comments to reflect the reasons. 286

[From the TPM_DelTable_SetRow command informative comments]: Note that there are two 287
types of rights: family rights (you can either edit your family’s rows or grab new rows) 288
and administrative rights. 289

This is really just an editor’s note, not a question to be resolved. 290

[From the TPM_DelTable_ExportRow command informational comments]: 291

Does not effect content of exported row left behind in the table; 292

Valid for all rows in the table; 293

Does not need to be OwnerAuth’d; 294

Family Rights are that family can only export a row from rows 0-3 if row belongs to the 295
family, but rows 4 and upwards can be exported by any Trusted Process, without any 296
family checking being done. This is really just an editor’s note, not a question to be 297
resolved. 298

When a Family Table row is set, the verificationCount is set to 1, make sure that is 299
consistently used in all other command actions. 300

Done. 301

SetEnable and SetEnableOwner enable and disable all rows in a table, not just the rows 302
belong to the family of the process that used the SetEnable and/or SetEnableOwner 303
commands. This is also true for SetAdmin and SetAdminOwner. Can anybody come up 304
with a use scenario where that causes any problems? 305

In command actions where the TPM must walk the delegation table looking for a 306
configuration that matches the command input parameters (PCRinfo and/or 307
authValues) and there are rows in the table with duplicate values, what does the TPM 308
do? Is there any reason not to use the rule “the TPM starts walking the table starting 309
with the first row and use the first row it finds with matching values”? 310

Answer to this question may mean change to pseudo code in section 2.3, Using the 311
AuthData Value, which currently shows the TPM walking the delegation table, 312
starting with the first row, and using the first row it finds with matching values. 313

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 9
 TCG Published

What familyID value signals a family table row that is not in use/contains invalid values? 314

To get consistency in all the command Actions that use this, that FamilyID value has 315
been edited in all places to be NULL, instead of 0. Yes, FamilyID value of NULL 316
signals a family table row that is not in use or contains invalid values. 317

From section 2.4, Delegate Table Fill and Enablement: “The changing of a TPM Owner does 318
not automatically clear the delegate table. Changing a TPM Owner does disable all 319
current delegations, including exported rows, and requires the new TPM Owner to re-320
enable the delegations in the table. The table entry values like trusted process 321
identification and delegations to that process are not effected by a change in owner. THE 322
AUTHDATA VALUES DO NOT SURVIVE THE OWNERSHIP CHANGE.” Question: If this is 323
true, no delegations work after a change of owner. How does the new owner set new 324
AuthData values? 325

The simple way of handling this is to get AdminMonitor to own backing up delegations at 326
first owner install and then be run by new owner, and AdminMonitor uses FillTable, 327
to handle “Owner migration.” Or, for another use option, is for second owner to pick-328
up PCR-ID’s and delegations bits from previous owner – what is the most straight-329
forward way to do this? 330

In section 3.1 (Delegate Definitions bit map table), several commands that do not require 331
owner authorization are in the table and can be delegated: TPM_SetTempDeactivated (bit 332
15), TPM_ReadPubek (bit 7), and TPM_LoadManuMaintPub (bit 3), Why? 333

In section 3.3 it is stated, “The Family ID resets to NULL on each change of TPM Owner.” 334
This invalidates all delegations. Is this what we want? 335

You don’t have to blow away FamilyID to blow away the blobs, because key is gone. So 336
this is not required – can eliminate these actions. 337

In section 3.12, why is TPM_DELEGATE_LABEL included in the table? 338

In section 4.2 (TPM_DelTable_FillTable), is it okay to delete requirement that delegate table 339
be empty? Also, in Action 14, now that we have both persistent and volatile tableAdmin 340
flags, should this command set volatile tableAdmin flag to FALSE upon completion? 341

The delegate table does not need to be empty to use the TPM_DelTable_FillTable 342
command, Also, a paragraph has been added to Informative comment for 343
TPM_DelTable_FillTable that points out usefulness of immediately following 344
TPM_DelTable_FillTable with TPM_Delegate_TempSetAdmin, to stop table 345
administration in the current boot cycle. 346

In section 4.15 (TPM_FamTable_IncrementCount), why does this command require 347
TPMOwner authorization, as currently documented in section 4.15? 348

IncrementCount is gated by tableAdmin, which seems sufficient, and use of ownerauth 349
makes it difficult to automatically verify a table using a CDROM. 350

In section 4.3 (TPM_DelTable_FillTableOwner), in the Action 3d, use OTP[80] = MFG(x1) in 351
place of oneTimePad[n] = SHA1(x1 || seed[n]))?, 352

yes. 353

In section 4.9 (TPM_DelTable_SetRow), is invalidateRow input parameter really needed? 354

It is only used in action 5. Couldn’t action 5 simply read “Set N1 -> familyID = NULL”? 355

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

10 Revision 94 29 March 2006
 TCG Published

There is no easy way to generate a blob that can be used to delegate migration authority for 356
a user key. 357

This is because the TPM does not store the migration authority on the chip as the 358
migration command involves an encrypted key, not a loaded one. One could invent a 359
‘CreateMigrationDelegationBlob’ that took the encrypted key as input and generated 360
the encrypted delegation blob as output, but it would not be pretty. Sorry Dave . 361

If a delegate row in NV memory (nominally 4 rows) is to refer to a user key (instead of owner 362
auth), then it needs to include a hash of the public key. It could be that the NV table is 363
restricted to owner auth delegations, this would save 80 bytes of NV store and also 364
simplify the LoadBlob command. 365

Maybe would simplify other things. I would definitely NOT permit user keys in the table 366
to be run with the legacy OSAP and OIAP ordinals. 367

A few more GetCapability values are also required, the usual constants that we discussed 368
and also the two readTable caps. 369

TBD Verify that Delegate Table Management commands (see section 2.8) cover all the 370
functionality of obsolete or updated commands. 371

Redefine bits 16 and above in Delegation Definitions table (section 3.1). In particular, can 372
new command set (with TPM_FAMILY_OPERATION options as defined in section 3.20) be 373
delegated individually and appropriately. Also, how many user key authorized 374
commands will be delegated? 375

Is new TPM_FAMILY_FLAGS field of family table (defined in section 3.5) sensitive data? 376

DSAP informative comment needs to be completed (section 4.1). In particular, does the 377
statement “The DSAP command works like OSAP except it takes an encrypted blob – an 378
encrypted delegate table row -- as input” sufficient? Or do some particular differences 379
between DSAP and OSAP have to be pointed out in this informative comment?? 380

The TPM_Delegate_LoadBlob[Owner] commands cannot be used to load key delegation blobs 381
into the TPM. Is another ordinal required to do that? 382

Is it okay for TPM_Delegate_LoadBlob[Owner] commands to ignore enable/disable 383
use/admin flags in family table rows? 384

Is it wise to delegate TPM_DelTable_ConvertBlob command (defined in section 4.11)? Does 385
current definition of this command support section 2.7 scenarios? 386

Is there a privacy problem with DelTable_ReadRow since the contents may not be identical 387
from TPM to TPM? 388

Are DSAP sessions being pooled with the other sessions? if so, can one save \load them by 389
context functions? if not, then there should be a restriction in saveContext. 390

DSAP are "normal" authorization sessions and would save/load with OIAP and OSAP 391
sessions 392

2.2.2 NV Questions 393

You would set this by using a new ordinal that is unauthorized and only turns the flag on to 394
lock everything. Yet another ordinal? Do we need it? Is this an important functionality 395
for the uses we see? 396

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 11
 TCG Published

Yes this allows us to have "close" to writeonce functionality. What the functionality 397
would be is that the RTM would assure that the proper information is present in the 398
TPM and then "lock" the area. One could create this functionality by having the RTM 399
change the authorization each time but then you would need to eat more NV store so 400
save the sealed AuthData value. I think that is easier to have an ordinal than eat the 401
NV space and require a much more complex programming model. 402

Is it OK to have an element partially written? 403

Given that we have chunks there has to be a mechanism to allow partial writes. 404

If an element is partially written, how does a caller know that more needs to be written? 405

I would say the use model that provides the ability to write – read, in a loop is just not 406
supported. Get it all written and then do the read. 407

Usage of the lock bit: as you wrote, the RTM would assure that the proper information is 408
present in the TPM and then "lock" the area. so why in action #4 we should also check 409
bWritten when the lock bit is set? should be as action #3b of TPM_NV_DefineSpace, if 410
lock is set - return error 411

[Grawrock, David] Not quite, the use model I was trying to create was the one where the 412
TPM was locked and the user was attempting to add a new area. If the locked bit 413
doesn't allow for writing once to a new area, one must reboot to perform the write 414
and also tell the RTM what the value to write must be. So this allows the creator of 415
an area to write it once and then it flows with the locked bit. 416

Can you delete a NV value with only physical presence? 417

 [Grawrock, David] You can't delete with physical presence, you must use owner 418
authorization. This I think is a reasonable restriction to avoid burn problems. 419

Why is there no check on the writes for a TPM Owner? 420

The check for an owner occurred during the TPM_NV_DefineSpace. It is imperative that 421
the TPM_NV_DefineSpace set in place the appropriate restrictions to limit the 422
potential for attacks on the NV storage area. 423

Description of maxNVBufSize is confusing to me. Why is this value related to the input size? 424
And since there is no longer any 'written' bits, why is there a maximum area size at all? 425

[Grawrock, David] This is a fixed size and set by the TPM manufacturer. I would see 426
values like the input buffer, transport sessions etc all coming up with the max size 427
the TPM can handle. This does NOT indicate what is available on the TPM right now. 428
The TPM could have 4k of space but max size would be 782 and would always report 429
that number. If the available space fell to 20 bytes this value would still be 782. 430

If the storage area is an opaque area to the TPM (as described), then how does the TPM 431
know what PCR registers have been used to seal a blob? 432

The VALUES of the area are opaque, the attributes to control access are not. So if the 433
attributes indicate that PCR restrictions are in place the TPM keeps those PCR values 434
as part of the index attributes. This in reality seals the value as there is no need for 435
tpmProof since the value never leaves the TPM. 436

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

12 Revision 94 29 March 2006
 TCG Published

3. Protection 437

3.1 Introduction 438

Start of informative comment 439

The Protection Profile in the Conformance part of the specification defines the threats that 440
are resisted by a platform. This section, “Protection,” describes the properties of selected 441
capabilities and selected data locations within a TPM that has a Protection Profile and has 442
not been modified by physical means. 443

This section introduces the concept of protected capabilities and the concept of shielded 444
locations for data. The ordinal set defined in part II and III is the set of protected 445
capabilities. The data structures in part II define the shielded locations. 446

• A protected capability is one whose correct operation is necessary in order for the 447
operation of the TCG Subsystem to be trusted. 448

• A shielded location is an area where data is protected against interference and prying, 449
independent of its form. 450

This specification uses the concept of protected capabilities so as to distinguish platform 451
capabilities that must be trustworthy. Trust in the TPM depends critically on the protected 452
capabilities. Platform capabilities that are not protected capabilities must (of course) work 453
properly if the TCG Subsystem is to function properly. 454

This specification uses the concept of shielded locations, rather than the concept of 455
“shielded data.” While the concept of shielded data is intuitive, it is extraordinarily difficult 456
to define because of the imprecise meaning of the word “data.” For example, consider data 457
that is produced in a safe location and then moved into ordinary storage. It is the same data 458
in both locations, but in one it is shielded data and in the other it is not. Also, data may not 459
always exist in the same form. For example, it may exist as vulnerable plaintext, but also 460
may sometimes be transformed into a logically protected form. This data continues to exist, 461
but doesn't always need to be shielded data - the vulnerable form needs to be shielded data, 462
but the logically protected form does not. If a specific form of data requires protection 463
against interference or prying, it is therefore necessary to say “if the data-D exists, it must 464
exist only in a shielded location.” A more concise expression is “the data-D must be extant 465
only in a shielded location.” 466

Hence, if trust in the TCG Subsystem depends critically on access to certain data, that data 467
should be extant only in a shielded location and accessible only to protected capabilities. 468
When not in use, such data could be erased after conversion (using a protected capability) 469
into another data structure. Unless the other data structure was defined as one that must 470
be held in a shielded location, it need not be held in a shielded location. 471

End of informative comment 472

1. The data structures described in part II of the TPM specifications MUST NOT be 473
instantiated in a TPM, except as data in TPM-shielded-locations. 474

2. The ordinal set defined in part II and III of the TPM specifications MUST NOT be 475
instantiated in a TPM, except as TPM-protected-capabilities. 476

3. Functions MUST NOT be instantiated in a TPM as TPM-protected-capabilities if they do 477
not appear in the ordinal set defined in part II and III of the TPM specifications. 478

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 13
 TCG Published

3.2 Threat 479

Start of informative comment 480

This section, “Threat,” defines the scope of the threats that must be considered when 481
considering whether a platform facilitates subversion of capabilities and data in a platform. 482

The design and implementation of a platform determines the extent to which the platform 483
facilitates subversion of capabilities and data within that platform. It is necessary to define 484
the attacks that must be resisted by TPM-shielded locations and TPM-protected capabilities 485
in that platform. 486

The TCG specifications define all attacks that are resisted by the TPM. These attacks must 487
be considered when determining whether the integrity of TPM-protected capabilities and 488
data in TPM-shielded locations can be damaged. These attacks must be considered when 489
determining whether there is a backdoor method of obtaining access to TPM-protected 490
capabilities and data in TPM-shielded locations. These attacks must be considered when 491
determining whether TPM-protected capabilities have undesirable side effects. 492

End of informative comment 493

1. For the purposes of the “Protection” section of the specification, the threats that MUST 494
be considered when determining whether the TPM facilitates subversion of TPM-495
protected-capabilities or data in TPM-shielded-locations SHALL include 496

a. The methods inherent in physical attacks that fail if the TPM complies with the 497
“physical protection” requirements specified by TCG 498

b. All methods that require execution of instructions in a computing engine in the 499
platform 500

3.3 Protection of functions 501

Start of informative comment 502

A TPM-protected-capability must be used to modify TPM-protected capabilities. Other 503
methods must not be allowed to modify TPM-protected capabilities. Otherwise, the integrity 504
of TPM-protected capabilities is unknown. 505

End of informative comment 506

1. A TPM SHALL NOT facilitate the alteration of TPM-protected-capabilities, except by TPM-507
protected capabilities. 508

3.4 Protection of information 509

Start of informative comment 510

TPM-protected capabilities must provide the only means from outside the TPM to access 511
information represented by data in TPM-shielded-locations. Otherwise, a rogue can reveal 512
data in TPM-shielded-locations, or create a derivative of data from TPM-shielded-locations 513
(in a way that maintains some or all of the information content of the data) and reveal the 514
derivative. 515

End of informative comment 516

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

14 Revision 94 29 March 2006
 TCG Published

1. A TPM SHALL NOT export data that is dependent upon data structures described in part 517
II of the TPM specifications, other than via a TPM-Protected-Capability. 518

3.5 Side effects 519

Start of informative comment 520

An implementation of a TPM-protected capability must not disclose the contents of TPM-521
shielded locations. The only exceptions are when such disclosure is inherent in the 522
definition of the capability or in the methods used by the capability. For example, a 523
capability might be designed specifically to reveal hidden data or might use cryptography 524
and hence always be vulnerable to cryptanalysis. In such cases, some disclosure or risk of 525
disclosure is inherent and cannot be avoided. Other forms of disclosure (by side effects, for 526
example) must always be avoided. 527

End of informative comment 528

1. The implementation of a TPM-protected-capability in a TPM SHALL NOT facilitate the 529
disclosure or the exposure of information represented by data in TPM-shielded–530
locations, except by means unavoidably inherent in the TPM definition. 531

3.6 Exceptions and clarifications 532

Start of informative comment 533

These exceptions to the blanket statements in the generic “protection” requirements (above) 534
are fully compatible with the intended effect of those statements. These exceptions affect 535
TCG-data that is available as plain-text outside the TPM and TCG-data that can be used 536
without violating security or privacy. These exceptions are valuable because they approve 537
use of TPM resources by vendor-specific commands in particular circumstances. 538

These clarifications to the blanket statements of the generic “protection” requirements 539
(above) do not materially change the effect of those statements, but serve to approve specific 540
legitimate interpretations of the requirements. 541

End of informative comment 542

1. A Shielded Location is a place (memory, register, etc.) where data is protected against 543
interference and exposure, independent of its form 544

2. A TPM-Protected-Capability is an operation defined in and restricted to those identified 545
in part II and III of the TPM specifications. 546

3. A vendor specific command or capability MAY use the standard TCG owner/operator 547
authorization mechanism 548

4. A vendor specific command or capability MAY utilize a TPM_PUBKEY structure stored on 549
the TPM so long as the usage of that TPM_PUBKEY structure is authorized using the 550
standard TCG authorization mechanism. 551

5. A vendor specific command or capability MAY use a sequence of standard TCG 552
commands. The command MUST propagate the locality used for the call to the used 553
TCG commands or capabilities, or set locality to 0. 554

6. A vendor specific command or capability that takes advantage of exceptions and 555
clarifications to the “protection” requirements MUST be defined as part of the security 556

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 15
 TCG Published

target of the TPM. Such a vendor specific command or capability MUST be evaluated to 557
meet the Platform Specific TPM and System Security Targets. 558

7. If a TPM employs vendor-specific cipher-text that is protected against subversion to the 559
same or greater extent as internal TPM-resources stored outside the TPM with TCG-560
defined methods, that vendor-specific cipher-text does not necessarily require protection 561
from physical attack. If a TPM location stores only vendor-specific cipher-text that does 562
not require protection from physical attack, that location can be ignored when 563
determining whether the TPM complies with the "physical protection" requirements 564
specified by TCG. 565

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

16 Revision 94 29 March 2006
 TCG Published

4. TPM Architecture 566

4.1 Interoperability 567

Start of informative comment 568

The TPM must support a minimum set of algorithms and operations to meet TCG 569
specifications. 570

Algorithms 571

RSA, SHA-1, HMAC 572

The algorithms and protocols are the minimum that the TPM must support. Additional 573
algorithms and protocols may be available to the TPM. All algorithms and protocols 574
available in the TPM must be included in the TPM and platform credential. 575

The reason to specify these algorithms is two fold. The first is to know and understand the 576
security properties of selected algorithms; identify appropriate key sizes and ensure 577
appropriate use in protocols. The second reason is to define a base level of algorithms for 578
interoperability. 579

End of informative comment 580

4.2 Components 581

Start of informative comment 582

The following is a block diagram Figure 4:a shows the major components of a TPM. 583

 584
Figure 4:a - TPM Component Architecture 585

End of informative comment 586

Key Generation

I/O

C2

Cryptographic Co-Processor C0

C1

Opt-In
Power Detection

RNG

Communication Bus

C7

C6

C4

HMAC Engine

SHA-1 Engine

Execution Engine

Volatile Memory

Non-Volatile Memory

C3

C8

C5

C10
C9

Rev 0.3

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 17
 TCG Published

4.2.1 Input and Output 587

Start of informative comment 588

The I/O component, Figure 4:a C0, manages information flow over the communications 589
bus. It performs protocol encoding/decoding suitable for communication over external and 590
internal buses. It routes messages to appropriate components. The I/O component enforces 591
access policies associated with the Opt-In component as well as other TPM functions 592
requiring access control. 593

The main specification does not require a specific I/O bus. Issues around a particular I/O 594
bus are the purview of a platform specific specification. 595

End of informative comment 596

1. The number of incoming operand parameter bytes must exactly match the 597
requirements of the command ordinal. If the command contains more or fewer bytes 598
than required, the TPM MUST return TPM_BAD_PARAMETER. 599

4.2.2 Cryptographic Co-Processor 600

Start of informative comment 601

The cryptographic co-processor, Figure 4:a C1, implements cryptographic operations within 602
the TPM. The TPM employs conventional cryptographic operations in conventional ways. 603
Those operations include the following: 604

Asymmetric key generation (RSA) 605

Asymmetric encryption/decryption (RSA) 606

Hashing (SHA-1) 607

Random number generation (RNG) 608

The TPM uses these capabilities to perform generation of random data, generation of 609
asymmetric keys, signing and confidentiality of stored data. 610

The TPM may symmetric encryption for internal TPM use but does not expose any 611
symmetric algorithm functions to general users of the TPM. 612

The TPM may implement additional asymmetric algorithms. TPM devices that implement 613
different algorithms may have different algorithms perform the signing and wrapping. 614

End of informative comment 615

1. The TPM MAY implement other asymmetric algorithms such as DSA or elliptic curve. 616

a. These algorithms may be in use for wrapping, signatures and other operations. There 617
is no guarantee that these keys can migrate to other TPM devices or that other TPM 618
devices will accept signatures from these additional algorithms. 619

2. All Storage keys MUST be of strength equivalent to a 2048 bits RSA key or greater. The 620
TPM SHALL NOT load a Storage key whose strength less than that of a 2048 bits RSA 621
key. 622

3. All AIK MUST be of strength equivalent to a 2048 bits RSA key, or greater. 623

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

18 Revision 94 29 March 2006
 TCG Published

4.2.2.1 RSA Engine 624

Start of informative comment 625

The RSA asymmetric algorithm is used for digital signatures and for encryption. 626

For RSA keys the PKCS #1 standard provides the implementation details for digital 627
signature, encryption and data formats. 628

There is no requirement concerning how the RSA algorithm is to be implemented. TPM 629
manufacturers may use Chinese Remainder Theorem (CRT) implementations or any other 630
method. Designers should review P1363 for guidance on RSA implementations. 631

End of informative comment 632

1. The TPM MUST support RSA. 633

2. The TPM MUST use the RSA algorithm for encryption and digital signatures. 634

3. The TPM MUST support key sizes of 512, 768, 1024, and 2048 bits. The TPM MAY 635
support other key sizes. 636

a. The minimum RECOMMENDED key size is 2048 bits. 637

4. The RSA public exponent MUST be e, where e = 216+1. 638

5. TPM devices that use CRT as the RSA implementation MUST provide protection and 639
detection of failures during the CRT process to avoid attacks on the private key. 640

4.2.2.2 Signature Operations 641

Start of informative comment 642

The TPM performs signatures on both internal items and on requested external blobs. The 643
rules for signatures apply to both operations. 644

End of informative comment 645

1. The TPM MUST use the RSA algorithm for signature operations where signed data is 646
verified by entities other than the TPM that performed the sign operation. 647

2. The TPM MAY use other asymmetric algorithms for signatures; however, there is no 648
requirement that other TPM devices either accept or verify those signatures. 649

3. The TPM MUST use P1363 for the format and design of the signature output. 650

4.2.2.3 Symmetric Encryption Engine 651

Start of informative comment 652

The TPM uses symmetric encryption to encrypt authentication information, provide 653
confidentiality in transport sessions and provide internal encryption of blobs stored off of 654
the TPM. 655

For authentication and transport sessions, the mandatory mechanism is a Vernam one-656
time-pad with XOR. The mechanism to generate the one-time-pad is MGF1 and the nonces 657
from the session protocol. When encrypting authorization data, the authorization data and 658
the nonces are the same size, 20 bytes, so a direct XOR is possible. 659

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 19
 TCG Published

For transport sessions the size of data is larger than the nonces so there needs to be a 660
mechanism to expand the entropy to the size of the data. The mechanism to expand the 661
entropy is the MGF1 function from PKCS#1. This function provides a known mechanism 662
that does not lower the entropy of the nonces. 663

AES may be supported as an alternate symmetric key encryption algorithm. 664

Internal protection of information can use any symmetric algorithm that the TPM designer 665
feels provides the proper level of protection. 666

The TPM does not expose any of the symmetric operations for general message encryption. 667

End of informative comment 668

4.2.2.4 Using Keys 669

Start of Informative comments: 670

Keys can be symmetric or asymmetric. 671

As the TPM does not have an exposed symmetric algorithm, the TPM is only a generator, 672
storage device and protector of symmetric keys. Generation of the symmetric key would use 673
the TPM RNG. Storage and protection would be provided by the BIND and SEAL capabilities 674
of the TPM. If the caller wants to ensure that the release of a symmetric key is not exposed 675
after UNBIND/UNSEAL on delivery to the caller, the caller should use a transport session 676
with confidentiality set. 677

For asymmetric algorithms, the TPM generates and operates on RSA keys. The keys can be 678
held only by the TPM or in conjunction with the caller of the TPM. If the private portion of a 679
key is in use outside of the TPM it is the responsibility of the caller and user of that key to 680
ensure the protections of the key. 681

The TPM has provisions to indicate if a key is held exclusively for the TPM or can be shared 682
with entities off of the TPM. 683

End of informative comments. 684

1. A secret key is a key that is a private asymmetric key or a symmetric key. 685

2. Data SHOULD NOT be used as a secret key by a TCG protected capability unless that 686
data has been extant only in a shielded location. 687

3. A key generated by a TCG protected capability SHALL NOT be used as a secret key 688
unless that key has been extant only in a shielded location. 689

4. A secret key obtained by a TCG protected capability from a Protected Storage blob 690
SHALL be extant only in a shielded location. 691

4.2.3 Key Generation 692

Start of informative comment 693

The Key Generation component, Figure 4:a C2, creates RSA key pairs and symmetric keys. 694
TCG places no minimum requirements on key generation times for asymmetric or 695
symmetric keys. 696

End of informative comment 697

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

20 Revision 94 29 March 2006
 TCG Published

4.2.3.1 Asymmetric – RSA 698

The TPM MUST generate asymmetric key pairs. The generate function is a protected 699
capability and the private key is held in a shielded location. The implementation of the 700
generate function MUST be in accordance with P1363. 701

The prime-number testing for the RSA algorithm MUST use the definitions of P1363. If 702
additional asymmetric algorithms are available, they MUST use the definitions from P1363 703
for the underlying basis of the asymmetric key (for example, elliptic curve fitting). 704

4.2.3.2 Nonce Creation 705

The creation of all nonce values MUST use the next n bits from the TPM RNG. 706

4.2.4 HMAC Engine 707

Start of informative comment 708

The HMAC engine, Figure 4:a C3, provides two pieces of information to the TPM: proof of 709
knowledge of the AuthData and proof that the request arriving is authorized and has no 710
modifications made to the command in transit. 711

The HMAC definition is for the HMAC calculation only. It does not specify the order or 712
mechanism that transports the data from caller to actual TPM. 713

The creation of the HMAC is order dependent. Each command has specific items that are 714
portions of the HMAC calculation. The actual calculation starts with the definition from 715
RFC 2104. 716

RFC 2104 requires the selection of two parameters to properly define the HMAC in use. 717
These values are the key length and the block size. This specification will use a key length 718
of 20 bytes and a block size of 64 bytes. These values are known in the RFC as K for the key 719
length and B as the block size. 720

The basic construct is 721

 H(K XOR opad, H(K XOR ipad, text)) 722

where 723

H = the SHA1 hash operation 724

K = the key or the AuthData 725

XOR = the xor operation 726

opad = the byte 0x5C repeated B times 727

B = the block length 728

ipad = the byte 0x36 repeated B times 729

text = the message information and any parameters from the command 730

End of informative comment 731

The TPM MUST support the calculation of an HMAC according to RFC 2104. 732

The size of the key (K in RFC 2104) MUST be 20 bytes. The block size (B in RFC 2104) 733
MUST be 64 bytes. 734

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 21
 TCG Published

The order of the parameters is critical to the TPM’s ability to recreate the HMAC. Not all of 735
the fields are sent on the wire for each command for instance only one of the nonce values 736
travels on the wire. Each command interface definition indicates what parameters are 737
involved in the HMAC calculation. 738

4.2.5 Random Number Generator 739

Start of informative comment 740

The Random Number Generator (RNG) component, Figure 6:a C4 is the source of 741
randomness in the TPM. The TPM uses these random values for nonces, key generation, 742
and randomness in signatures. 743

The RNG consists of a state-machine that accepts and mixes unpredictable data and a post-744
processor that has a one-way function (e.g. SHA-1). The idea behind the design is that a 745
TPM can be good source of randomness without having to require a genuine source of 746
hardware entropy. 747

The state-machine can have a non-volatile state initialized with unpredictable random data 748
during TPM manufacturing before delivery of the TPM to the customers. The state-machine 749
can accept, at any time, further (unpredictable) data, or entropy, to salt the random 750
number. Such data comes from hardware or software sources – for example; from thermal 751
noise, or by monitoring random keyboard strokes or mouse movements. The RNG requires a 752
reseeding after each reset of the TPM. A true hardware source of entropy is likely to supply 753
entropy at a higher baud rate than a software source. 754

When adding entropy to the state-machine the process must ensure that after the addition, 755
no outside source can gain any visibility into the new state of the state-machine. Neither 756
the Owner of the TPM, nor the manufacturer of the TPM can deduce the state of the state-757
machine after shipment of the TPM. The RNG post-processor condenses the output of the 758
state-machine into data that has sufficient and uniform entropy. The one-way function 759
should use more bits of input data than it produces as output. 760

Our definition of the RNG allows implementation of a Pseudo Random Number Generator 761
(PRNG) algorithm. However, on devices where a hardware source of entropy is available, a 762
PRNG need not be implemented. This specification refers to both RNG and PRNG 763
implementations as the RNG mechanism. There is no need to distinguish between the two 764
at the TCG specification level. 765

The TPM should be able to provide 32 bytes of randomness on each call. Larger requests 766
may fail with not enough randomness being available. 767

End of informative comment 768

1. The RNG for the TPM will consist of the following components: 769

a. Entropy source and collector 770

b. State register 771

c. Mixing function 772

2. The RNG capability is a TPM-protected capability with no access control. 773

3. The RNG output may or may not be shielded data. When the data is for internal use by 774
the TPM (e.g., asymmetric key generation) the data MUST be held in a shielded location. 775
When the data is for use by the TSS or another external caller, the data is not shielded. 776

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

22 Revision 94 29 March 2006
 TCG Published

4.2.5.1 Entropy Source and Collector 777

Start of informative comment 778

The entropy source is the process or processes that provide entropy. These types of sources 779
could include noise, clock variations, air movement, and other types of events. 780

The entropy collector is the process that collects the entropy, removes bias, and smoothes 781
the output. The collector differs from the mixing function in that the collector may have 782
special code to handle any bias or skewing of the raw entropy data. For instance, if the 783
entropy source has a bias of creating 60 percent 1s and only 40 percent 0s, then the 784
collector design takes that bias into account before sending the information to the state 785
register. 786

End of informative comment 787

1. The entropy source MUST provide entropy to the state register in a manner that provides 788
entropy that is not visible to an outside process. 789

a. For compliance purposes, the entropy source MAY be outside of the TPM; however, 790
attention MUST be paid to the reporting mechanism. 791

2. The entropy source MUST provide the information only to the state register. 792

a. The entropy source may provide information that has a bias, so the entropy collector 793
must remove the bias before updating the state register. The bias removal could use 794
the mixing function or a function specifically designed to handle the bias of the 795
entropy source. 796

b. The entropy source can be a single device (such as hardware noise) or a combination 797
of events (such as disk timings). It is the responsibility of the entropy collector to 798
update the state register whenever the collector has additional entropy. 799

4.2.5.2 State Register 800

Start of informative comment 801

The state register implementation may use two registers: a non-volatile register rngState 802
and a volatile register. The TPM loads the volatile register from the non-volatile register on 803
startup. Each subsequent change to the state register from either the entropy source or the 804
mixing function affects the volatile state register. The TPM saves the current value of the 805
volatile state register to the non-volatile register on TPM power-down. The TPM may update 806
the non-volatile register at any other time. The reasons for using two registers are: 807

To handle an implementation in which the non-volatile register is in a flash device; 808

To avoid overuse of the flash, as the number of writes to a flash device are limited. 809

End of informative comment 810

1. The state register is in a TPM shielded-location. 811

a. The state register MUST be non-volatile. 812

b. The update function to the state register is a TPM protected-capability. 813

c. The primary input to the update function SHOULD be the entropy collector. 814

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 23
 TCG Published

2. If the current value of the state register is unknown, calls made to the update function 815
with known data MUST NOT result in the state register ending up in a state that an 816
attacker could know. 817

a. This requirement implies that the addition of known data MUST NOT result in a 818
decrease in the entropy of the state register. 819

3. The TPM MUST NOT export the state register. 820

4.2.5.3 Mixing Function 821

Start of informative comment 822

The mixing function takes the state register and produces output. The mixing function is a 823
TPM protected-capability. The mixing function takes the value from a state register and 824
creates the RNG output. If the entropy source has a bias, then the collector takes that bias 825
into account before sending the information to the state register. 826

End of informative comment 827

1. Each use of the mixing function MUST affect the state register. 828

a. This requirement is to affect the volatile register and does not need to affect the non-829
volatile state register. 830

4.2.5.4 RNG Reset 831

Start of informative comment 832

The resetting of the RNG occurs at least in response to a loss of power to the device. 833

These tests prove only that the RNG is still operating properly; they do not prove how much 834
entropy is in the state register. This is why the self-test checks only after the load of 835
previous state and may occur before the addition of more entropy. 836

End of informative comment 837

1. The RNG MUST NOT output any bits after a system reset until the following occurs: 838

a. The entropy collector performs an update on the state register. This does not include 839
the adding of the previous state but requires at least one bit of entropy. 840

b. The mixing function performs a self-test. This self-test MUST occur after the loading 841
of the previous state. It MAY occur before the entropy collector performs the first 842
update. 843

4.2.6 SHA-1 Engine 844

Start of informative comment 845

The SHA-1, Figure 4:a C5, hash capability is primarily used by the TPM, as it is a trusted 846
implementation of a hash algorithm. The hash interfaces are exposed outside the TPM to 847
support Measurement taking during platform boot phases and to allow environments that 848
have limited capabilities access to a hash functions. The TPM is not a cryptographic 849
accelerator. TCG does not specify minimum throughput requirements for TPM hash 850
services. 851

End of informative comment 852

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

24 Revision 94 29 March 2006
 TCG Published

1. The TPM MUST implement the SHA-1 hash algorithm as defined by FIPS-180-1. 853

2. The output of SHA-1 is 160 bits and all areas that expect a hash value are REQUIRED 854
to support the full 160 bits. 855

3. The only commands that SHALL be presented to the TPM in-between a TPM_SHA1Start 856
command and a TPM_SHA1Complete command SHALL be a variable number (possibly 857
0) of TPM_SHA1Update commands. 858

a. The TPM_SHA1Update commands can occur in a transport session. 859

4. Throughout all parts of the specification the characters x1 || x2 imply the 860
concatenation of x1 and x2 861

4.2.7 Power Detection 862

Start of informative comment 863

The power detection component, Figure 4:a C6, manages the TPM power states in 864
conjunction with platform power states. TCG requires that the TPM be notified of all power 865
state changes. 866

Power detection also supports physical presence assertions. The TPM may restrict 867
command-execution during periods when the operation of the platform is physically 868
constrained. In a PC, operational constraints occur during the power-on self-test (POST) 869
and require Operator input via the keyboard. The TPM might allow access to certain 870
commands while in a constrained execution mode or boot state. At some critical point in the 871
POST process, the TPM may be notified of state changes that affect TPM command 872
processing modes. 873

End of informative comment 874

4.2.8 Opt-In 875

Start of informative comment 876

The Opt-In component, Figure 4:a C7, provides mechanisms and protections to allow the 877
TPM to be turned on/off, enabled/disabled, activated/deactivated.. The Opt-In component 878
maintains the state of persistent and volatile flags and enforces the semantics associated 879
with these flags. 880

The setting of flags requires either authorization by the TPM Owner or the assertion of 881
physical presence at the platform. The platform’s manufacturer determines the techniques 882
used to represent physical-presence. The guiding principle is that no remote entity should 883
be able to change TPM status without either knowledge of the TPM Owner or the Operator is 884
physically present at the platform. Physical presence may be asserted during a period when 885
platform operation is constrained such as power-up. 886

Non-Volatile Flags: 887

PhysicalPresenceLifetimeLock 888

PhysicalPresenceHWEnable 889

PhysicalPresenceCMDEnable 890

Volatile Flags: 891

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 25
 TCG Published

PhysicalPresenceV 892

The following truth table explains the conditions in which the PhysicalPresenceV flag may 893
be altered: 894

Persistent / Volatile P P P V

Control Flags
Ph

ys
ica

lP
re

se
nc

eL
ife

tim
eL

oc
k

Ph
ys

ica
lP

re
se

nc
eH

W
En

ab
le

Ph
ys

ica
lP

re
se

nc
eC

M
DE

na
bl

e

Ph
ys

ica
lP

re
se

nc
eV

- F F -

- F T T
No access to PhysicalPresenceV flag.

- - T F Access to PhysicalPresenceV flag through TCS_PhysicalPresence command enabled.

- T - - Access to PhysicalPresenceV flag through hardware signal enabled.

Volatile Access
Semantics to

Physical Presence
Flag

- T T F Access to PhysicalPresenceV flag through hardware signal or TCS_PhysicalPresence command
enabled.

T F F -

T F T T
Access to PhysicalPresenceV flag permanently disabled.

T F T F Exclusive access to PhysicalPresenceV flag through TCS_PhysicalPresence command
permanently enabled.

T T F - Exclusive access to PhysicalPresenceV flag through hardware signal permanently enabled.

Persistent Access
Semantics to

Physical Presence
Flag

T T T F Access to PhysicalPresenceV flag through hardware signal or TCS_PhysicalPresence command
permanently enabled.

Table 4:a - Physical Presence Semantics 895

TCG also recognizes the concept of unambiguous physical presence. Conceptually, the use 896
of dedicated electrical hardware providing a trusted path to the Operator has higher 897
precedence than the physicalPresenceV flag value. Unambiguous physical presence may be 898
used to override physicalPresenceV flag value under conditions specified by platform 899
specific design considerations. 900

Additional details relating to physical presence can be found in sections on Volatile and 901
Non-volatile memory. 902

End of informative comment 903

4.2.9 Execution Engine 904

Start of informative comment 905

The execution engine, Figure 4:a C8, runs program code to execute the TPM commands 906
received from the I/O port. The execution engine is a vital component in ensuring that 907
operations are properly segregated and shield locations are protected. 908

End of informative comment 909

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

26 Revision 94 29 March 2006
 TCG Published

4.2.10 Non-Volatile Memory 910

Start of informative comment 911

Non-volatile memory component, Figure 4:a C9, is used to store persistent identity and 912
state associated with the TPM. The NV area has set items (like the EK) and also is available 913
for allocation and use by entities authorized by the TPM Owner. 914

The TPM designer should consider the use model of the TPM and if the use of NV storage is 915
a concern. NV storage does have a limited life and using the NV storage in a high volume 916
use model may prematurely wear out the TPM. 917

End of informative comment 918

4.3 Data Integrity Register (DIR) 919

Start of informative comment 920

The DIR were a version 1.1 function. They provided a place to store information using the 921
TPM NV storage. 922

In 1.2 the DIR are deprecated and the use of the DIR should move to the general purpose 923
NV storage area. 924

The TPM must still support the functionality of the DIR register in the NV storage area. 925

End of informative comment 926

1. A TPM MUST provide one Data Integrity Register (DIR) 927

a. The TPM DIR commands are deprecated in 1.2 928

b. The TPM MUST reserve the space for one DIR in the NV storage area 929

c. The TPM MAY have more than 1 DIR. 930

2. The DIR MUST be 160-bit values and MUST be held in TPM shielded-locations. 931

3. The DIR MUST be non-volatile (values are maintained during the power-off state). 932

a. A TPM implementation need not provide the same number of DIRs as PCRs. 933

4.4 Platform Configuration Register (PCR) 934

Start of informative comment 935

A Platform Configuration Register (PCR) is a 160-bit storage location for discrete integrity 936
measurements. There are a minimum of 16 PCR registers. All PCR registers are shielded-937
locations and are inside of the TPM. The decision of whether a PCR contains a standard 938
measurement or if the PCR is available for general use is deferred to the platform specific 939
specification. 940

A large number of integrity metrics may be measured in a platform, and a particular 941
integrity metric may change with time and a new value may need to be stored. It is difficult 942
to authenticate the source of measurement of integrity metrics, and as a result a new value 943
of an integrity metric cannot be permitted to simply overwrite an existing value. (A rogue 944
could erase an existing value that indicates subversion and replace it with a benign value.) 945
Thus, if values of integrity metrics are individually stored, and updates of integrity metrics 946

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 27
 TCG Published

must be individually stored, it is difficult to place an upper bound on the size of memory 947
that is required to store integrity metrics. 948

The PCR is designed to hold an unlimited number of measurements in the register. It does 949
this by using a cryptographic hash and hashing all updates to a PCR. The pseudo code for 950
this is: 951

 PCRi New = HASH (PCRi Old value || value to add) 952

There are two salient properties of cryptographic hash that relate to PCR construction. 953
Ordering – meaning updates to PCRs are not commutative. For example, measuring (A then 954
B) is not the same as measuring (B then A). 955

The other hash property is one-way-ness. This property means it should be computationally 956
infeasible for an attacker to determine the input message given a PCR value. Furthermore, 957
subsequent updates to a PCR cannot be determined without knowledge of the previous PCR 958
values or all previous input messages provided to a PCR register since the last reset. 959

End of informative comment 960

1. The PCR MUST be a 160-bit field that holds a cumulatively updated hash value 961

2. The PCR MUST have a status field associated with it 962

3. The PCR MUST be in the RTS and should be in volatile storage 963

4. The PCR MUST allow for an unlimited number of measurements to be stored in the PCR 964

5. The PCR MUST preserve the ordering of measurements presented to it 965

6. A PCR MUST be set to the default value as specified by the PCRReset attribute 966

7. A TPM implementation MUST provide 16 or more independent PCRs. These PCRs are 967
identified by index and MUST be numbered from 0 (that is, PCR0 through PCR15 are 968
required for TCG compliance). Vendors MAY implement more registers for general-969
purpose use. Extra registers MUST be numbered contiguously from 16 up to max – 1, 970
where max is the maximum offered by the TPM. 971

8. The TCG-protected capabilities that expose and modify the PCRs use a 32-bit index, 972
indicating the maximum usable PCR index. However, TCG reserves register indices 230 973
and higher for later versions of the specification. A TPM implementation MUST NOT 974
provide registers with indices greater than or equal to 230. In this specification, the 975
following terminology is used (although this internal format is not mandated). 976

9. The PSS MUST define at least define one measurement that the RTM MUST make and 977
the PCR where the measurement is stored. 978

10. A TCG measurement agent MAY discard a duplicate event instead of incorporating it in a 979
PCR, provided that: 980

11. A relevant TCG platform specification explicitly permits duplicates of this type of event to 981
be discarded 982

12. The PCR already incorporates at least one event of this type 983

13. An event of this type previously incorporated into the PCR included a statement that 984
duplicate such events may be discarded. This option could be used where frequent 985
recording of sleep states will adversely affect the lifetime of a TPM, for example. 986

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

28 Revision 94 29 March 2006
 TCG Published

14. PCRs and the protected capabilities that operate upon them MAY NOT be used until 987
power-on self-test (TPM POST) has completed. If TPM POST fails, the TPM_Extend 988
operation will fail; and, of greater importance, the TPM_Quote operation and TPM_Seal 989
operations that respectively report and examine the PCR contents MUST fail. At the 990
successful completion of TPM POST, all PCRs MUST be set to their default value (either 991
0x00…00 or 0xFF…FF). Additionally, the UINT32 flags MUST be set to zero. 992

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 29
 TCG Published

5. Endorsement Key Creation 993
Start of informative comment 994

The TPM contains a 2048-bit RSA key pair called the endorsement key (EK). The public 995
portion of the key is the PUBEK and the private portion the PRIVEK. Due to the nature of 996
this key pair, both the PUBEK and the PRIVEK have privacy and security concerns. 997

The TPM has the EK generated before the end customer receives the platform. The entity 998
that causes EK generation is also the entity that will create a credential attesting to the 999
validity of the TPM and the EK. 1000

The TPM can generate the EK internally using the TPM_CreateEndorsementKey or by using 1001
an outside key generator. The EK needs to indicate the genealogy of the EK generation. 1002

Subsequent attempts to either generate an EK or insert an EK must fail. 1003

If the data structure TPM_ENDORSEMENT_CREDENTIAL is stored on a platform after an 1004
Owner has taken ownership of that platform, it SHALL exist only in storage to which access 1005
is controlled and is available to authorized entities. 1006

End of informative comment 1007

1. The EK MUST be a 2048-bit RSA key 1008

a. The public portion of the key is the PUBEK 1009

b. The private portion of the key is the PRIVEK 1010

c. The PRIVEK SHALL exist only in a TPM-shielded location. 1011

2. Access to the PRIVEK and PUBEK MUST only be via TPM protected capabilities 1012

a. The protected capabilities MUST require TPM Owner authentication or operator 1013
physical presence 1014

3. The generation of the EK may use a process external to the TPM and 1015
TPM_CreateEndorsementKeyPair 1016

a. The external generation MUST result in an EK that has the same properties as an 1017
internally generated EK 1018

b. The external generation process MUST protect the EK from exposure during the 1019
generation and insertion of the EK 1020

c. After insertion of the EK the TPM state MUST be the same as the result of the 1021
TPM_CreateEndorsementKeyPair execution 1022

d. The process MUST guarantee correct generation, cryptographic strength, 1023
uniqueness, privacy, and installation into a genuine TPM, of the EK 1024

e. The entity that signs the EK credential MUST be satisfied that the generation process 1025
properly generated the EK and inserted it into the TPM 1026

f. The process MUST be defined in the target of evaluation (TOE) of the security target 1027
in use to evaluate the TPM 1028

5.1 Controlling Access to PRIVEK 1029

Start of informative comment 1030

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

30 Revision 94 29 March 2006
 TCG Published

Exposure of the PRIVEK is a security concern. 1031

The TPM must ensure that the PRIVEK is not exposed outside of the TPM 1032

End of informative comment 1033

1. The PRIVEK MUST never be out of the control of a TPM shielded location 1034

5.2 Controlling Access to PUBEK 1035

Start of informative comment 1036

There are no security concerns with exposure or use of the PUBEK. 1037

Privacy guidelines suggest that PUBEK could be considered personally identifiable 1038
information (PII) if it were associated in some way with personal information (PI) or 1039
associated with other PII, but PUBEK alone cannot be considered PII. Arbitrary random 1040
numbers do not represent a threat to privacy unless further associated with PI or PII. The 1041
PUBEK is an arbitrary random number that may be associated with aggregate platform 1042
information, but not personally identifiable information. 1043

An EK may become associated with personally identifiable information when an alias 1044
platform identifier (AIK) is also associated with PI. The attestation service could include 1045
personal information in the AIK credential, thereby making the AIK-PUBEK association PII – 1046
but not before. 1047

The association of PUBEK with AIK therefore is important to protect via privacy guidelines. 1048
The owner/user of the TPM should be able to control whether PUBEK is disclosed along 1049
with AIK. The owner/user should be notified of personal information that might be added to 1050
an AIK credential, which could result in AIK being considered PII. The owner/user should 1051
be able to evaluate the mechanisms used by an attestation entity to protect PUBEK-AIK 1052
associations before disclosure occurs. No other entity should be privy to owner/user 1053
authorized disclosure besides the intended attestation entity. 1054

Several commands may be used to negotiate the conditions of PUBEK-AIK disclosure. 1055
TPM_MakeIdentity discloses PUBEK-AIK in the context of requesting an AIK credential. 1056
TPM_ActivateIdentity ensures the owner/user has not been spoofed by an interloper. These 1057
interfaces allow the owner/user to choose whether disclosure is acceptable and control the 1058
circumstances under which disclosure takes place. They do not allow the owner/user the 1059
ability to retain control of PUBEK-AIK subsequent to disclosure except by traditional means 1060
of trusting the attestation entity to abide by an acceptable privacy policy. The owner/user is 1061
able to associate the accepted privacy policy with the disclosure operation (e.g. 1062
TPM_MakeIdentity). 1063

A persistent flag called readPubek can be set to TRUE to permit reading of PUBEK via 1064
TPM_ReadPubek. Reporting the PUBEK value is not considered privacy sensitive because it 1065
cannot be associated with any of the AIK keys managed by the TPM without using TPM 1066
protected-capabilities.. Keys are encrypted with a nonce when flushed from TPM shielded-1067
locations, Cryptanalysis of flushed keys will not reveal an association of EK to any AIK... 1068

The command that manipulates the readPubek flag is TPM_DisablePubekRead. 1069

End of informative comment 1070

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 31
 TCG Published

6. Attestation Identity Keys 1071
Start of informative comment 1072

The Attestation Identity Key (AIK) is an alias to the Endorsement Key (EK). The AIK is a 1073
2048-bit RSA key. Generation of an AIK can occur anytime after establishment of the TPM 1074
Owner. The TPM can generate a virtually unlimited number of AIK. 1075

The TPM Owner controls all aspects of the generation and activation of an AIK. The TPM 1076
Owner controls any data associated with the AIK. The AIK credential may contain 1077
application specific information. 1078

An AIK is a signature key and it signs information generated internally by the TPM. The 1079
data would include PCR, other keys and TPM status information. The AIK is a substitute for 1080
the EK, which cannot perform signatures for security reasons and cannot perform 1081
signatures due to privacy concerns. 1082

AIK creation involves three TPM commands. 1083

The TPM_MakeIdentity command causes the TPM to generate the AIK key pair. The 1084
command also discloses the EK-AIK binding to the service that will issue the AIK credential. 1085

The TPM_ActivateIdentity command unwraps a session key that allows for the decryption of 1086
the AIK credential. The session key was encrypted using the PUBEK and requires the 1087
PRIVEK to perform the decryption. 1088

The TPM_RecoverIdentity allows for a subsequent recovery of the session key by again 1089
performing the decryption using the PRIVEK. 1090

Use of the AIK credential is outside of the control of the TPM. 1091

The user of an AIK must prove knowledge of the 160-bit AIK authentication value to use the 1092
AIK. 1093

End of informative comment 1094

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

32 Revision 94 29 March 2006
 TCG Published

7. TPM Ownership 1095
Start of informative comment 1096

Taking ownership of a TPM is the process of inserting a shared secret into a TPM shielded-1097
location. Any entity that knows the shared secret is a TPM Owner. Proof of ownership 1098
occurs when an entity, in response to a challenge, proves knowledge of the shared secret. 1099
Certain operations in the TPM require authentication from a TPM Owner. 1100

Certain operations also allow the human, with physical possession of the platform, to assert 1101
TPM Ownership rights. When asserting TPM Ownership, using physical presence, the 1102
operations must not expose any secrets protected by the TPM. 1103

The platform owner controls insertion of the shared secret into the TPM. The platform 1104
owner sets the NV persistent flag ownershipEnabled that allows the execution of the 1105
TPM_TakeOwnership command. The TPM_SetOwnerInstall, the command that controls the 1106
value ownershipEnabled, requires the assertion of physical presence. 1107

Attempting to execute TPM_TakeOwnership fails when a TPM already has an owner. To 1108
remove an owner when the current TPM Owner is unable to remove themselves, the human 1109
that is in possession of the platform asserts physical presence and executes 1110
TPM_ForceClear which removes the shared secret. 1111

The insertion protocol that supplies the shared secret has the following requirements: 1112
confidentiality, integrity, remoteness and verifiability. 1113

To provide confidentiality the proposed TPM Owner encrypts the shared secret using the 1114
PUBEK. This requires the PRIVEK to decrypt the value. As the PRIVEK is only available in 1115
the TPM the encrypted shared secret is only available to the intended TPM. 1116

The integrity of the process occurs by the TPM providing proof of the value of the shared 1117
secret inserted into the TPM. 1118

By using the confidentiality and integrity, the protocol is useable by TPM Owners that are 1119
remote to the platform. 1120

The new TPM Owner validates the insertion of the shared secret by using integrity response. 1121

End of informative comment 1122

The TPM MUST ship with no Owner installed. The TPM MUST use the ownership-control 1123
protocol (OIAP or OSAP) 1124

7.1 Platform Ownership and Root of Trust for Storage 1125

Start of informative comment 1126

The semantics of platform ownership are tied to the Root-of-trust-for-storage (RTS). The 1127
TPM_TakeOwnership command creates a new Storage Root Key (SRK) and new tpmProof 1128
value whenever a new owner is established. It follows that objects owned by a previous 1129
owner will not be inherited by the new owner. Objects that should be inherited must be 1130
transferred by deliberate data migration actions. 1131

End of informative comment 1132

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 33
 TCG Published

8. Authentication and Authorization Data 1133
Start of informative comment 1134

Using security vernacular the terms below apply to the TPM for this discussion: 1135

 Authentication: The process of providing proof of claimed ownership of an object or a 1136
subject's claimed identity. 1137

 Authorization: Granting a subject appropriate access to an object. 1138

Each TPM object that does not allow "public" access contains a 160-bit shared secret. This 1139
shared secret is enveloped within the object itself. The TPM grants use of TPM objects based 1140
on the presentation of the matching 160-bits using protocols designed to provide protection 1141
of the shared secret. This shared secret is called the AuthData. 1142

Neither the TPM, nor its objects (such as keys), contain access controls for its objects (the 1143
exception to this is what is provided by the delegation mechanism). If an subject presents 1144
the AuthData, that subject is granted full use of the object based on the object's 1145
capabilities, not a set of rights or permissions of the subject. This apparent overloading of 1146
the concepts of authentication and authorization has caused some confusion. This is 1147
caused by having two similarly rooted but distinct perspectives. 1148

From the perspective of the TPM looking out, this AuthData is its sole mechanism for 1149
authenticating the owner of its objects, thus from its perspective it is authentication data. 1150
However, from the application's perspective this data is typically the result of other 1151
functions that might perform authentications or authorizations of subjects using higher 1152
level mechanisms such as OS login, file system access, etc. Here, AuthData is a result of 1153
these functions so in this usage, it authorizes access to the TPM's objects. From this 1154
perspective, i.e., the application looking in on the TPM and its objects, the AuthData is 1155
authorization data. For this reason, and thanks to a common root within the English 1156
language, the term for this data is chosen to be AuthData and is to be interpreted or 1157
expanded as either authentication data or authorization data depending on context and 1158
perspective. 1159

The term AuthData refers to the 160-bit value used to either prove ownership of, or 1160
authorization to use, an object. This is also called the object's shared secret. The term 1161
authorization will be used when referring the combined action of verifying the AuthData and 1162
allowing access to the object or function. The term authorization session applies to a state 1163
where the AuthData has been authentication and a session handle established that is 1164
associated with that authentication. 1165

A wide-range of objects use AuthData. It is used to establish platform ownership, key use 1166
restrictions, object migration and to apply access control to opaque objects protected by the 1167
TPM. 1168

AuthData is a 160-bit shared-secret plus high-entropy random number. The assumption is 1169
the shared-secret and random number are mixed using SHA-1 digesting, but no specific 1170
function for generating AuthData is specified by TCG. 1171

TCG command processing sessions (e.g. OSAP, ADIP) may use AuthData as an initialization 1172
vector when creating a one-time pad. Session encryption is used to encrypt portions of 1173
command messages exchanged between TPM and a caller. 1174

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

34 Revision 94 29 March 2006
 TCG Published

The TPM stores AuthData with TPM controlled-objects and in shielded-locations. AuthData 1175
is never in the clear, when managed by the TPM except in shielded-locations. Only TPM 1176
protected-capabilities may access AuthData (contained in the TPM). AuthData objects may 1177
not be used for any other purpose besides authentication and authorization of TPM 1178
operations on controlled-objects. 1179

Outside the TPM, a reference monitor of some kind is responsible for protecting AuthData. 1180
AuthData should be regarded as a controlled data item (CDI) in the context of the security 1181
model governing the reference monitor. TCG expects this entity to preserve the interests of 1182
the platform Owner. 1183

There is no requirement that instances of AuthData be unique. 1184

End of informative comment 1185

The TPM MUST reserve 160 bits for the AuthData. The TPM treats the AuthData as a blob. 1186
The TPM MUST keep AuthData in a shielded-location. 1187

The TPM MUST enforce that the only usage in the TPM of the AuthData is to perform 1188
authorizations. 1189

8.1 Dictionary Attack Considerations 1190

Start of informative comment 1191

The decision to provide protections against dictionary attacks is due to the inability of the 1192
TPM to guarantee that an authorization value has high entropy. While the creation and 1193
authorization protocols could change to support the assurance of high entropy values, the 1194
changes would be drastic and would totally invalidate any 1.x TPM version. 1195

Version 1.1 explicitly avoided any requirements for dictionary attack mitigation. 1196

Version 1.2 adds the requirement that the TPM vendor provide some assistance against 1197
dictionary attacks. The internal mechanism is vendor specific. The TPM designer should 1198
review the requirements for dictionary attack mitigation in the Common Criteria. 1199

The 1.2 specification does not provide any functions to turn on the dictionary attack 1200
prevention. The specification does provide a way to reset from the TPM response to an 1201
attack. 1202

By way of example, the following is a way to implement the dictionary attack mitigation. 1203

The TPM keeps a count of failed authorization attempts. The vendor allows the TPM Owner 1204
to set a threshold of failed authorizations. When the count exceeds the threshold, the TPM 1205
locks up and does not respond to any requests for a time out period. The time out period 1206
doubles each time the count exceeds the threshold. If the TPM resets during a time out 1207
period, the time out period starts over after TPM_Init, or TPM_Startup. To reset the count 1208
and the time out period the TPM Owner executes TPM_ResetLockValue. If the authorization 1209
for TPM_ResetLockValue fails, the TPM must lock up for the entire time out period and no 1210
additional attempts at unlocking will be successful. Executing TPM_ResetLockValue when 1211
outside of a time out period still results in the resetting of the count and time out period. 1212

End of informative comment 1213

The TPM SHALL incorporate mechanism(s) that will provide some protection against 1214
exhaustive or dictionary attacks on the authorization values stored within the TPM. 1215

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 35
 TCG Published

This version of the TPM specification does NOT specify the particular strategy to be used. 1216
Some examples might include locking out the TPM after a certain number of failures, 1217
forcing a reboot under some combination of failures, or requiring specific actions on the 1218
part of some actors after an attack has been detected. The mechanisms to manage these 1219
strategies are vendor specific at this time. 1220

If the TPM in response to the attacks locks up for some time period or requires a special 1221
operation to restart, the TPM MUST prevent any authorized TPM command and MAY 1222
prevent any TPM from executing until the mitigation mechanism completes. The TPM 1223
Owner can reset the mechanism using the TPM_ResetLockValue command. 1224
TPM_ResetLockValue MUST be allowed to run exactly once while the TPM is locked up. 1225

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

36 Revision 94 29 March 2006
 TCG Published

9. TPM Operation 1226
Start of informative comment 1227

Through the course of TPM operation, it may enter several operational modes that include 1228
power-up, self-test, administrative modes and full operation. This section describes TPM 1229
operational states and state transition criteria. Where applicable, the TPM commands used 1230
to facilitate state transition or function are included in diagrams and descriptions. 1231

The TPM keeps the information relative to the TPM operational state in a combination of 1232
persistent and volatile flags. For ease of reading the persistent flags are prefixed by pFlags 1233
and the volatile flags prefixed by vFlags. 1234

The following state diagram describes TPM operational states at a high level. Subsequent 1235
state diagrams drill-down to finer detail that describes fundamental operations, protections 1236
on operations and the transitions between them. 1237

The state diagrams use the following notation: 1238

CompositeState

 - Signifies a state. 1239

 - Transitions between states are represented as a single headed arrows. 1240

 - Circular transitions indicate operations that don’t result in a transition to another 1241
state. 1242

 - Decision boxes split state flow based on a logical test. Decision conditions are called 1243
Guards and are identified by bracketed text.. 1244

< [text] > Bracketed text indicates transitions that are gated. Text within the brackets 1245
describes the pre-condition that must be met before state transition may occur. 1246

< /name > Transitions may list the events that trigger state transition. The forward slash 1247
demarcates event names. 1248

 - The starting point for reading state diagrams. 1249

 - The ending point for state diagrams. Perpetual state systems may not have an ending 1250
indicator. 1251

 - The collection bar consolidates multiple identical transition events into a single 1252
transition arrow. 1253

 - The distribution bar splits transitions to flow into multiple states. 1254

H - The history indicator means state values are remembered across context switches or 1255
power-cycles. 1256

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 37
 TCG Published

End of informative comment 1257

9.1 TPM Initialization & Operation State Flow 1258

Start of informative comment 1259

 1260
Figure 9:a - TPM Operational States 1261

End of informative comment 1262

9.1.1 Initialization 1263

Start of informative comment 1264

TPM_Init transitions the TPM from a power-off state to one where the TPM begins an 1265
initialization process. TPM_Init could be the result of power being applied to the platform or 1266
a hard reset. 1267

TPM_Init sets an internal flag to indicate that the TPM is undergoing initialization. The TPM 1268
must complete initialization before it is operational. The completion of initialization requires 1269
the receipt of the TPM_Startup command. 1270

The TPM is not fully operational until all of the self-tests are complete. Successful 1271
completion of the self-tests allows the TPM to enter fully operational mode. 1272

Fully operational does not imply that all functions of the TPM are available. The TPM needs 1273
to have a TPM Owner and be enabled for all functions to be available. 1274

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

38 Revision 94 29 March 2006
 TCG Published

The TPM transitions out of the operational mode by having power removed from the system. 1275
Prior to the exiting operational mode, the TPM prepares for the transition by executing the 1276
TPM_SaveState command. There is no requirement that TPM_SaveState execute before the 1277
transition to power-off mode occurs. 1278

End of informative comment 1279

1. After TPM_Init and until receipt of TPM_Startup the TPM MUST return 1280
TPM_INVALID_POSTINIT for all commands. Prior to receipt of TPM_Startup the TPM 1281
MAY enter shutdown or failure mode. 1282

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 39
 TCG Published

9.2 Self-Test Modes 1283

Start of informative comment 1284

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

40 Revision 94 29 March 2006
 TCG Published

 1285

Figure 9:b - Self-Test States 1286

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 41
 TCG Published

After initialization the TPM performs a limited self-test. This test provides the assurance 1287
that a selected subset of TPM commands will perform properly. The limited nature of the 1288
self-test allows the TPM to be functional in as short of time as possible. The commands 1289
enabled by this self-test are: 1290

TPM_SHA1xxx – Enabling the SHA-1 commands allows the TPM to assist the platform 1291
startup code. The startup code may execute in an extremely constrained memory 1292
environment and having the TPM resources available to perform hash functions can allow 1293
the measurement of code at an early time. While the hash is available, there are no speed 1294
requirements on the I/O bus to the TPM or on the TPM itself so use of this functionality 1295
may not meet platform startup requirements. 1296

TPM_Extend – Enabling the extend, and by reference the PCR, allows the startup code to 1297
perform measurements. Extending could use the SHA-1 TPM commands or perform the 1298
hash using the main processor. 1299

TPM_Startup – This command must be available as it is the transition command from the 1300
initial environment to the limited operational state. 1301

TPM_ContinueSelfTest – This command causes the TPM to complete the self-tests on all 1302
other TPM functions. If TPM receives a command, and the self-test for that command has 1303
not been completed, the TPM may implicitly perform the actions of the 1304
TPM_ContinueSelfTest command. 1305

TPM_SelfTestFull – A TPM MAY allow this command after initialization, but typically 1306
TPM_ContinueSelfTest would be used to avoid repeating the limited self tests. 1307

TPM_GetCapability – A subset of capabilities can be read in the limited operation state. 1308

The complete self-test ensures that all TPM functionality is available and functioning 1309
properly. 1310

End of informative comment 1311

1. At startup, a TPM MUST self-test all internal functions that are necessary to do 1312
TPM_SHA1Start, TPM_SHA1Update, TPM_SHA1Complete, TPM_SHA1CompleteExtend, 1313
TPM_Extend, TPM_Startup, TPM_ContinueSelfTest, and a subset of TPM_GetCapability.. 1314

2. The TSC_PhysicalPresence and TSC_ResetEstablishmentBit commands do not operate 1315
on shielded-locations and have no requirement to be self-tested before any use. TPM’s 1316
SHOULD test these functions before operation. 1317

3. The TPM MAY allow TPM_SelfTestFull to be used before completion of the actions of 1318
TPM_ContinueSelfTest. 1319

4. The TPM MAY implicitly run the actions of TPM_ContinueSelfTest upon receipt of a 1320
command that requires untested resources. 1321

5. The platform specific specification MUST define the maximum startup self-test time. 1322

9.2.1 Operational Self-Test 1323

Start of informative comment 1324

The completion of self-test is initiated by TPM_ContinueSelfTest. The TPM MAY allow 1325
TPM_SelfTestFull to be issued instead of TPM_ContinueSelfTest. 1326

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

42 Revision 94 29 March 2006
 TCG Published

TPM_ContinueSelfTest is the command issued during platform initialization after the 1327
platform has made use of the early commands (perhaps for an early measurement), the 1328
platform is now performing other initializations, and the TPM can be left alone to complete 1329
the self-tests. Before any command other than the limited subset is executed, all self-tests 1330
must be complete. 1331

TPM_SelfTestFull is a request to have the TPM perform another complete self-test. This test 1332
will take some time but provides an accurate assessment of the TPM’s ability to perform all 1333
operations. 1334

The original design of TPM_ContinueSelfTest was for the TPM to test those functions that 1335
the original startup did not test. The FIPS-140 evaluation of the specification requested a 1336
change such that TPM_ContinueSelfTest would perform a complete self-test. The rationale 1337
is that the original tests are only part of the initialization of the TPM; if they fail, the TPM 1338
does not complete initialization. Performing a complete test after initialization meets the 1339
FIPS-140 requirements. The TPM may work differently in FIPS mode or the TPM may simply 1340
write the TPM_ContinueSelfTest command such that it always performs the complete check. 1341

TPM_ContinueSelfTest causes a test of the TPM internal functions. When 1342
TPM_ContinueSelfTest is asynchronous, the TPM immediately returns a successful result 1343
code before starting the tests. When testing is complete, the TPM does not return any 1344
result. When TPM_ContinueSelfTest is synchronous, the TPM completes the self-tests and 1345
then returns a success or failure result code. 1346

The TPM may reject any command other than the limited subset if self test has not been 1347
completed. Alternatively, the actions of TPM_ContinueSelfTest may start automatically if the 1348
TPM receives a command and there has been no testing of the underlying functionality. If 1349
the TPM implements this implicit self-test, it may immediately return a result code 1350
indicating that it is doing self-test. Alternatively, it may do the self-test, then do the 1351
command, and return only the result code of the command. 1352

Programmers of TPM drivers should take into account the time estimates for self-test and 1353
minimize the polling for self-test completion. While self-test is executing, the TPM may 1354
return an out-of-band “busy” signal to prevent command from being issued. Alternatively, 1355
the TPM may accept the command but delay execution until after the self-test completes. 1356
Either of those alternatives may appear as if the TPM is blocking to upper software layers. 1357
Alternatively, the TPM may return an indication that is doing a self-test. 1358

Upon the completion of the self-tests, the result of the self-tests are held in the TPM such 1359
that a subsequent call to TPM_GetTestResult returns the self-test result. 1360

In version 1.1, there was a separate command to create a signed self-test, 1361
TPM_CertifySelfTest. Version 1.2 deprecates the command. The new use model is to perform 1362
TPM_GetTestResult inside of a transport session and then use 1363
TPM_ReleaseTransportSigned to obtain the signature. 1364

If self-tests fail, the TPM goes into failure state and does not allow most other operations to 1365
continue. The TPM_GetTestResult will operate in failure mode so an outside observer can 1366
obtain information as to the reason for the self-test failure. 1367

A TPM may take three courses of action when presented with a command that requires an 1368
untested resource. 1369

1. The TPM may return TPM_NEEDS_SELFTEST, indicating that the execution of the 1370
command requires TPM_ContinueSelfTest. 1371

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 43
 TCG Published

2. The TPM may implicitly execute the self-test and return a TPM_DOING_SELFTEST 1372
return code, causing the external software to retry the command. 1373

3. The TPM may implicitly execute the self-test, execute the ordinal, and return the results 1374
of the ordinal. 1375

The following example shows how software can detect either mechanism with a single piece 1376
of code 1377

1. SW sends TPM_xxx command 1378

2. SW checks return code from TPM 1379

3. If return code is TPM_DOING_SELFTEST, SW attempts to resend 1380

 a. If the TIS times out waiting for TPM ready, pause for self-test time then resend 1381

 b. if TIS timeout, then error 1382

4. else if return code is TPM_NEEDS_SELFTEST 1383

 a. Send TPM_ContinueSelfTest 1384

5. else 1385

 a. Process the ordinal return code 1386

End of informative comment 1387

1. The TPM MUST provide startup self-tests. The TPM MUST provide mechanisms to allow 1388
the self-tests to be run on demand. The response from the self-tests is pass or fail. 1389

2. The TPM MUST complete the startup self-tests in a manner and timeliness that allows 1390
the TPM to be of use to the BIOS during the collection of integrity metrics. 1391

3. The TPM MUST complete the required checks before a given feature is in use. If a 1392
function self-test is not complete the TPM MUST return TPM_NEEDS_SELFTEST or 1393
TPM_DOING_SELFTEST, or do the self-test before using the feature. 1394

4. There are two sections of startup self-tests: required and recommended. The 1395
recommended tests are not a requirement due to timing constraints. The TPM 1396
manufacturer should perform as many tests as possible in the time constraints. 1397

5. The TPM MUST report the tests that it performs. 1398

6. The TPM MUST provide a mechanism to allow self-test to execute on request by any 1399
challenger. 1400

7. The TPM MUST provide for testing of some operations during each execution of the 1401
operation. 1402

8. The TPM MUST check the following: 1403

a. RNG functionality 1404

b. Reading and extending the integrity registers. The self-test for the integrity registers 1405
will leave the integrity registers in a known state. 1406

c. Testing the EK integrity, if it exists 1407

i. This requirement specifies that the TPM will verify that the endorsement key pair 1408
can sign and verify a known value. This test also tests the RSA sign and verify 1409

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

44 Revision 94 29 March 2006
 TCG Published

engine. If the EK has not yet been generated the TPM action is manufacturer 1410
specific. 1411

d. The integrity of the protected capabilities of the TPM 1412

i. This means that the TPM must ensure that its “microcode” has not changed, and 1413
not that a test must be run on each function. 1414

e. Any tamper-resistance markers 1415

i. The tests on the tamper-resistance or tamper-evident markers are under 1416
programmable control. There is no requirement to check tamper-evident tape or 1417
the status of epoxy surrounding the case. 1418

9. The TPM SHOULD check the following: 1419

a. The hash functionality 1420

i. This check will hash a known value and compare it to an expected result. There is 1421
no requirement to accept external data to perform the check. 1422

ii. The TPM MAY support a test using external data. 1423

b. Any symmetric algorithms 1424

i. This check will use known data with a random key to encrypt and decrypt the 1425
data 1426

c. Any additional asymmetric algorithms 1427

i. This check will use known data to encrypt and decrypt. 1428

d. The key-wrapping mechanism 1429

i. The TPM should wrap and unwrap a key. The TPM MUST NOT use the 1430
endorsement key pair for this test. 1431

e. Any other internal mechanisms 1432

10. Self-Test Failure 1433

a. When the TPM detects a failure during any self-test, the part experiencing the failure 1434
MUST enter a shutdown mode. This shutdown mode will allow only the following 1435
operations to occur: 1436

i. Update. The update function MAY replace invalid microcode, providing that the 1437
parts of the TPM that provide update functionality have passed self-test. 1438

ii. TPM_GetTestResult. This command can assist the TPM manufacturer in 1439
determining the cause of the self-test failure. 1440

iii. TPM_GetCapability may return only the manufacturer and version. 1441

iv. All other operations will return the error code TPM_FAILEDSELFTEST. 1442

b. Upon entering failure mode, the TPM clears all information except those items 1443
specified in TPM_OwnerClear. 1444

c. If the TPM detects an attack, by whatever mechanism the TPM uses, the TPM MUST 1445
invalidate all session keys and any internal keys, like AES, in use to store off-chip 1446
blobs. 1447

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 45
 TCG Published

11. Prior to the completion of the actions of TPM_ContinueSelfTest the TPM MAY respond in 1448
two ways 1449

a. The TPM MAY automatically invoke the actions of TPM_ContinueSelfTest. 1450

i. The TPM MAY return TPM_DOING_SELFTEST. 1451

ii. The TPM may complete the self-test, execute the command, and return the 1452
command result. 1453

b. The TPM MAY return the error code TPM_NEEDS_SELFTEST 1454

9.3 Startup 1455

Start of informative comment 1456

Startup transitions the TPM from the initialization state to an operational state. The 1457
transition includes information from the platform to inform the TPM of the platform 1458
operating state. TPM_Startup has three options: Clear, State and Deactivated. 1459

The Clear option informs the TPM that the platform is starting in a “cleared” state or most 1460
likely a complete reboot. The TPM is to set itself to the default values and operational state 1461
specified by the TPM Owner. 1462

The State option informs the TPM that the platform is requesting the TPM to recover a saved 1463
state and continue operation from the saved state. The platform previously made the 1464
TPM_SaveState request to the TPM such that the TPM prepares values to be recovered later. 1465

The Deactivated state informs the TPM that it should not allow further operations and 1466
should fail all subsequent command requests. The Deactivated state can only be reset by 1467
performing another TPM_Init. 1468

End of informative comment 1469

9.4 Operational Mode 1470

Start of informative comment 1471

After the TPM completes both TPM_Startup and self-tests, the TPM is ready for operation. 1472

There are three discrete states, enabled or disabled, active or inactive and owned or 1473
unowned. These three states when combined form eight operational modes. 1474

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

46 Revision 94 29 March 2006
 TCG Published

 1475
Figure 9:c - Eight Modes of Operation 1476

S1 is the fully operational state where all TPM functions are available. S8 represents a mode 1477
where all TPM features (except those to change the state) are off. 1478

Given the eight modes of operation, the TPM can be flexible in accommodating a wide range 1479
of usage scenarios. The default delivery state for a TPM should be S8 (disabled, inactive and 1480
unowned). In S8, the only mechanism available to move the TPM to S1 is having physical 1481
access to the platform. 1482

Two examples illustrate the possibilities of shipping combinations. 1483

Example 1 1484

The customer does not want the TPM to attest to any information relative to the platform. 1485
The customer does not want any remote entity to attempt to change the control options that 1486
the platform owner is setting. For this customer the platform manufacturer sets the TPM in 1487
S8 (disabled, deactivated and unowned). 1488

To change the state of the platform the platform owner would assert physical presence and 1489
enable, activate and insert the TPM Owner shared secret. The details of how to change the 1490
various modes is in subsequent sections. 1491

This particular sequence gives maximum control to the customer. 1492

Example 2 1493

A corporate customer wishes to have platforms shipped to their employees and the IT 1494
department wishes to take control of the TPM remotely. To satisfy these needs the TPM 1495
should be in S5 (enabled, active and unowned). When the platform connects to the 1496
corporate LAN the IT department would execute the TPM_TakeOwnership command 1497
remotely. 1498

This sequence allows the IT department to accept platforms into their network without 1499
having to have physical access to each new machine. 1500

End of informative comment 1501

The TPM MUST have commands to perform the following: 1502

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 47
 TCG Published

1. Enable and disable the TPM. These commands MUST work as TPM Owner authorized or 1503
with the assertion of physical presence 1504

2. Activate and deactivate the TPM. These commands MUST work as TPM Owner 1505
authorized or with the assertion of physical presence 1506

3. Activate and deactivate the ability to take ownership of the TPM 1507

4. Assert ownership of the TPM. 1508

9.4.1 Enabling a TPM 1509

Informative comment 1510

A disabled TPM is not able to execute commands that use the resources of a TPM. While 1511
some commands are available (SHA-1 for example) the TPM is not able to load keys and 1512
perform TPM_Seal and other such operations. These restrictions are the same as for an 1513
inactive TPM. The difference between inactive and disabled is that a disabled TPM is unable 1514
to execute the TPM_TakeOwnership command. A disabled TPM that has a TPM Owner is not 1515
able to execute normal TPM commands. 1516

 1517
pFlags.tpmDisabled contains the current enablement status. When set to TRUE the TPM is 1518
disabled, when FALSE the TPM is enabled. 1519

Changing the setting pFlags.tpmDisabled has no effect on any secrets or other values held 1520
by the TPM. No keys, monotonic counters or other resources are invalidated by changing 1521
TPM enablement. There is no guarantee that session resources (like transport sessions) 1522
survive the change in enablement, but there is no loss of secrets. 1523

The TPM_OwnerSetDisable command can be used to transition in either Enabled or 1524
Disabled states. The desired state is a parameter to TPM_OwnerSetDisable. This command 1525
requires TPM Owner authentication to operate. It is suitable for post-boot and remote 1526
invocation. 1527

An unowned TPM requires the execution of TPM_PhysicalEnable to enable the TPM and 1528
TPM_PhysicalDisable to disable the TPM. Operators of an owned TPM can also execute 1529

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

48 Revision 94 29 March 2006
 TCG Published

these two commands. The use of the physical commands allows a platform operator to 1530
disable the TPM without TPM Owner authorization. 1531

TPM_PhysicalEnable transitions the TPM from Disabled to Enabled state. This command is 1532
guarded by a requirement of operator physical presence. Additionally, this command can be 1533
invoked by a physical event at the platform, whether or not the TPM has an Owner or there 1534
is a human physically present. This command is suitable for pre-boot invocation. 1535

TPM_PhysicalDisable transitions the TPM from Enabled to Disabled state. It has the same 1536
guard and invocation properties as TPM_PhysicalEnable. 1537

The subset of commands the TPM is able to execute is defined in the structures document 1538
in the persistent flag section. 1539

Misuse of the disabled state can result in denial-of-service. Proper management of Owner 1540
AuthData and physical access to the platform is a critical element in ensuring availability of 1541
the system. 1542

End of informative comment 1543

1. The TPM MUST provide an enable and disable command that is executed with TPM 1544
Owner authorization. 1545

2. The TPM MUST provide an enable and disable command this is executed locally using 1546
physical presence. 1547

9.4.2 Activating a TPM 1548

Informative comment 1549

A deactivated TPM is not able to execute commands that use TPM resources. A major 1550
difference between deactivated and disabled is that a deactivated TPM CAN execute the 1551
TPM_TakeOwnership command. 1552

Activation control is with both persistent and volatile flags. The persistent flag is never 1553
directly checked by the TPM, rather it is the source of the original setting for the volatile 1554
flag. During TPM initialization the value of pFlags.tpmDeactivated is copied to 1555
vFlags.tpmDeactivated. When the TPM execution engine checks for TPM activation, it only 1556
references vFlags.tpmDeactivated. 1557

Toggling the state of pFlags.tpmDeactivated uses TPM_PhysicalSetDeactivated. This 1558
command requires physical presence. There is no associated TPM Owner authenticated 1559
command as the TPM Owner can always execute TPM_OwnerSetDisabled which results in 1560
the same TPM operations. The toggling of this flag does not affect the current operation of 1561
the TPM but requires a reboot of the platform such that the persistent flag is again copied 1562
to the volatile flag. 1563

The volatile flag, vFlags.tpmDeactivated, is set during initialization by the value of 1564
pFlags.tpmDeactivated. If vFlags.tpmDeactivated is TRUE the only way to reactivate the 1565
TPM is to reboot the platform and have pFlags reset the vFlags value. 1566

If vFlags is FALSE and the TPM running TPM_SetTempDeactivated will set 1567
vFlags.tpmDeactivated to TRUE and then require a reboot of the platform to reactivate the 1568
platform. 1569

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 49
 TCG Published

 1570
Figure 9:d - Activated and Deactivated States 1571

TPM activation is for Operator convenience. It allows the operator to deactivate the platform 1572
during a user session when the operator does not want to disclose platform or attestation 1573
identity. 1574

The subset of commands that are available when the TPM is deactivated is contained in the 1575
structures document. The TPM_TakeOwnership command is available when deactivated. 1576

End of informative comment 1577

1. The TPM MUST maintain a non-volatile flag that indicates the activation state 1578

2. The TPM MUST provide for the setting of the non-volatile flag using a command that 1579
requires physical presence 1580

3. The TPM MUST sets a volatile flag using the current setting of the non-volatile flag. 1581

4. The TPM MUST provide for a command that deactivates the TPM immediately 1582

5. The only mechanism to reactivate a TPM once deactivated is to power-cycle the system. 1583

9.4.3 Taking TPM Ownership 1584

Start of informative comment 1585

The owner of the TPM has ultimate control of the TPM. The owner of the TPM can enable or 1586
disable the TPM, create AIK and set policies for the TPM. The process of taking ownership 1587
must be a tightly controlled process with numerous checks and balances. 1588

The protections around the taking of ownership include the enablement status, specific 1589
persistent flags and the assertion of physical presence. 1590

Control of the TPM revolves around knowledge of the TPM Owner authentication value. 1591
Proving knowledge of authentication value proves the calling entity is the TPM Owner. It is 1592
possible for more than one entity to know the TPM Owner authentication value. 1593

The TPM provides no mechanisms to recover a lost TPM Owner authentication value. 1594

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

50 Revision 94 29 March 2006
 TCG Published

Recovery from a lost or forgotten TPM Owner authentication value involves removing the old 1595
value and installing a new one. The removal of the old value invalidates all information 1596
associated with the previous value. Insertion of a new value can occur after the removal of 1597
the old value. 1598

A disabled and inactive TPM that has no TPM Owner cannot install an owner. 1599

To invalidate the TPM Owner authentication value use either TPM_OwnerClear or 1600
TPM_ForceClear. 1601

End of informative comment 1602

1. The TPM Owner authentication value MUST be a 160-bits 1603

2. The TPM Owner authentication value MUST be held in persistent storage 1604

3. The TPM MUST have no mechanisms to recover a lost TPM Owner authentication value 1605

9.4.3.1 Enabling Ownership 1606

Informative comment 1607

The state that a TPM must be in to allow for TPM_TakeOwnership to succeed is; enabled 1608
and fFlags.OwnershipEnabled TRUE. 1609

The following diagram shows the states and the operational checks the TPM makes before 1610
allowing the insertion of the TPM Ownership value. 1611

 1612
 1613

The TPM checks the disabled flag and then the inactive flag. If the flags indicate enabled 1614
then the TPM checks for the existence of a TPM Owner. If an Owner is not present the TPM 1615
then checks the OwnershipDisabled flag. If TRUE the TPM_TakeOwnership command will 1616
execute. 1617

While the TPM has no Owner but is enabled and active there is a limited subset of 1618
commands that will successfully execute. 1619

The TPM_SetOwnerInstall command toggles the state of the pFlags.OwnershipDisabled. 1620
TPM_SetOwnerInstall requires the assertion of physical presence to execute. 1621

End of informative comment 1622

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 51
 TCG Published

9.4.4 Transitioning Between Operational States 1623

Start of informative comment 1624

The following table is a recap of the commands necessary to transition a TPM from one state 1625
to another. 1626

State TPM Owner Auth Physical Presence Persistence

Disabled to Enabled TPM_OwnerSetDisable TPM_PhysicalEnable permanent

Enabled to Disabled TPM_OwnerSetDisable TPM_PhysicalDisable permanent

Inactive to Active TPM_PhysicalSetDeactivated permanent

Active to Inactive TPM_PhysicalSetDeactivated permanent

Active to Inactive TPM_SetTempDeactivated boot cycle

 1627

End of informative comment 1628

9.5 Clearing the TPM 1629

Start of informative comment 1630

Clearing the TPM is the process of returning the TPM to factory defaults. It is possible the 1631
platform owner will change when in this state. 1632

The commands to clear a TPM require either TPM Owner authentication or the assertion of 1633
physical presence. 1634

The clear process performs the following tasks: 1635

Invalidate the SRK. Once invalidated all information stored using the SRK is now 1636
unavailable. The invalidation does not change the blobs using the SRK rather there is no 1637
way to decrypt the blobs after invalidation of the SRK. 1638

Invalidate tpmProof. tpmProof is a value that provides the uniqueness to values stored off of 1639
the TPM. By invalidating tpmProof all off TPM blobs will no longer load on the TPM. 1640

Invalidate the TPM Owner authentication value. With the authentication value invalidated 1641
there are no TPM Owner authenticated commands that will execute. 1642

Reset volatile and non-volatile data to manufacturer defaults. 1643

The clear must not affect the EK. 1644

Once cleared the TPM will return TPM_NOSRK to commands that require authentication. 1645

The PCR values are undefined after a clear operation. The TPM must go through TPM_Init to 1646
properly set the PCR values. 1647

Clear authentication comes from either the TPM owner or the assertion of physical 1648
presence. As the clear commands present a real opportunity for a denial of service attack 1649
there are mechanisms in place disabling the clear commands. 1650

Disabling TPM_OwnerClear uses the TPM_DisableOwnerClear command. The state of ability 1651
to execute TPM_OwnerClear is then held as one of the non-volatile flags. 1652

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

52 Revision 94 29 March 2006
 TCG Published

Enablement of TPM_ForceClear is held in the volatile disableForceClear flag. 1653
disableForceClear is set to FALSE during TPM_Init. To disable the command software 1654
should issue the TPM_DisableForceClear command. 1655

During the TPM startup processing anyone with physical access to the machine can issue 1656
the TPM_ForceClear command. This command performs the clear operations if it has not 1657
been disabled by vFlags.DisabledForceClear being TRUE. 1658

The TPM can be configured to block all forms of clear operations. It is advisable to block 1659
clear operations to prevent an otherwise trivial denial-of-service attack. The assumption is 1660
the system startup code will issue the TPM_DisableForceClear on each power-cycle after it 1661
is determined the TPM_ForceClear command will not be necessary. The purpose of the 1662
TPM_ForceClear command is to recover from the state where the Owner has lost or 1663
forgotten the TPM Owner-authentication-data. 1664

The TPM_ForceClear must only be possible when the issuer has physical access to the 1665
platform. The manufacturer of a platform determines the exact definition of physical access. 1666

The commands to clear a TPM require either TPM Owner authentication, TPM_OwnerClear, 1667
or the assertion of physical presence, TPM_ForceClear. 1668

End of informative comment 1669

1. The TPM MUST support the clear operations. 1670

a. Clear operations MUST be authenticated by either the TPM Owner or physical 1671
presence 1672

b. The TPM MUST support mechanisms to disable the clear operations 1673

2. The clear operation MUST perform at least the following actions 1674

a. SRK invalidation 1675

b. tpmProof invalidation 1676

c. TPM Owner authentication value invalidation 1677

d. Resetting non-volatile values to defaults 1678

e. Invalidation of volatile values 1679

f. Invalidation of internal resources 1680

3. The clear operation must not affect the EK. 1681

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 53
 TCG Published

10. Physical Presence 1682
Start of informative comment 1683

This specification describes commands that require physical presence at the platform before 1684
the command will operate. Physical presence implies direct interaction by a person – i.e. 1685
Operator with the platform / TPM. 1686

The type of controls that imply special privilege include: 1687

• Clearing an existing Owner from the TPM, 1688

• Temporarily deactivating a TPM, 1689

• Temporarily disabling a TPM. 1690

Physical presence implies a level of control and authorization to perform basic 1691
administrative tasks and to bootstrap management and access control mechanisms. 1692

Protection of low-level administrative interfaces can be provided by physical and electrical 1693
methods; or by software; or a combination of both. The guiding principle for designers is the 1694
protection mechanism should be difficult or impossible to spoof by rogue software. 1695
Designers should take advantage of restricted states inherent in platform operation. For 1696
example, in a PC, software executed during the power-on self-test (POST) cannot be 1697
disturbed without physical access to the platform. Alternatively, a hardware switch 1698
indicating physical presence is very difficult to circumvent by rogue software or remote 1699
attackers. 1700

TPM and platform manufacturers will determine the actual implementation approach. The 1701
strength of the protection mechanisms is determined by an evaluation of the platform. 1702

Physical presence indication is implemented as a flag in volatile memory known as the 1703
PhysicalPresenceV flag. When physical presence is established (TRUE) several TPM 1704
commands are able to function. They include: 1705

TPM_PhysicalEnable, 1706

TPM_PhysicalDisable, 1707

TPM_PhysicalSetDeactivated, 1708

TPM_ForceClear, 1709

TPM_SetOwnerInstall, 1710

In order to execute these commands, the TPM must obtain unambiguous assurance that 1711
the operation is authorized by physical-presence at the platform. The command processor 1712
in the I/O component checks the physicalPresenceV flag before continuing processing of 1713
TPM command blocks. The volatile physicalPresenceV flag is set only while the Operator is 1714
indeed physically present. 1715

TPM designers should take precautions to ensure testing of the physicalPresenceV flag 1716
value is not mask-able. For example, a special bus cycle could be used or a dedicated line 1717
implemented. 1718

There is an exception to physical presence semantics that allows a remote entity the ability 1719
to assert physical presence when that entity is not physically present. The 1720
TSC_PhysicalPresence command is used to change polarity of the physicalPresenceV flag. 1721

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

54 Revision 94 29 March 2006
 TCG Published

Its use is heavily guarded. See sections describing the TPM Opt-In component; and Volatile 1722
and Non-volatile memory components. 1723

The following diagram illustrates the flow of logic controlling updates to the 1724
physicalPresenceV flag: 1725

AND

HW pin

physicalPresenceCMDEnable

physicalPresenceCMDEnableV
OR

physicalPresenceHWEnable

AND

TSC_PhysicalPresence()

PhysicalPresenceV
NOT

Rev 0.3

 1726
Figure 10:a - Physical Presence Control Logic 1727

This diagram shows that the vFlags.physicalPresenceV flag may be updated by either a HW 1728
pin or through the TSC_PhysicalPresence command, but gated by persistent control flags 1729
and a temporal lock. Observe, the reverse logic surrounding the use of 1730
TSC_PhysicalPresence command. When the physicalPresenceCMDEnable flag is set, and 1731
the physicalPresenceCMDEnableV is not set, and the TSC_PhysicalPresence command may 1732
execute. 1733

The physicalPresenceV flag may be overridden by unambiguous physical presence. 1734
Conceptually, the use of dedicated electrical hardware providing a trusted path to the 1735
Operator has higher precedence than the physicalPresenceV flag value. Implementers 1736
should take this into consideration when implementing physical presence indicators. 1737

End of informative comment 1738

1. The requirement for physical presence MUST be met by the platform manufacturer 1739
using some physical mechanism. 1740

2. It SHALL be impossible to intercept or subvert indication of physical presence to the 1741
TPM by the execution of software on the platform. 1742

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 55
 TCG Published

11. Root of Trust for Reporting (RTR) 1743
Start of informative comment 1744

The RTR is responsible for establishing platform identities, reporting platform 1745
configurations, protecting reported values and establishing a context for attesting to 1746
reported values. The RTR shares responsibility of protecting measurement digests with the 1747
RTS. 1748

The interaction between the RTR and RTS is a critical component. The design and 1749
implementation of the interaction between the RTR and RTS should mitigate observation 1750
and tampering with the messages. It is strongly encouraged that the RTR and RTS 1751
implementation occur in the same package such there are no external observation points. 1752
For a silicon based TPM this would imply that the RTR and RTS are in the same silicon 1753
package with no external busses. 1754

End of informative comment 1755

1. An instantiation of the RTS and RTR SHALL do the following: 1756

a. Be resistant to all forms of software attack and to the forms of physical attack 1757
implied by the platform’s Protection Profile 1758

b. Supply an accurate digest of all sequences of presented integrity metrics 1759

11.1 Platform Identity 1760

Start of informative comment 1761

The RTR is a cryptographic identity in use to distinguish and authenticate an individual 1762
TPM. The TPM uses the RTR to provide As the RTR is cryptographically unique the use of 1763
the RTR must only occur in controlled circumstances. 1764

In the TPM, the Endorsement Key (EK) is the RTR. 1765

Prior to any use of the TPM, the RTR must be instantiated. Instantiation may occur during 1766
TPM manufacturing or platform manufacturing. The business issues and manufacturing 1767
flow determines how a specific TPM and platform is personalized. 1768

The EK is cryptographically unique and bound to the TPM. 1769

The EK is only available for two operations: establishing the TPM Owner and establishing 1770
Attestation Identity Key (AIK) values and credentials. There is a prohibition on the use of the 1771
EK for any other operation. 1772

End of informative comment 1773

1. The RTR MUST have a cryptographic identity. 1774

a. The cryptographic identity of the RTR is the Endorsement Key (EK). 1775

2. The EK MUST be 1776

a. Statistically unique 1777

b. Difficult to forge or counterfeit 1778

c. Verifiable during the AIK creation process 1779

3. The EK SHALL only participate in 1780

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

56 Revision 94 29 March 2006
 TCG Published

a. TPM Ownership insertion 1781

b. AIK creation and verification 1782

11.2 RTR to Platform Binding 1783

Start of informative comment 1784

When performing validation of the EK and the platform the challenger wishes to have 1785
knowledge of the binding of RTR to platform. The RTR is bound to a TPM hence if the 1786
platform can show the binding of TPM to platform the challenger can reasonably believe the 1787
RTR and platform binding. 1788

The TPM cannot provide all of the information necessary for the challenger to trust in the 1789
binding. That information comes from the manufacturing process and occurs outside the 1790
control of the TPM. 1791

End of informative comment 1792

1. The EK is transitively bound to the Platform via the TPM as follows: 1793

a. An EK is bound to one and only one TPM (i.e., there is a one to one correspondence 1794
between an Endorsement Key and a TPM.) 1795

b. A TPM is bound to one and only one Platform. (i.e., there is a one to one 1796
correspondence between a TPM and a Platform.) 1797

c. Therefore, an EK is bound to a Platform. (i.e., there is a one to one correspondence 1798
between an Endorsement Key and a Platform.) 1799

11.3 Platform Identity and Privacy Considerations 1800

Start of informative comment 1801

The uniqueness property of cryptographic identities raises concerns that use of that identity 1802
could result in aggregation of activity logs. Analysis of the aggregated activity could reveal 1803
personal information that a user of a platform would not otherwise approve for distribution 1804
to the aggregators. Both EK and AIK identities have this property. 1805

To counter undesired aggregation, TCG encourages the use of domain specific AIK keys and 1806
restricts the use of the EK key. The platform owner controls generation and distribution of 1807
AIK public keys. 1808

If a digital signature was performed by the EK, then any entity could track the use of the 1809
EK. So use of the EK as a signature is cryptographically sound, but this does not ensure 1810
privacy. Therefore, a mechanism to allow verifiers (human or machine) to determine that 1811
the TPM really signed the message without using the EK is required. 1812

End of informative comment 1813

11.4 Attestation Identity Keys 1814

Start of informative comment 1815

An Attestation Identity Key (AIK) is an alias for the EK. AIK provide signatures and not 1816
encryption. The TPM can create a virtually unlimited number of AIK. 1817

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 57
 TCG Published

The AIK must contain identification such that the TPM can properly enforce the restrictions 1818
placed on an AIK. 1819

The AIK is an asymmetric key pair. For interoperability, the AIK is an RSA 2048-bit key. The 1820
TPM must protect the private portion of the asymmetric key and ensure that the value is 1821
never exposed. 1822

The AIK only signs PCR data. The TPM must enforce this restriction. If the AIK did sign 1823
additional information, it is possible for an attacker to create a block of data that appears to 1824
be a PCR value. By enforcing the PCR restriction this attack is never possible. 1825

End of informative comment 1826

1. The TPM MUST permanently mark an AIK such that all subsequent uses of the AIK the 1827
AIK restrictions are enforced. 1828

2. An AIK MUST be: 1829

a. Statistically unique 1830

b. Difficult to forge or counterfeit 1831

c. Verifiable to challengers 1832

3. For interoperability the AIK MUST be 1833

a. An RSA 2048-bit key 1834

4. The AIK MUST only sign data generated by the TPM 1835

11.4.1 AIK Creation 1836

Start of informative comment 1837

As the AIK is an alias for the EK, the AIK creation process requires TPM Owner 1838
authorization. The process actually requires two TPM Owner authorizations; creation and 1839
credential activation. 1840

The credential creation process is outside the control of the TPM; however, the entity 1841
identification that will create the credential must occur during the creation process. 1842

End of informative comment 1843

1. The TPM Owner MUST authorize the AIK creation process. 1844

2. The TPM MUST use a protected function to perform the AIK creation. 1845

3. The TPM Owner MUST indicate the entity that will provide the AIK credential as part of 1846
the AIK creation process. 1847

4. The TPM Owner MAY indicate that NO credential will ever be created. If the TPM Owner 1848
does indicate that no credential will be provided the TPM MUST ensure that no 1849
credential can be created. 1850

5. The TTP MAY apply policies to determine if the presented AIK should be granted a 1851
credential. 1852

6. The credential request package MUST be useable by only the Privacy CA selected by the 1853
TPM Owner. 1854

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

58 Revision 94 29 March 2006
 TCG Published

7. The AIK credential MUST be only obtainable by the TPM that created the AIK credential 1855
request. 1856

11.4.2 AIK Storage 1857

Start of informative comment 1858

The AIK may be stored on some general-purpose storage device. 1859

When held outside of the TPM the AIK sensitive data must be encrypted and integrity 1860
protected. 1861

End of informative comment 1862

1. When held outside of the TPM AIK encryption and integrity protection MUST protect the 1863
AIK sensitive information 1864

2. The migration of AIK from one TPM to another MUST be prohibited 1865

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 59
 TCG Published

12. Root of Trust for Storage (RTS) 1866
Start of informative comment 1867

The RTS provides protection on data in use by the TPM but held in external storage devices. 1868
The RTS provides confidentiality and integrity for the external blobs. 1869

The RTS also provides the mechanism to ensure that the release of information only occurs 1870
in a named environment. The naming of an environment uses the PCR selection to 1871
enumerate the values. 1872

Data protected by the RTS can migrate to other TPM. 1873

End of informative comment 1874

1. The number and size of values held by the RTS SHOULD be limited only by the volume 1875
of storage available on the platform 1876

2. The TPM MUST ensure that TPM_PERMANENT_DATA -> tpmProof is only inserted into 1877
TPM internally generated and non-migratable information. 1878

12.1 Loading and Unloading Blobs 1879

Start of informative comment 1880

The TPM provides several commands to store and load RTS controlled data. 1881

 Class Command Analog Comment

1 Data / Internal / TPM TPM_MakeIdentity TPM_ActivateIdentity Special purpose data

2 Data / External / TPM TSS_Bind TPM_Unbind

3 Data / Internal / PCR TPM_Seal TPM_Unseal

4 Data / External / PCR

5 Key / Internal / TPM TPM_CreateWrapKey TPM_LoadKey

6 Key / External / TPM TSS_WrapKey TPM_LoadKey

7 Key / Internal / PCR

8 Key / External / PCR TSS_WrapKeyToPcr TPM_LoadKey

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

60 Revision 94 29 March 2006
 TCG Published

13. Transport Sessions and Authorization Protocols 1882
Start of informative comment 1883

The purpose of the authorization protocols and mechanisms is to prove to the TPM that the 1884
requestor has permission to perform a function and use some object. The proof comes from 1885
the knowledge of a shared secret. 1886

AuthData is available for the TPM Owner and each entity (keys, for example) that the TPM 1887
controls. The AuthData for the TPM Owner and the SRK are held within the TPM itself and 1888
the AuthData for other entities are held with the entity. 1889

The TPM Owner AuthData allows the Owner to prove ownership of the TPM. Proving 1890
ownership of the TPM does not immediately allow all operations – the TPM Owner is not a 1891
“super user” and additional AuthData must be provided for each entity or operation that 1892
has protection. 1893

The TPM treats knowledge of the AuthData as complete proof of ownership of the entity. No 1894
other checks are necessary. The requestor (any entity that wishes to execute a command on 1895
the TPM or use a specific entity) may have additional protections and requirements where 1896
he or she (or it) saves the AuthData; however, the TPM places no additional requirements. 1897

There are three protocols to securely pass a proof of knowledge of AuthData from requestor 1898
to TPM; the “Object-Independent Authorization Protocol” (OIAP) , the “Object-Specific 1899
Authorization Protocol” (OSAP) and the “Delegate-Specific Authorization Protocol” (DSAP) . 1900
The OIAP supports multiple authorization sessions for arbitrary entities. The OSAP 1901
supports an authentication session for a single entity and enables the confidential 1902
transmission of new authorization information. The DSAP supports the delegation of owner 1903
or entity authorization. 1904

New authorization information is inserted by the “AuthData Insertion Protocol” (ADIP) 1905
during the creation of an entity. The “AuthData Change Protocol” (ADCP) and the 1906
“Asymmetric Authorization Change Protocol” (AACP) allow the changing of the AuthData for 1907
an entity. The protocol definitions allow expansion of protocol types to additional TCG 1908
required protocols and vendor specific protocols. 1909

The protocols use a “rolling nonce” paradigm. This requires that a nonce from one side be in 1910
use only for a message and its reply. For instance, the TPM would create a nonce and send 1911
that on a reply. The requestor would receive that nonce and then include it in the next 1912
request. The TPM would validate that the correct nonce was in the request and then create 1913
a new nonce for the reply. This mechanism is in place to prevent replay attacks and man-1914
in-the-middle attacks. 1915

The basic protocols do not provide long-term protection of AuthData that is the hash of a 1916
password or other low-entropy entities. The TPM designer and application writer must 1917
supply additional protocols if protection of these types of data is necessary. 1918

The design criterion of the protocols is to allow for ownership authentication, command and 1919
parameter authentication and prevent replay and man-in-the-middle attacks. 1920

The passing of the AuthData, nonces and other parameters must follow specific guidelines 1921
so that commands coming from different computer architectures will interoperate properly. 1922

End of informative comment 1923

1. AuthData MUST use one of the following protocols 1924

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 61
 TCG Published

a. OIAP 1925

b. OSAP 1926

c. DSAP 1927

2. Entity creation MUST use one of the following protocols 1928

a. ADIP 1929

3. Changing AuthData MUST use one of the following protocols 1930

a. ADCP 1931

b. AACP 1932

4. The TPM MAY support additional protocols to authenticate, insert and change 1933
AuthData. 1934

5. When a command has more than one AuthData value 1935

a. Each AuthData MUST use the same SHA-1 of the parameters 1936

6. Keys MAY specify authDataUsage -> TPM_AUTH_NEVER 1937

a. If the caller changes the tag from TPM_TAG_RQU_AUTH1_xxx to 1938
TPM_TAG_RQU_XXX the TPM SHALL ignore the AuthData values 1939

b. If the caller leaves the tag as TPM_TAG_RQU_AUTH1 1940

i. The TPM will compute the AuthData based on the value store in the AuthData 1941
location within the key, IGNORING the state of the AuthDataUsage flag. 1942

c. Users may choose to use a well-known value for the AuthData when setting 1943
AuthDataUsage to NEVER. 1944

d. If a key has AuthDataUsage set to TPM_AUTH_ALWAYS but is received in a 1945
command with the tag TPM_TAG_RQU_COMMAND, the command MUST return an 1946
error code. 1947

7. For commands that normally have 2 authorization sessions, if the tag specifies only one 1948
in the parameter array, then the first session listed is ignored (authDataUsage must be 1949
NEVER for this key) and the incoming session data is used for the second auth session 1950
in the list. 1951

8. Keys MAY specify AuthDataUsage -> TPM_AUTH_PRIV_USE_ONLY 1952

a. If the key used in a command to read/access the public portion of the key (e.g. 1953
TPM_CertifyKey, TPM_GetPubKey) 1954

i. If the caller changes the tag from TPM_TAG_RQU_AUTH1_xxx to 1955
TPM_TAG_RQU_XXX the TPM SHALL ignore the AuthData values 1956

ii. If the caller leaves the tag as TPM_TAG_RQU_AUTH1 1957

iii. The TPM will compute the AuthData based on the value store in the AuthData 1958
location within the key, IGNORING the state of the AuthDataUsage flag 1959

b. else if the key used in command to read/access the private portion of the key(e.g. 1960
TPM_Sign) 1961

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

62 Revision 94 29 March 2006
 TCG Published

i. If the tag is TPM_TAG_RQU_COMMAND, the command MUST return an error 1962
code. 1963

13.1 Authorization Session Setup 1964

Start of informative comment 1965

The TPM provides two protocols for authorizing the use of entities without revealing the 1966
AuthData on the network or the connection to the TPM. In both cases, the protocol 1967
exchanges nonce-data so that both sides of the transaction can compute a hash using 1968
shared secrets and nonce-data. Each side generates the hash value and can compare to the 1969
value transmitted. Network listeners cannot directly infer the AuthData from the hashed 1970
objects sent over the network. 1971

The first protocol is the Object-Independent Authorization Protocol (OIAP), which allows the 1972
exchange of nonces with a specific TPM. Once an OIAP session is established, its nonces 1973
can be used to authorize the use of any entity managed by the TPM. The session can live 1974
indefinitely until either party requests the session termination. The TPM_OIAP function 1975
starts the OIAP session. 1976

The second protocol is the Object Specific Authorization Protocol (OSAP)”. The OSAP allows 1977
establishment of an authentication session for a single entity. The session creates nonces 1978
that can authorize multiple commands without additional session-establishment overhead, 1979
but is bound to a specific entity. The TPM_OSAP command starts the OSAP session. The 1980
TPM_OSAP specifies the entity to which the authorization is bound. 1981

Most commands allow either form of authorization protocol. In general, however, the OIAP 1982
is preferred – it is more generally useful because it allows usage of the same session to 1983
provide authorization for different entities. The OSAP is, however, necessary for operations 1984
that set or reset AuthData. 1985

OIAP sessions were designed for reasons of efficiency; only one setup process is required for 1986
potentially many authorizations. 1987

An OSAP session is doubly efficient because only one setup process is required for 1988
potentially many authorization calculations and the entity AuthData secret is required only 1989
once. This minimizes exposure of the AuthData secret and can minimize human interaction 1990
in the case where a person supplies the AuthData information. The disadvantage of the 1991
OSAP is that a distinct session needs to be setup for each entity that requires authorization. 1992
The OSAP creates an ephemeral secret that is used throughout the session instead of the 1993
entity AuthData secret. The ephemeral secret can be used to provide confidentiality for the 1994
introduction of new AuthData during the creation of new entities. Termination of the OSAP 1995
occurs in two ways. Either side can request session termination (as usual) but the TPM 1996
forces the termination of an OSAP session after use of the ephemeral secret for the 1997
introduction of new AuthData. 1998

For both the OSAP and the OIAP, session setup is independent of the commands that are 1999
authorized. In the case of OIAP, the requestor sends the TPM_OIAP command, and with the 2000
response generated by the TPM, can immediately begin authorizing object actions. The 2001
OSAP is very similar, and starts with the requestor sending a TPM_OSAP operation, naming 2002
the entity to which the authorization session should be bound. 2003

The DSAP session is to provide delegated authorization information. 2004

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 63
 TCG Published

All session types use a “rolling nonce” paradigm. This means that the TPM creates a new 2005
nonce value each time the TPM receives a command using the session. 2006

Example OIAP and OSAP sessions are used to illustrate session setup and use. The 2007
fictitious command named TPM_Example occupies the place where an ordinary TPM 2008
command might be used, but does not have command specific parameters. The session 2009
connects to a key object within the TPM. The key contains AuthData that will be used to 2010
secure the session. 2011

There could be as many as 2 authorization sessions applied to the execution of a single TPM 2012
command or as few as 0. The number of sessions used is determined by TCG 1.2 Command 2013
Specification and is indicated by the command ordinal parameter. 2014

It is also possible to secure authorization sessions using ephemeral shared-secrets. Rather 2015
than using AuthData contained in the stored object (e.g. key), the AuthData is supplied as a 2016
parameter to OIAP or OSAP session creation. In the examples below the key.usageAuth 2017
parameter is replaced by the ephemeral secret. 2018

End of informative comment 2019

13.2 Parameter Declarations for OIAP and OSAP Examples 2020

Start of informative comment 2021

To follow OIAP and OSAP protocol examples (Table 13:c and Table 13:d), the reader should 2022
become familiar with the parameters declared in Table 13:a and Table 13:b. 2023

Several conventions are used in the parameter tables that may facilitate readability. 2024

The Param column (Table 13:a) identifies the sequence in which parameters are packaged 2025
into a command or response message as well as the size in bytes of the parameter value. If 2026
this entry in the row is blank, that parameter is not included in the message. <> in the size 2027
column means that the size of the element is variable. It is defined either explicitly by the 2028
preceding parameter, or implicitly by the parameter type. 2029

The HMAC column similarly identifies the parameters that are included in HMAC 2030
calculations. This column also indicates the default parameters that are included in the 2031
audit log. Exceptions are noted under the specific ordinal, e.g. TPM_ExecuteTransport. 2032

The Type column identifies the TCG data type corresponding to the passed value. An 2033
encapsulation of the parameter type is not part of the command message. 2034

The Name column is a fictitious variable name that aids in following the examples and 2035
descriptions. 2036

The double-lined row separator distinguishes authorization session parameters from 2037
command parameters. In Table 13:a the TPM_Example command has three parameters; 2038
keyHandle, inArgOne and inArgTwo. The tag, paramSize and ordinal parameters are 2039
message header values describing contents of a command message. The parameters below 2040
the double-lined row are OIAP / OSAP /DSAP or transport authorization session related. If 2041
a second authorization session were used, the table would show a second authorization 2042
section delineated by a second double-lined row. The authorization session parameters 2043
identify shared-secret values, session nonces, session digest and flags. 2044

In this example, a single authorization session is used signaled by the 2045
TPM_TAG_RQU_AUTH1_COMMAND tag. 2046

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

64 Revision 94 29 March 2006
 TCG Published

For an OIAP or transport session, the TPM_AUTHDATA description column specifies the 2047
HMAC key. 2048

For an OSAP or DSAP session, the HMAC key is the shared secret that was calculated 2049
during the session setup, not the key specified in the description. The key specified in the 2050
description was previously used in the shared secret calculation. 2051

Param HMAC

Sz # Sz
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_Example

4 4 TPM_KEY_HANDLE keyHandle Handle of a loaded key.

5 1 2S 1 BOOL inArgOne The first input argument

6 20 3S 20 UNIT32 inArgTwo The second input argument.

7 4 TPM_AUTHHANDLE authHandle The authorization handle used for keyHandle authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

1
0 20 TPM_AUTHDATA inAuth The AuthData digest for inputs and keyHandle. HMAC key:

key.usageAuth.

 2052

Table 13:a - Authorization Protocol Input Parameters 2053

 2054

Table 13:b - Authorization Protocol Output Parameters 2055

 2056

End of informative comment 2057

Param HMAC

Sz # Sz
Type Name Description

1 2 TPM_TAG Tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_Example

4 4 3S 4 UINT32 outArgOne Output argument

5 20 2 H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth The AuthData digest for the returned parameters. HMAC key:
key.usageAuth.

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 65
 TCG Published

13.2.1 Object-Independent Authorization Protocol (OIAP) 2058

Start of informative comment 2059

The purpose of this section is to describe the authorization-related actions of a TPM when it 2060
receives a command that has been authorized with the OIAP protocol. OIAP uses the 2061
TPM_OIAP command to create the authorization session. 2062

Many commands use OIAP authorization. The following description is therefore necessarily 2063
abstract. A fictitious TPM command, TPM_Example is used to represent ordinary TPM 2064
commands. 2065

Assume that a TPM user wishes to send command TPM_Example. This is an authorized 2066
command that uses the key denoted by keyHandle. The user must know the AuthData for 2067
keyHandle (key.usageAuth) as this is the entity that requires authorization and this secret 2068
is used in the authorization calculation. Let us assume for this example that the caller of 2069
TPM_Example does not need to authorize the use of keyHandle for more than one 2070
command. This use model points to the selection of the OIAP as the authorization protocol. 2071

For the TPM_Example command, the inAuth parameter provides the authorization to 2072
execute the command. The following table shows the commands executed, the parameters 2073
created and the wire formats of all of the information. 2074

<inParamDigest> is the result of the following calculation: SHA1(ordinal, inArgOne, 2075
inArgTwo). <outParamDigest> is the result of the following calculation: SHA1(returnCode, 2076
ordinal, outArgOne). inAuthSetupParams refers to the following parameters, in this order: 2077
authLastNonceEven, nonceOdd, continueAuthSession. OutAuthSetupParams refers to the 2078
following parameters, in this order: nonceEven, nonceOdd, continueAuthSession 2079

There are two even nonces used to execute TPM_Example, the one generated as part of the 2080
TPM_OAIP command (labeled authLastNonceEven below) and the one generated with the 2081
output arguments of TPM_Example (labeled as nonceEven below). 2082

Caller On the wire Dir TPM

Send TPM_OIAP TPM_OIAP à Create session

Create authHandle
Associate session and authHandle
Generate authLastNonceEven
Save authLastNonceEven with authHandle

Save authHandle, authLastNonceEven authHandle,
authLastNonceEven

ß Returns

Generate nonceOdd
Compute inAuth = HMAC
(key.usageAuth, inParamDigest,
inAuthSetupParams)
Save nonceOdd with authHandle

Send TPM_Example tag

paramSize
ordinal
keyHandle
inArgOne

inArgTwo
authHandle
nonceOdd

à TPM retrieves key.usageAuth (key must have been previously loaded)

Verify authHandle points to a valid session, mismatch returns
TPM_E_INVALIDAUTH
Retrieve authLastNonceEven from internal session storage
HM = HMAC (key.usageAuth, inParamDigest, inAuthSetupParams)

Compare HM to inAuth. If they do not compare return with
TPM_E_INVALIDAUTH
Execute TPM_Example and create returnCode

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

66 Revision 94 29 March 2006
 TCG Published

continueAuthSession
inAuth

Generate nonceEven to replace authLastNonceEven in session
Set resAuth = HMAC(key.usageAuth, outParamDigest,
outAuthSetupParams)

Save nonceEven
HM = HMAC(key.usageAuth,
outParamDigest, outAuthSetupParams)
Compare HM to resAuth. This verifies
returnCode and output parameters.

tag
paramSize
returnCode
outArgOne

nonceEven
continueAuthSession
resAuth

ß Return output parameters
If continueAuthSession is FALSE then destroy session

Suppose now that the TPM user wishes to send another command using the same session. 2083
For the purposes of this example, we will assume that the same example command is used 2084
(ordinal = TPM_Example). However, a different key (newKey) with its own secret 2085
(newKey.usageAuth) is to be operated on. To re-use the previous session, the 2086
continueAuthSession output boolean must be TRUE. 2087

The previous example shows the command execution reusing an existing authorization 2088
session. The parameters created and the wire formats of all of the information. 2089

In this case, authLastNonceEven is the nonceEven value returned by the TPM with the 2090
output parameters from the first protocol example 2091

 2092

Caller On the wire Dir TPM

Generate nonceOdd
Compute inAuth = HMAC
(newKey.usageAuth, inParamDigest,
inAuthSetupParams)
Save nonceOdd with authHandle

Send TPM_Example tag
paramSize
ordinal

keyHandle
inArgOne
inArgTwo
nonceOdd

continueAuthSession
inAuth

à TPM retrieves newKey.usageAuth (newKey must have been
previously loaded)
Retrieve authLastNonceEven from internal session storage

HM = HMAC (newKey.usageAuth, inParamDigest,
inAuthSetupParams)
Compare HM to inAuth. If they do not compare return with
TPM_E_INVALIDAUTH

Execute TPM_Example and create returnCode
Generate nonceEven to replace authLastNonceEven in session
Set resAuth = HMAC(newKey.usageAuth, outParamDigest,
outAuthSetupParams)

Save nonceEven
HM = HMAC(newKey.usageAuth,
outParamDigest, outAuthSetupParams)
Compare HM to resAuth. This verifies
returnCode and output parameters.

tag
paramSize
returnCode
outArgOne

nonceEven
continueAuthSession
resAuth

ß Return output parameters
If continueAuthSession is FALSE then destroy session

The TPM user could then use the session for further authorization sessions. Suppose, 2093
however, that the TPM user no longer requires the authorization session. There are three 2094
possibilities in this case: 2095

The user issues a TPM_Terminate_Handle command to the TPM (section 5.3). 2096

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 67
 TCG Published

The input argument continueAuthSession can be set to FALSE for the last command. In 2097
this case, the output continueAuthSession value will be FALSE. 2098

In some cases, the TPM automatically terminates the authorization session regardless of the 2099
input value of continueAuthSession. In this case as well, the output continueAuthSession 2100
value will be FALSE. 2101

When an authorization session is terminated for any reason, the TPM invalidates the 2102
session’s handle and terminates the session’s thread (releases all resources allocated to the 2103
session). 2104

End of informative comment 2105

 2106

OIAP Actions 2107

1. The TPM MUST verify that the authorization handle (H, say) referenced in the command 2108
points to a valid session. If it does not, the TPM returns the error code 2109
TPM_INVALID_AUTHHANDLE 2110

2. The TPM SHALL retrieve the latest version of the caller’s nonce (nonceOdd) and 2111
continueAuthSession flag from the input parameter list, and store it in internal TPM 2112
memory with the authSession ‘H’. 2113

3. The TPM SHALL retrieve the latest version of the TPM’s nonce stored with the 2114
authorization session H (authLastNonceEven) computed during the previously executed 2115
command. 2116

4. The TPM MUST retrieve the secret AuthData (SecretE, say) of the target entity. The 2117
entity and its secret must have been previously loaded into the TPM. 2118

5. The TPM SHALL perform a HMAC calculation using the entity secret data, ordinal, input 2119
command parameters and authorization parameters according to previously specified 2120
normative regarding HMAC calculation. 2121

6. The TPM SHALL compare HM to the AuthData value received in the input parameters. If 2122
they are different, the TPM returns the error code TPM_AUTHFAIL if the authorization 2123
session is the first session of a command, or TPM_AUTH2FAIL if the authorization 2124
session is the second session of a command. Otherwise, the TPM executes the command 2125
which (for this example) produces an output that requires authentication. 2126

7. The TPM SHALL generate a nonce (nonceEven). 2127

8. The TPM creates an HMAC digest to authenticate the return code, return values and 2128
authorization parameters to the same entity secret according to previously specified 2129
normative regarding HMAC calculation. 2130

9. The TPM returns the return code, output parameters, authorization parameters and 2131
AuthData digest. 2132

10. If the output continueUse flag is FALSE, then the TPM SHALL terminate the session. 2133
Future references to H will return an error. 2134

13.3 Object-Specific Authorization Protocol (OSAP) 2135

Start of informative comment 2136

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

68 Revision 94 29 March 2006
 TCG Published

This section describes the actions of a TPM when it receives a TPM command via OSAP 2137
session. Many TPM commands may be sent to the TPM via an OSAP session. Therefore, the 2138
following description is necessarily abstract. 2139

The OSAP session is initialized through the creation of an ephemeral secret which is used to 2140
protect session traffic. Sessions are created using the TPM_OSAP command. This section 2141
illustrates OSAP using a fictitious command called TPM_Example. 2142

Assume that a TPM user wishes to send the TPM_Example command to the TPM. The 2143
keyHandle signifies that an OSAP session is being used and has the value “Auth1”. The 2144
user must know the AuthData for keyHandle (key.usageAuth) as this is the entity that 2145
requires authorization and this secret is used in the authorization calculation. 2146

Let us assume that the sender needs to use this key multiple times but does not wish to 2147
obtain the key secret more than once. This might be the case if the usage AuthData were 2148
derived from a typed password. This use model points to the selection of the OSAP as the 2149
authorization protocol. 2150

For the TPM_Example command, the inAuth parameter provides the authorization to 2151
execute the command. The following table shows the commands executed, the parameters 2152
created and the wire formats of all of the information. 2153

<inParamDigest> is the result of the following calculation: SHA1(ordinal, inArgOne, 2154
inArgTwo). <outParamDigest> is the result of the following calculation: SHA1(returnCode, 2155
ordinal, outArgOne). inAuthSetupParams refers to the following parameters, in this order: 2156
authLastNonceEven, nonceOdd, continueAuthSession. OutAuthSetupParams refers to the 2157
following parameters, in this order: nonceEven, nonceOdd, continueAuthSession 2158

In addition to the two even nonces generated by the TPM (authLastNonceEven and 2159
nonceEven) that are used for TPM_OIAP, there is a third, labeled nonceEvenOSAP that is 2160
used to generate the shared secret. For every even nonce, there is also an odd nonce 2161
generated by the system. 2162

Caller On the wire Dir TPM

Send TPM_OSAP TPM_OSAP
keyHandle
nonceOddOSAP

à Create session & authHangle
Generate authLastNonceEven
Save authLastNonceEven with authHandle

Save the ADIP encryption scheme with authHandle
Generate nonceEvenOSAP
Generate sharedSecret = HMAC(key.usageAuth, nonceEvenOSAP,
nonceOddOSAP)

Save keyHandle, sharedSecret with authHandle

Save authHandle, authLastNonceEven
Generate sharedSecret =
HMAC(key.usageAuth, nonceEvenOSAP,
nonceOddOSAP)

Save sharedSecret

authHandle,
authLastNonceEven
nonceEvenOSAP

ß Returns

Generate nonceOdd & save with
authHandle.
Compute inAuth = HMAC (sharedSecret,
inParamDigest, inAuthSetupParams)

Send TPM_Example tag
paramSize
ordinal

à Verify authHandle points to a valid session, mismatch returns
TPM_AUTHFAIL
Retrieve authLastNonceEven from internal session storage

HM = HMAC (sharedSecret, inParamDigest, inAuthSetupParams)

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 69
 TCG Published

keyHandle
inArgOne
inArgTwo
authHandle

nonceOdd
continueAuthSession
inAuth

Compare HM to inAuth. If they do not compare return with
TPM_AUTHFAIL
Execute TPM_Example and create returnCode. If TPM_Example
requires ADIP encryption, use the algorithm indicated when the
OSAP session was set up.
Generate nonceEven to replace authLastNonceEven in session
Set resAuth = HMAC(sharedSecret, outParamDigest,
outAuthSetupParams)

Save nonceEven

HM = HMAC(sharedSecret,
outParamDigest, outAuthSetupParams)
Compare HM to resAuth. This verifies
returnCode and output parameters.

tag

paramSize
returnCode
outArgOne
nonceEven

continueAuthSession
resAuth

ß Return output parameters

If continueAuthSession is FALSE then destroy session

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

70 Revision 94 29 March 2006
 TCG Published

Table 13:c - Example OSAP Session 2163

Suppose now that the TPM user wishes to send another command using the same session 2164
to operate on the same key. For the purposes of this example, we will assume that the same 2165
ordinal is to be used (TPM_Example). To re-use the previous session, the 2166
continueAuthSession output boolean must be TRUE. 2167

The following table shows the command execution, the parameters created and the wire 2168
formats of all of the information. 2169

In this case, authLastNonceEven is the nonceEven value returned by the TPM with the 2170
output parameters from the first execution of TPM_Example. 2171

 2172

Caller On the wire Dir TPM

Generate nonceOdd

Compute inAuth = HMAC (sharedSecret,
inParamDigest, inAuthSetupParams)
Save nonceOdd with authHandle

Send TPM_Example tag

paramSize
ordinal
keyHandle
inArgOne

inArgTwo
nonceOdd
continueAuthSession
inAuth

à Retrieve authLastNonceEven from internal session storage

HM = HMAC (sharedSecret, inParamDigest, inAuthSetupParams)
Compare HM to inAuth. If they do not compare return with
TPM_AUTHFAIL
Execute TPM_Example and create returnCode

Generate nonceEven to replace authLastNonceEven in session
Set resAuth = HMAC(sharedSecret, outParamDigest,
outAuthSetupParams)

Save nonceEven
HM = HMAC(sharedSecret,
outParamDigest, outAuthSetupParams)
Compare HM to resAuth. This verifies
returnCode and output parameters.

tag
paramSize
returnCode
outArgOne
nonceEven

continueAuthSession
resAuth

ß Return output parameters
If continueAuthSession is FALSE then destroy session

Table 13:d - Example Re-used OSAP Session 2173

The TPM user could then use the session for further authorization sessions or terminate it 2174
in the ways that have been described above in TPM_OIAP. Note that termination of the 2175
OSAP session causes the TPM to destroy the shared secret. 2176

End of informative comment 2177

OSAP Actions 2178

1. The TPM MUST have been able to retrieve the shared secret (Shared, say) of the target 2179
entity when the authorization session was established with TPM_OSAP. The entity and 2180
its secret must have been previously loaded into the TPM. 2181

2. The TPM MUST verify that the authorization handle (H, say) referenced in the command 2182
points to a valid session. If it does not, the TPM returns the error code 2183
TPM_INVALID_AUTHHANDLE. 2184

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 71
 TCG Published

3. The TPM MUST calculate the HMAC (HM1, say) of the command parameters according 2185
to previously specified normative regarding HMAC calculation. 2186

4. The TPM SHALL compare HM1 to the AuthData value received in the command. If they 2187
are different, the TPM returns the error code TPM_AUTHFAIL if the authorization session 2188
is the first session of a command, or TPM_AUTH2FAIL if the authorization session is the 2189
second session of a command., the TPM executes command C1 which produces an 2190
output (O, say) that requires authentication and uses a particular return code (RC, say). 2191

5. The TPM SHALL generate the latest version of the even nonce (nonceEven). 2192

6. The TPM MUST calculate the HMAC (HM2) of the return parameters according to 2193
previously specified normative regarding HMAC calculation. 2194

7. The TPM returns HM2 in the parameter list. 2195

8. The TPM SHALL retrieve the continue flag from the received command. If the flag is 2196
FALSE, the TPM SHALL terminate the session and destroy the thread associated with 2197
handle H. 2198

9. If the shared secret was used to provide confidentiality for data in the received 2199
command, the TPM SHALL terminate the session and destroy the thread associated with 2200
handle H. 2201

10. Each time that access to an entity (key) is authorized using OSAP, the TPM MUST 2202
ensure that the OSAP shared secret is that derived from the entity using TPM_OSAP. 2203

13.4 Authorization Session Handles 2204

Start of informative comment 2205

The TPM generates authorization handles to allow for the tracking of information regarding 2206
a specific authorization invocation. 2207

The TPM saves information specific to the authorization, such as the nonce values, 2208
ephemeral secrets and type of authentication in use. 2209

The TPM may create any internal representation of the handle that is appropriate for the 2210
TPM’s design. The requestor always uses the handle in the authorization structure to 2211
indicate authorization structure in use. 2212

The TPM must support a minimum of two concurrent authorization handles. The use of 2213
these handles is to allow the Owner to have an authorization active in addition to an active 2214
authorization for an entity. 2215

To ensure garbage collection and the proper removal of security information, the requestor 2216
should terminate all handles. Termination of the handle uses the continue-use flag to 2217
indicate to the TPM that the handle should be terminated. 2218

Termination of a handle instructs the TPM to perform garbage collection on all AuthData. 2219
Garbage collection includes the deletion of the ephemeral secret. 2220

End of informative comment 2221

1. The TPM MUST support authorization handles. The TPM MUST support a minimum of 2222
three concurrent authorization handles. 2223

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

72 Revision 94 29 March 2006
 TCG Published

2. The TPM MUST support authorization-handle termination. The termination includes 2224
secure deletion of all authorization session information. 2225

13.5 Authorization-Data Insertion Protocol (ADIP) 2226

Start of informative comment 2227

The creation of AuthData is the responsibility of the entity owner. He or she may use 2228
whatever process he or she wishes. The transmission of the AuthData from the owner to the 2229
TPM requires confidentiality and integrity. The encryption of the AuthData meets these 2230
requirements. The confidentiality and integrity requirements assume the insertion of the 2231
AuthData occurs over a network. While local insertions of the data would not require these 2232
measures, the protocol is established to be consistent with both local and remote insertions. 2233

When the requestor is sending the AuthData to the TPM, the command to load the data 2234
requires the authorization of the entity owner. For example, to create a new TPM ID and set 2235
its AuthData requires the AuthData of the TPM Owner. 2236

The confidentiality of the transmission comes from the encryption of the AuthData, and the 2237
integrity comes from the ability of the owner to verify that the authorization is being sent to 2238
a TPM and that only a specific TPM can decrypt the data. 2239

The mandatory mechanism uses the following features of the TPM, OSAP and HMAC. 2240

The creation of a new entity requires the authorization of the entity owner. When the 2241
requestor starts the creation process, the creator must use OSAP. 2242

The creator builds an encryption key using a SHA-1 hash of the shared secret from the 2243
OSAP mechanism and the nonce (authLastNonceEven) returned by the TPM from the 2244
TPM_OSAP command. 2245

The creator encrypts the new AuthData using the key from the previous step as a one-time 2246
pad with XOR and then sends this encrypted data along with the creation request to the 2247
TPM. 2248

The TPM may support AES as an additional ADIP encryption algorithm. 2249

The TPM decrypts the AuthData using the OSAP shared secret and authLastNonceEven, 2250
creates the new entity. 2251

The TPM includes the sends the reply back to the creator using the new AuthData as the 2252
secret value of the HMAC. 2253

The creator believes that the OSAP creates a shared secret known only to the creator and 2254
the TPM. The TPM believes that the creator is the entity owner by their knowledge of the 2255
parent entity AuthData. The creator believes that the process completed correctly and that 2256
the AuthData is correct because the HMAC will only verify with the OSAP secret. 2257

The ADIP allows for the creation of new entities and the secure insertion of the new entity 2258
AuthData. The transmission of the new AuthData uses encryption with the key being a 2259
shared secret of an OSAP session. 2260

The OSAP session must be created using the owner of the new entity. 2261

In the following example, we want to send the previously described command 2262
TPM_EXAMPLE to create a new entity. In the example, we assume there is a third input 2263
parameter newAuth, and that one of the input parameters is named parentHandle to 2264

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 73
 TCG Published

reference the parent for the new entity (TPM Owner in some circumstances such as the SRK 2265
and its children, otherwise a key). 2266

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

74 Revision 94 29 March 2006
 TCG Published

 2267

Caller On the wire Dir TPM

Send TPM_OSAP TPM_OSAP

parentHandle
nonceOddOSAP

à Create session & authHangle

Generate authLastNonceEven
Save authLastNonceEven with authHandle
Save the ADIP encryption scheme with authHandle
Generate nonceEvenOSAP

Generate sharedSecret = HMAC(parent.usageAuth,
nonceEvenOSAP, nonceOddOSAP)
Save parentHandle, sharedSecret with authHandle

Save authHandle, authLastNonceEven

Generate sharedSecret =
HMAC(parent.usageAuth,
nonceEvenOSAP, nonceOddOSAP)
Save sharedSecret

authHandle,
authLastNonceEven
nonceEvenOSAP

ß Returns

Generate nonceOdd & save with
authHandle.
Compute input parameter newAuth = XOR(
entityAuthData, SHA1(sharedSecret,
authLastNonceEven))
Compute inAuth = HMAC (sharedSecret,
inParamDigest, inAuthSetupParams)

Send TPM_Example tag
paramSize

ordinal
keyHandle
inArgOne
inArgTwo

newAuth
authHandle
nonceOdd
continueAuthSession

inAuth

à Verify authHandle points to a valid session, mismatch returns
TPM_AUTHFAIL

Retrieve authLastNonceEven from internal session storage
HM = HMAC (sharedSecret, inParamDigest, inAuthSetupParams)
Compare HM to inAuth. If they do not compare return with
TPM_AUTHFAIL

Compute entityAuthData = XOR(newAuth, SHA1(sharedSecret,
authLastNonceEven))
Execute TPM_Example, create entity and build returnCode. If
TPM_Example requires ADIP encryption, use the algorithm indicated
when the OSAP session was set up.
Generate nonceEven to replace authLastNonceEven in session
Set resAuth = HMAC(sharedSecret, outParamDigest,
outAuthSetupParams)

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 75
 TCG Published

 2268

Save nonceEven
HM = HMAC(sharedSecret,
outParamDigest, outAuthSetupParams)
Compare HM to resAuth. This verifies
returnCode and output parameters.

tag
paramSize
returnCode
outArgOne

nonceEven
continueAuthSession
resAuth

ß Return output parameters
Destroy auth session associated with authHandle

Table 13:e - Example ADIP Session 2269

 2270

End of informative comment 2271

1. The TPM MUST enable ADIP by using the OSAP. The TPM MUST encrypt the AuthData 2272
for the new entity by performing an XOR using the shared secret created by the OSAP. 2273

2. The TPM MUST destroy the OSAP session whenever a new entity is created. 2274

13.6 AuthData Change Protocol (ADCP) 2275

Start of informative comment 2276

All entities from the Owner to the SRK to individual keys and data blobs have AuthData. 2277
This data may need to change at some point in time after the entity creation. The ADCP 2278
allows the entity owner to change the AuthData. The entity owner of a wrapped key is the 2279
owner of the parent key. 2280

A requirement is that the owner must remember the old AuthData. The only mechanism to 2281
change the AuthData when the entity owner forgets the current value is to delete the entity 2282
and then recreate it. 2283

To protect the data from exposure to eavesdroppers or other attackers, the AuthData uses 2284
the same encryption mechanism in use during the ADIP. 2285

Changing AuthData requires opening two authentication handles. The first handle 2286
authenticates the entity owner (or parent) and the right to load the entity. This first handle 2287
is an OSAP and supplies the data to encrypt the new AuthData according to the ADIP 2288
protocol. The second handle can be either an OIAP or an OSAP, it authorizes access to the 2289
entity for which the AuthData is to be changed. 2290

The AuthData in use to generate the OSAP shared secret must be the AuthData of the 2291
parent of the entity to which the change will be made. 2292

When changing the AuthData for the SRK, the first handle OSAP must be setup using the 2293
TPM Owner AuthData. This is because the SRK does not have a parent, per se. 2294

If the SRKAuth data is known to userA and userB, userA can snoop on userB while userB 2295
is changing the AuthData for a child of the SRK, and deduce the child's newAuth. 2296
Therefore, if SRKAuth is a well known value, TPM_ChangeAuthAsymStart and 2297
TPM_ChangeAuthAsymFinish are preferred over TPM_ChangeAuth when changing 2298
AuthData for children of the SRK. 2299

This applies to all children of the SRK, including TPM identities. 2300

End of informative comment 2301

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

76 Revision 94 29 March 2006
 TCG Published

1. Changing AuthData for the TPM SHALL require authorization of the current TPM Owner. 2302

2. Changing AuthData for the SRK SHALL require authorization of the TPM Owner. 2303

3. If SRKAuth is a well known value, TPM_ChangeAuth SHOULD NOT be used to change 2304
the AuthData value of a child of the SRK, including the TPM identities. 2305

4. All other entities SHALL require authorization of the parent entity. 2306

13.7 Asymmetric Authorization Change Protocol (AACP) 2307

Start of informative comment 2308

This is now deprecated. Use the normal change session inside of a transport session with 2309
confidentiality. 2310

This asymmetric change protocol allows the entity owner to change entity authorization, 2311
under the parent’s execution authorization, to a value of which the parent has no 2312
knowledge. 2313

In contrast, the TPM_ChangeAuth command uses the parent entity AuthData to create the 2314
shared secret that encrypts the new AuthData for an entity. This creates a situation where 2315
the parent entity ALWAYS knows the AuthData for entities in the tree below the parent. 2316
There may be instances where this knowledge is not a good policy. 2317

This asymmetric change process requires two commands and the use of an authorization 2318
session. 2319

End of informative comment 2320

1. Changing AuthData for the SRK SHALL involve authorization by the TPM Owner. 2321

2. If SRKAuth is a well known value, 2322

3. TPM_ChangeAuthAsymStart and TPM_ChangeAuthAsymFinish SHOULD be used to 2323
change the AuthData value of a child of the SRK, including the TPM identities. 2324

4. All other entities SHALL involve authorization of the parent entity. 2325

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 77
 TCG Published

14. FIPS 140 Physical Protection 2326
Start of informative comment 2327

The FIPS 140-2 program provides assurance that a cryptographic device performs properly. 2328
It is appropriate for TPM vendors to attempt to obtain FIPS 140-2 certification. 2329

The TPM design should be such that the TPM vendor has the opportunity of obtaining FIPS 2330
140-2 certification. 2331

End of informative comment 2332

14.1 TPM Profile for FIPS Certification 2333

Start of informative comment 2334

The FIPS mode of the TPM does require some changes over the normal TPM. These changes 2335
are listed here such that there is a central point of determining the necessary FIPS changes. 2336

Key creation and use 2337

TPM_LoadKey, TPM_CMK_CreateKey and TPM_CreateWrapKey changed to disallow the 2338
creation or loading of AUTH_NEVER, legacy and keys less than 1024 bits. 2339
TPM_MakeIdentity changed to disallow AUTH_NEVER. 2340

End of informative comment 2341

1. Each TPM Protected Capability MUST be designed such that some profile of the 2342
Capability is capable of obtaining FIPS 140-2 certification 2343

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

78 Revision 94 29 March 2006
 TCG Published

15. Maintenance 2344
Start of informative comment 2345

The maintenance feature is a vendor-specific feature, and its implementation is vendor-2346
specific. The implementation must, however, meet the minimum security requirements so 2347
that implementations of the maintenance feature do not result in security weaknesses. 2348

There is no requirement that the maintenance feature is available, but if it is implemented, 2349
then the requirements must be met. 2350

The maintenance feature described in the specification is an example only, and not the only 2351
mechanism that a manufacturer could implement that meets these requirements. 2352

Maintenance is different from backup/migration, because maintenance provides for the 2353
migration of both migratory and non-migratory data. Maintenance is an optional TPM 2354
function, but if a TPM enables maintenance, the maintenance capabilities in this 2355
specification are mandatory – no other migration capabilities shall be used. Maintenance 2356
necessarily involves the manufacturer of a Subsystem. 2357

When maintaining computer systems, it is sometimes the case that a manufacturer or its 2358
representative needs to replace a Subsystem containing a TPM. Some manufacturers 2359
consider it a requirement that there be a means of doing this replacement without the loss 2360
of the non-migrational keys held by the original TPM. 2361

The owner and users of TCG platforms need assurance that the data within protected 2362
storage is adequately protected against interception by third parties or the manufacturer. 2363

This process MUST only be performed between two platforms of the same manufacturer and 2364
model. If the maintenance feature is supported, this section defines the required functions 2365
defined at a high level. The final function definitions and entire maintenance process is left 2366
to the manufacturer to define within the constraints of these high level functions. 2367

Any maintenance process must have certain properties. Specifically, any migration to a 2368
replacement Subsystem must require collaboration between the Owner of the existing 2369
Subsystem and the manufacturer of the existing Subsystem. Further, the procedure must 2370
have adequate safeguards to prevent a non-migrational key being transferred to multiple 2371
Subsystems. 2372

The maintenance capabilities TPM_CreateMaintenanceArchive and 2373
TPM_LoadMaintenanceArchive enable the transfer of all Protected Storage data from a 2374
Subsystem containing a first TPM (TPM1) to a Subsystem containing a second TPM (TPM2): 2375

A manufacturer places a public key in non-volatile storage into its TPMs at manufacture 2376
time. 2377

The Owner of TPM1 uses TPM_CreateMaintenanceArchive to create a maintenance archive 2378
that enables the migration of all data held in Protected Storage by TPM1. The Owner of TPM1 2379
must provide his or her authorization to the Subsystem. The TPM then creates the 2380
TPM_MIGRATE_ASYMKEY structure and follows the process defined. 2381

The XOR process prevents the manufacturer from ever obtaining plaintext TPM1 data. 2382

The additional random data provides a means to assure that a maintenance process cannot 2383
subvert archive data and hide such subversion. 2384

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 79
 TCG Published

The random mask can be generated by two methods, either using the TPM RNG or MGF1 on 2385
the TPM Owners AuthData. 2386

The manufacturer takes the maintenance blob, decrypts it with its private key, and satisfies 2387
itself that the data bundle represents data from that Subsystem manufactured by that 2388
manufacturer. Then the manufacturer checks the endorsement certificate of TPM2 and 2389
verifies that it represents a platform to which data from TPM1 may be moved. 2390

The manufacturer dispatches two messages. 2391

The first message is made available to CAs, and is a revocation of the TPM1 endorsement 2392
certificate. 2393

The second message is sent to the Owner of TPM2, which will communicate the SRK, 2394
tpmProof and the manufacturer’s permission to install the maintenance blob only on TPM2 2395

The Owner uses TPM_LoadMaintenanceArchive to install the archive copy into TPM2, and 2396
overwrite the existing TPM2-SRK and TPM2-tpmProof in TPM2. TPM2 overwrites TPM2-SRK 2397
with TPM1-SRK, and overwrites TPM2-tpmProof with TPM1-tpmProof. 2398

Note that the command TPM_KillMaintenanceFeature prevents the operation of 2399
TPM_CreateMaintenanceArchive and TPM_LoadMaintenanceArchive. This enables an Owner 2400
to block maintenance (and hence the migration of non-migratory data) either to or from a 2401
TPM. 2402

It is required that a manufacturer takes steps that prevent further access of migrated data 2403
by TPM1. This may be achieved by deleting the existing Owner from TPM1, for example. 2404

For the manufacturer to validate that the maintenance blob is coming from a valid TPM, the 2405
manufacturer can require that a TPM identity sign the maintenance blob. The identity 2406
would be from a CA under the control of the manufacturer and hence the manufacturer 2407
would be satisfied that the blob is from a valid TPM. 2408

End of informative comment 2409

1. The maintenance feature MUST ensure that the information can be on only one TPM at 2410
a time. Maintenance MUST ensure that at no time the process will expose a shielded 2411
location. Maintenance MUST require the active participation of the Owner. 2412

2. Any migration of non-migratory data protected by a Subsystem SHALL require the 2413
cooperation of both the Owner of that non-migratory data and the manufacturer of that 2414
Subsystem. That manufacturer SHALL NOT cooperate in a maintenance process unless 2415
the manufacturer is satisfied that non-migratory data will exist in exactly one 2416
Subsystem. A TPM SHALL NOT provide capabilities that support migration of non-2417
migratory data unless those capabilities are described in the TCG specification. 2418

3. The maintenance feature MUST move the following 2419

4. TPM_KEY for SRK. The maintenance process will reset the SRK AuthData to match the 2420
TPM Owners AuthData 2421

5. TPM_PERMANENT_DATA -> tpmProof 2422

6. TPM Owner’s authorization 2423

15.1 Field Upgrade 2424

Start of informative comment 2425

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

80 Revision 94 29 March 2006
 TCG Published

A TPM, once in the field, may need to update the protected capabilities. This command, 2426
which is optional, provides the mechanism to perform the update. 2427

End of informative comment 2428

The TPM SHOULD have provisions for upgrading the subsystem after shipment from the 2429
manufacturer. If provided the mechanism MUST implement the following guidelines: 2430

1. The upgrade mechanisms in the TPM MUST not require the TPM to hold a global secret. 2431
The definition of global secret is a secret value shared by more than one TPM. 2432

2. The TPM is not allowed to pre-store or use unique identifiers in the TPM for the purpose 2433
of field upgrade. The TPM MUST NOT use the endorsement key for identification or 2434
encryption in the upgrade process. The upgrade process MAY use a TPM Identity (AIK) to 2435
deliver upgrade information to specific TPM devices. 2436

3. The upgrade process can only change protected-capabilities. 2437

4. The upgrade process can only access data in shielded-locations where this data is 2438
necessary to validate the TPM Owner, validate the TPME and manipulate the blob 2439

5. The TPM MUST conform to the TCG specification, protection profiles and security targets 2440
after the upgrade. The upgrade MAY NOT decrease the security values from the original 2441
security target. 2442

6. The security target used to evaluate this TPM MUST include this command in the TOE. 2443

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 81
 TCG Published

16. Proof of Locality 2444
Start of informative comment 2445

When a platform is designed with a trusted process, the trusted process may wish to 2446
communicate with the TPM and indicate that the command is coming from the trusted 2447
process. The definition of a trusted process is a platform specific issue. 2448

The commands that the trusted process sends to the TPM are the normal TPM commands 2449
with a modifier that indicates that the trusted process initiated the command. The TPM 2450
accepts the command as coming from the trusted process merely due to the fact that the 2451
modifier is set. The TPM itself is not responsible how the signal is asserted; only that it 2452
honors the assertions The TPM cannot verify the validity of the modifier. 2453

The definition of the modifier is a platform specific issue. Depending on the platform the 2454
modifier could be a special bus cycle or additional input pins on the TPM. The assumption 2455
is that to spoof the modifier to the TPM requires more than just a simple hardware attack 2456
but would require expertise and possibly special hardware. One example would be special 2457
cycles on the LPC bus that inform the TPM it is under the control of a process on the PC 2458
platform. 2459

To allow for multiple mechanisms and for finer grained reporting the TPM will include 4 2460
locality modifiers. These four modifiers allow the platform specific specification to properly 2461
indicate exactly what is occurring and for TPM’s to properly respond to locality. 2462

End of informative comment 2463

1. The TPM modifies the receipt of a command and indicates that the trusted process sent 2464
the command when the TPM determines that the modifier is on. The modifier MUST only 2465
affect the individual command just received and MUST NOT affect any other commands. 2466
However the TPM_ExecuteTransport MUST propagate the modifier to the wrapped 2467
command. 2468

2. A TPM platform specific specification MAY indicate the presence of a maximum of 4 local 2469
modifiers. The modifier indication uses the TPM_MODIFIER_INDICATOR structure. 2470

3. The modifiers may occur singularly or in combination. 2471

4. The definition of the trusted source is in the platform specific specification. 2472

5. For ease in reading this specification the indication that the TPM has received any 2473
modifier will be LOCAL_MOD = TRUE. 2474

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

82 Revision 94 29 March 2006
 TCG Published

17. Monotonic Counter 2475
Start of informative comment 2476

The monotonic counter provides an ever-increasing incremental value. The TPM must 2477
support at least 4 concurrent counters. Implementations inside the TPM may create 4 2478
unique counters or there may be one counter with pointers to keep track of the pointers 2479
current value. A naming convention to allow for unambiguous reference to the various 2480
components the following terms are in use: 2481

Internal Base – This is the main counter. It is in use internally by the TPM and is not 2482
directly accessible by any outside process. 2483

External Counter – A counter in use by external processes. This could be related to the 2484
main counter via pointers and difference values or it could be a totally unique value. The 2485
value of an external counter is not affected by any use, increment or deletion of any other 2486
external counter. 2487

Max Value – The max count value of all counters (internal and external). So if there were 3 2488
external counters having values of 10, 15 and 201 and the internal base having a value of 2489
201 then Max Value is 201. In the same example if the internal base was 502 then Max 2490
Value would be 502. 2491

There are two methods of obtaining an external count, signed or unsigned. The external 2492
counter must allow for 7 years of increments every 5 seconds without causing a hardware 2493
failure. The output of the counter is a 32-bit value. 2494

The TPM may create a throttling mechanism that limits the ability to increment an external 2495
counter within a certain time range. The TPM must support an increment rate of once every 2496
5 seconds. 2497

To create an external counter requires TPM Owner authorization. To increment an external 2498
counter the command must pass authorization to use the counter. 2499

External counters can be tagged with a short text string to facilitate counter administration. 2500

Manufacturers are free to implement the monotonic counter using any mechanism. 2501

To illustrate the counters and base the following example is in use. This mechanism uses 2502
two saving values (diff and start), however this is only an example and not meant to indicate 2503
any specific implementation. 2504

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 83
 TCG Published

 2505
The internal base (IB) always moves forward and can never be reset. IB drives all external 2506
counters on the machine.. 2507

The purpose of the following example is to show the two external counters always moving 2508
forward independent of the other and how the IB moves forward also. 2509

Starting condition is that IB is at 22 and no other external counters are active. 2510

Start external counter A 2511

 Increment IB (set new Max Value) IB = 23 2512

 Assign start value of A to 23 (or Max Value) 2513

 Assign difference of A to 23 (we always start at current value of IB) 2514

 Assign a handle for A 2515

Increment A 5 times 2516

 IB is now 28 2517

Request current A value 2518

 Return 28 = 28 (IB) + 23 (difference) – 23 (start value) 2519

 Counter A has gone from the start of 23 to 28 incremented 5 times. 2520

TPM_Startup(ST_CLEAR) 2521

Start Counter B 2522

 Save A difference 28 = 23 (old difference) + 28 (IB) – 23 (start value) 2523

 Increment IB (set new Max Value) IB = 29 2524

 Set start value of B to 29 (or Max Value) 2525

 Assign difference of B to 29 2526

 Assign handle for B 2527

Increment B 8 times 2528

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

84 Revision 94 29 March 2006
 TCG Published

 IB is now 37 2529

Request B value 2530

 Return 37 = 37 (IB) + 29 (difference) – 29 (start value) 2531

TPM_Startup(ST_CLEAR) 2532

Increment A 2533

 Store B difference (37) 2534

 Load A start value of 37 2535

 Increment IB to 38 2536

Return A value 2537

 Return 29 = 38 (IB) + 28 (difference) – 37 (start value) 2538

 2539

Notice that A has gone from 28 to 29 which is correct, while B is at 37. Depending on the 2540
order of increments A may pass B or it may always be less than B. 2541

End of informative comment 2542

1. The counter MUST be designed to not wear out in the first 7 years of operation. The 2543
counter MUST be able to increment at least once every 5 seconds. The TPM, in response 2544
to operations that would violate these counter requirements, MAY throttle the counter 2545
usage (cause a delay in the use of the counter) or return the error 2546
TPM_E_COUNTERUSAGE. 2547

2. The TPM MUST support at least 4 concurrent counters. 2548

3. The establishment of a new counter MUST prevent the reuse of any previous counter 2549
value. I.E. if the TPM has 3 counters and the max value of a current counter is at 36 2550
then the establishment of a new counter would start at 37. 2551

4. After a successful TPM_Startup(ST_CLEAR) the first successful TPM_IncrementCounter 2552
sets the counter handle. Any attempt to issue TPM_IncrementCounter with a different 2553
handle MUST fail. 2554

5. TPM_CreateCounter does NOT set the counter handle. 2555

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 85
 TCG Published

18. Transport Protection 2556
Start of informative comment 2557

The creation of sessions allows for the grouping of a set of commands into a session. The 2558
session provides a log of all commands and can provide confidentiality of the commands 2559
using the session. 2560

Session establishment creates a shared secret and then uses the shared secret to authorize 2561
and protect commands sent to the TPM using the session. 2562

After establishing the session, the caller uses the session to wrap a command to execute. 2563
The user of the transport session can wrap any command except for commands that would 2564
create nested transport sessions. 2565

The log of executed commands uses a structure that includes the parameters and current 2566
tick count. The session log provides a record of each command using the session. 2567

The transport session uses the same rolling nonce protocol that authorization sessions use. 2568
This protocol defines two nonces for each command sent to the TPM; nonceOdd provided by 2569
the caller and nonceEven generated by the TPM. 2570

For confidentiality, the caller can use the MGF1 function to create an XOR string the same 2571
size as the command to execute. The inputs to the MGF1 function are the shared secret, 2572
nonceOdd and nonceEven. A symmetric key encryption algorithm can also be specified. 2573

There is no explicit close session as the caller can use the continueSession flag set to false 2574
to end a session. The caller can also call the sign session log, which also ends the session. If 2575
the caller losses track of which sessions are active the caller should use the flush 2576
commands to regain control of the TPM resources. 2577

For an attacker to successfully break the encryption the attacker must be able to determine 2578
from a few bits what an entire SHA-1 output was. This is equivalent to breaking SHA-1. The 2579
reason that the attacker will know some bits is that the commands are in a known format. 2580
This then allows the attacker to determine what the XOR bits were. Knowledge of 159 bits of 2581
the XOR stream does not provide any greater that 50% probability of knowing the 160th bit. 2582

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

86 Revision 94 29 March 2006
 TCG Published

 2583
This picture shows the protection of a TPM_Quote command. Previously executed was 2584
session establishment. The nonces in use for the TPM_Quote have no relationship with the 2585
nonces that are in use for the TPM_ExecuteTransport command. 2586

End of informative comment 2587

1. The TPM MUST support a minimum of one transport session. 2588

2. The TPM MUST NOT support the nesting of transport sessions. The definition of nesting 2589
is attempting to execute a wrapped command that is a transport session command. So 2590
for example when executing TPM_ExecuteTransport the wrapped command MUST not be 2591
TPM_ExecuteTransport. 2592

3. The TPM MUST ensure that if transport logging is active that the inclusion of the tick 2593
count in the session log does not provide information that would make a timing attack 2594
on the operations using the session more successful. 2595

4. The transport session MAY be exclusive. Any command executed outside of the exclusive 2596
transport session MUST cause the invalidation of the exclusive transport session. 2597

a. The TPM_ExecuteTransport command specifying the exclusive transport session is 2598
the only command that does not terminate the exclusive session. 2599

5. It MAY be ineffective to wrap TPM_SaveState in a transport session. Since the TPM MAY 2600
include transport sessions in the saved state, the saved state MAY be invalidated by the 2601
wrapping TPM_ExecuteTransport. 2602

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 87
 TCG Published

18.1 Transport encryption and authorization 2603

Start of informative comment 2604

The confidentially of the transport protection is provided by a encrypting the wrapped 2605
command. Encryption of various items in the wrapped command makes resource 2606
management of a TPM impossible. For this reason, encryption of the entire command is not 2607
possible. In addition to the encryption issue, there are difficulties with creating the HMAC 2608
for the TPM_ExecuteTransport authorization. 2609

The solution to these problems is to provide limited encryption and HMAC information. 2610

The HMAC will only include two areas from the wrapped command, the command header 2611
information up to the handles, and the data after the handles. The format of all TPM 2612
commands is such that all handles are in the data stream prior to the payload or data. After 2613
the data comes the authorization information. To enable resource management, the HMAC 2614
for TPM_ExecuteTransport only includes the ordinal, header information and the data. The 2615
HMAC does not include handles and the authorization handles and nonces. 2616

The exception is TPM_OwnerReadInternalPub, which uses fixed value key handles that are 2617
included in the encryption and HMAC calculation. 2618

 2619

 2620
A more exact representation of the execute transport command would be the following 2621

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

88 Revision 94 29 March 2006
 TCG Published

 *** 2622
 * TAGet | LENet | ORDet | wrappedCmd | AUTHet * 2623
 *** 2624
 2625
wrappedCmd looks like 2626

 *** 2627
 * TAGw | LENw | ORDw | HANDLESw | DATAw | AUTH1w (o) | AUTH2w (o) * 2628
 *** 2629
A more exact representation of the execute transport response would be the following 2630

 ** 2631
 * TAGet | LENet | RCet | wrappedRsp | AUTHet * 2632
 ** 2633
 2634
wrappedRsp looks like 2635

 ** 2636
 * TAGw | LENw | RCw | HANDLESw | DATAw | AUTH1w (o) | AUTH2w (o) * 2637
 ** 2638
 2639
The calculation for AUTHet takes as the data component of the HMAC calculation the 2640
concatenation of ORDw and DATAw. A normal HMAC calculation would have taken the 2641
entire wrappedCmd value but for the executeTransport calculation only the above two 2642
values are active. This does require the executeTransport command to parse the 2643
wrappedCmd to find the appropriate values. 2644

The data for the command HMAC calculation is the following: 2645

H1 = SHA-1 (ORDw || DATAw) 2646

inParamDigest = SHA-1 (ORDet || wrappedCmdSize || H1) 2647

AUTHet = HMAC (inParamDigest || lastNonceEven(et) || nonceOdd(et) || continue(et)) 2648

The data for the response HMAC calculation is the following: 2649

H2 = SHA-1 (RCw || ORDw || DATAw) 2650

outParamDigest = SHA-1 (RCet || ORDet || currentTicks || locality || wrappedRspSize || 2651
H1) 2652

AUTHet = HMAC (outParamDigest || nonceEven(et) || nonceOdd(et) || continue(et)) 2653

DATAw is the unencrypted data. wrappedCmdSize and wrappedRspSize ares the actual size 2654
of the DATAw area and not the size of H1 or H2. 2655

End of informative comment 2656

The TPM MUST release a transport session and all information related to the session when: 2657

1. TPM_ReleaseTransportSigned is executed 2658

2. TPM_ExecuteTransport is executed with continueTransSession set to FALSE 2659

3. Any failure of the integrity check during execution of TPM_ExecuteTransport 2660

4. If the session has TPM_TRANSPORT_LOG set and the TPM tick session is interrupted for 2661
any reason. This is due to the return of tick values without the nonces associated with 2662
the session. 2663

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 89
 TCG Published

5. The TPM executes some command that deactivates the TPM or removes the TPM Owner 2664
or EK. 2665

18.1.1 MGF1 parameters 2666

Start of informative comment 2667

MGF1 provides the confidentiality for the transport session. MGF1 is a function from PKCS 2668
1 version 2.0. This function provides a mechanism to distribute entropy over a large 2669
sequence. The sequence provides a value to XOR over the message. This in effect creates a 2670
stream cipher but not one that is available for bulk encryption. 2671

Transport confidentiality uses MGF1 as a stream cipher and obtains the entropy for each 2672
message from the following three parameters; nonceOdd, nonceEven and session authData. 2673

It is imperative that the stream cipher not use the same XOR sequence at any time. The 2674
following illustrates how the sequence changes for each message (both input and output). 2675

M1Input – N2, N1, sessionSecret) 2676

M1Output – N4, N1, sessionSecret) 2677

M2Input – N4, N3, sessionSecret) 2678

M2Output – N6, N3, sessionSecret) 2679

There is an issue with this sequence. If the caller does not change N1 to N3 between 2680
M1Output and M2Input then the same sequence will be generated. The TPM does not 2681
enforce the requirement to change this value so it is possible to leak information. 2682

The fix for this is to add one more parameter, the direction. So the sequence is now this: 2683

M1Input – N2, N1, “in”, sessionSecret) 2684

M1Output – N4, N1, “out”, sessionSecret) 2685

M2Input – N4, N3, “in”, sessionSecret) 2686

M2Output – N6, N3, “out”, sessionSecret) 2687

Where “in” indicates the in direction and “out” indicates the out direction. 2688

Notice the calculation for M1Output uses “out” and M2Input uses “in”, so if the caller 2689
makes a mistake and does not change nonceOdd, the sequence will still be different. 2690

nonceEven is under control of the TPM and is always changing, so there is no need to worry 2691
about nonceEven not changing. 2692

End of informative comment 2693

18.1.2 HMAC calculation 2694

Start of informative comment 2695

The HMAC calculation for transports presents some issues with what should and should 2696
not be in the calculation. The idea is to create a calculation for the wrapped command and 2697
add that to the wrapper. 2698

So the data area for a wrapped command is not entirely HMAC’d like a normal command 2699
would be. 2700

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

90 Revision 94 29 March 2006
 TCG Published

The process is to calculate the inParamDigest of the unencrypted wrapped command 2701
according to the normal rules of command HMAC calculations. Then use that value as the 2702
3S parameter in the calculation. 2S is the actual wrapped command size, and not the size 2703
of inParamDigest. 2704

Example using a wrapped TPM_LoadKey command 2705

Calculate the SHA-1 value for the TPM_LoadKey command (ordinal and data) as per the 2706
normal HMAC rules. Take the digest and use that value as 3S for the 2707
TPM_ExecuteTransport HMAC calculation. 2708

End of informative comment 2709

18.1.3 Transport log creation 2710

Start of informative comment 2711

The log of information that a transport session creates needs a mechanism to tie any keys 2712
in use during the session to the session. As the HMAC and encryption for the command 2713
specifically exclude handles, there is no direct way to create the binding. 2714

When creating the input log, if a handle points to a key, the hash of the public key is added 2715
to the log. The session owner knows the value of any keys in use and hence can still create 2716
a log that shows the values used by the log and can validate the session. 2717

When creating the transport input log, if there is one input key, the TPM will create a hash 2718
of the public key. If there are two input keys, the TPM will create a hash of each public key, 2719
concatenate the hashes, and create a hash of the result. The result, along with the 2720
parameter digest, is used to extend that transport log. 2721

End of informative comment 2722

18.1.4 Additional Encryption Mechanisms 2723

Start of informative comment 2724

The TPM can optionally implement alternate algorithms for the encryption of commands 2725
sent to the TPM_ExecuteTransport command. The designation of the algorithm uses the 2726
TPM_AGORITHM_ID element of the TPM_TRANSPORT_PUBLIC parameter of 2727
TPM_EstablishTransport command. 2728

The anticipation is that AES and 3DES will be available algorithms supported by various 2729
TPM’s. Symmetric algorithms have options available to them like key size, block size and 2730
operating mode. When using an algorithm other than MGF1 the algorithm must specify 2731
these options. 2732

End of informative comment 2733

1. The TPM MAY support other symmetric algorithms for the confidentiality requirement in 2734
TPM_EstablishTransport 2735

18.2 Transport Error Handling 2736

Start of informative comment 2737

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 91
 TCG Published

With the transport hiding the actual execution of commands and the transport capable of 2738
generating errors, rules must be established to allow for the errors and the results of 2739
commands to be properly passed to TPM callers. 2740

End of informative comment 2741

1. There are 3 error cases: 2742

2. C1 is the case where an error occurs during the processing of the transport package at 2743
the TPM. In this case, the wrapped command has not been sent to the command 2744
decoder. Errors occurring during C1 are sent back to the caller as a response to the 2745
TPM_ExecuteTransport command. The error response does not have confidentiality. 2746

3. C2 is the case where an error occurs during the processing of the wrapped command. 2747
This results in an error response from the command. The session returns the error 2748
response according to the attributes of the session. 2749

4. C3 is the case where an error occurs after the wrapped command has completed 2750
processing and the TPM is preparing the response to the TPM_ExecuteTransport 2751
command. In this case, where the TPM does have an internal error, the TPM has no 2752
choice but to return the error as in C1. This however hides the results of the wrapped 2753
command. If the wrapped command completed successfully then there are session 2754
nonces that are being returned to the caller that are lost. The loss of these nonces 2755
causes the caller to be unsure of the state of the TPM and requires the reestablishment 2756
of sessions and keys. 2757

18.3 Exclusive Transport Sessions 2758

Start of informative comment 2759

The caller may establish an exclusive session with the TPM. When an exclusive session is 2760
running, execution of any command other then TPM_ExecuteTransport or 2761
TPM_ReleaseTransportSigned targeting the exclusive session causes the abnormal 2762
invalidation of the exclusive transport session. Invalidation means that the handle is no 2763
longer valid and all subsequent attempts to use the handle return an error. 2764

The design for the exclusive session provides an assurance that no other command 2765
executed on the TPM. It is not a lock to prevent other operations from occurring. Therefore, 2766
the caller is responsible for ensuring no interruption of the sequence of commands using 2767
the TPM. 2768

One exclusive session 2769

The TPM only supports one exclusive session at a time. There is no nesting or other 2770
commands possible. The TPM maintains an internal flag that indicates the existence of an 2771
exclusive session. 2772

TSS responsibilities 2773

It is the responsibility of the TSS (or other controlling software) to ensure that only 2774
commands using the session reach the TPM. As the purpose of the session is to show that 2775
nothing else occurred on the TPM during the session, the TSS should control access to the 2776
TPM and prevent any other uses of the TPM. The TSS design must take into account the 2777
possibility of exclusive session handle invalidation. 2778

Sleep states 2779

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

92 Revision 94 29 March 2006
 TCG Published

Exclusive sessions as defined here do not work across TPM_SaveState and 2780
TPM_Startup(ST_STATE) invocations. To have this sequence work properly there would 2781
need to be exceptions to allowing only TPM_ExecuteTranport and 2782
TPM_ReleaseTransportSigned in an exclusive session. The requirement for these exceptions 2783
would come from the attempt of the TSS to understand the current state of the TPM. 2784
Commands like TPM_GetCapability and others would have to execute to inform the TSS as 2785
to the internal state of the TPM. For this reason, there are no exceptions to the rule and the 2786
exclusive session does not remain active across a TPM_SaveState command. 2787

End of informative comment 2788

1. The TPM MUST support only one exclusive transport session 2789

2. The TPM MUST invalidate the exclusive transport session upon the receipt of any 2790
command other than TPM_ExecuteTransport or TPM_ReleaseTransportSigned targeting 2791
the exclusive session. 2792

a. Invalidation includes the release of any resources assigned to the session 2793

18.4 Transport Audit Handling 2794

Start of informative comment 2795

Auditing of TPM_ExecuteTransport occurs as any other command that may require 2796
auditing. There are two entries in the log, one for input one for output. The execution of the 2797
wrapped command can create an anomaly in the log. 2798

Assume that both TPM_ExecuteTransport and the wrapped commands require auditing, the 2799
audit flow would look like the following: 2800

 TPM_ExecuteTransport input parameters 2801

 wrapped command input parameters 2802

 wrapped command output parameters 2803

 TPM_ExecuteTransport output parameters 2804

End of informative comment 2805

1. Audit failures are reported using the AUTHFAIL error commands and reflect the success 2806
or failure of the wrapped command. 2807

18.4.1 Auditing of wrapped commands 2808

Start of informative comment 2809

Auditing provides information to allow an auditor to recreate the operations performed. 2810
Confidentiality on the transport channel is to hide what operations occur. These two 2811
features are in conflict. According to the TPM design philosophy, the TPM Owner takes 2812
precedence. 2813

For a command sent on a transport session, with the session using confidentiality and the 2814
command requiring auditing, the TPM will execute the command however the input and 2815
output parameters for the command are set to NULL. 2816

End of informative comment 2817

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 93
 TCG Published

1. When the wrapped command requires auditing and the transport session specifies 2818
encryption, the TPM MUST perform the audit. However, when computing the audit 2819
digest: 2820

a. For input, only the ordinal is audited. 2821

b. For output, only the ordinal and return code are audited. 2822

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

94 Revision 94 29 March 2006
 TCG Published

19. Audit Commands 2823
Start of informative comment 2824

To allow the TPM Owner the ability to determine that certain operations on the TPM have 2825
been executed, auditing of commands is possible. The audit value is a digest held internally 2826
to the TPM and externally as a log of all audited commands. With the log held externally to 2827
the TPM, the internal digest must allow the log auditor to determine the presence of attacks 2828
against the log. The evidence of tampering may not provide evidence of the type of attack 2829
mounted against the log. 2830

The TPM cannot enforce any protections on the external log. It is the responsibility of the 2831
external log owner to properly maintain and protect the log. 2832

The TPM provides mechanisms for the external log maintainer to resynchronize the internal 2833
digest and external logs. 2834

The Owner has the ability to set which functions generate an audit event and to change 2835
which functions generate the event at any time. 2836

The status of the audit generation is not sensitive information and so the command to 2837
determine the status of the audit generation is not an owner authorized command. 2838

It is important to note the difference between auditing and the logging of transport sessions. 2839
The audit log provides information on the execution of specific commands. There will be a 2840
very limited number of audited commands, most likely those commands that provide 2841
identities and control of the TPM. Commands such as TPM_Unseal would not be audited. 2842
They would use the logging functions of a transport session. 2843

The auditing of an ordinal happens in a two-step process. The first step involves auditing 2844
the receipt of the command and the input parameters; the second step involves auditing the 2845
response to the command and the output parameters. This two-step process is in place to 2846
lower the amount of memory necessary to keep track of the audit while executing the 2847
command. This two-step process makes no memory requirements on a TPM to save any 2848
audit information while a command is executing. 2849

There is a requirement to enable verification of the external audit log both during a power 2850
session and across power sessions and to enable detection of partial or inconsistent audit 2851
logs throughout the lifetime of a TPM. 2852

A TPM will hold an internal record consisting of a non-volatile counter (that increments 2853
once per session, when the first audit event of that session occurs) and a digest (that holds 2854
the digest of the current session). Most probably, the audit digest will be volatile. Note, 2855
however, that nothing in this specification prevents the use of a non-volatile audit digest. 2856
This arrangement of counter and digest is advantageous because it is easier to build a high 2857
endurance non-volatile counter than a high endurance non-volatile digest. This 2858
arrangement is insufficient, however, because the truncation of an audit log of any session 2859
is possible without trace. It is therefore necessary to perform an explicit close on the audit 2860
session. If there is no record of a close-audit event in an audit session, anything could have 2861
happened after the last audit event in the audit log. The essence of a typical TPM audit 2862
recording mechanism is therefore: 2863

The TPM contains a volatile digest used like a PCR, where the “integrity metrics” are digests 2864
of command parameters in the current audit session. 2865

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 95
 TCG Published

An audit session opens when the volatile “PCR” digest is “extended” from its NULL state. 2866
This occurs whenever an audited command is executed AND no audit session currently 2867
exists, and in no other circumstances. When an audit session opens, a non-volatile counter 2868
is automatically incremented. 2869

An audit session closes when a TPM receives TPM_GetAuditDigestSigned with a closeAudit 2870
parameter asserted. An audit session must be considered closed if the value in the volatile 2871
digest is invalid (for whatever reason). 2872

TPM_GetCapability should report the effect of TPM_Startup on the volatile digest. (TPMs 2873
may initialize the volatile digest on the first audit command after TPM_Startup(ST_CLEAR), 2874
or on the first audit command after any version of TPM_Startup, or may be independent of 2875
TPM_Startup.) 2876

When the TPM signs its audit digest, it signs the concatenation of the non-volatile counter 2877
and the volatile digest, and exports the value of the non-volatile counter, plus the value of 2878
the volatile digest, plus the value of the signature. 2879

If the audit digest is initialized by TPM_Startup(ST_STATE), then it may be useless to audit 2880
the TPM_SaveState ordinal. Any command after TPM_SaveState MAY invalidate the saved 2881
state. If authorization sessions are part of the saved state, TPM_GetAuditDigestSigned will 2882
most likely invalidate the state as it changes the preserved authorization session nonce. It 2883
may therefore be impossible to get the audit results. 2884

The system designer needs to ensure that the selected TPM can handle the specific 2885
environment and avoid burnout of the audit monotonic counter. 2886

End of informative comment 2887

1. Audit functionality is optional 2888

a. If the platform specific specification requires auditing, the specification SHALL 2889
indicate how the TPM implements audit 2890

2. The TPM MUST maintain an audit monotonic count that is only available for audit 2891
purposes. 2892

a. The increment of this audit counter is under the sole control of the TPM and is not 2893
usable for other count purposes. 2894

b. This monotonic count MUST BE incremented by one whenever the audit digest is 2895
“extended” from a NULL state. 2896

3. The TPM MUST maintain an audit digest. 2897

a. This digest MUST be set to NULL upon the execution of TPM_GetAuditDigestSigned 2898
with a TRUE value of closeAudit provided that the signing key is an identity key. 2899

b. This digest MAY be set to NULL on TPM_Startup[ST_CLEAR] or 2900
TPM_Startup[ST_STATE]. 2901

c. When an audited command is executed, this register MUST be extended with the 2902
digest of that command. 2903

4. Each command ordinal has an indicator in non-volatile TPM memory that indicates if 2904
execution of the command will generate an audit event. The setting of the ordinal 2905
indicator MUST be under control of the TPM Owner. 2906

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

96 Revision 94 29 March 2006
 TCG Published

5. Updating of auditDigest MAY cease when TPM_STCLEAR_FLAGS -> deactivated is TRUE. 2907
This is because a deactivated TPM performs no useful service until the 2908
TPM_Startup(ST_CLEAR), at which point TPM_STCLEAR_FLAGS -> deactivated is 2909
reinitialized. 2910

19.1 Audit Monotonic Counter 2911

Start of informative comment 2912

The audit monotonic counter (AMC) performs the task of sequencing audit logs across audit 2913
sessions. The AMC must have no other uses other than the audit log. 2914

The TPM and platform should be matched such that the expected AMC endurance matches 2915
the expected platform audit sessions and sleep cycles. 2916

Given the size of the AMC it is not anticipated that the AMC would roll over. If the AMC 2917
were to roll over, and the storage of the AMC still allowed updates, the AMC could cycle and 2918
start at 0 again. 2919

End of informative comment 2920

1. The AMC is a TPM_COUNTER_VALUE. 2921

2. The AMC MUST last for 7 years or at least 1,000,000 audit sessions, whichever occurs 2922
first. After this amount of usage, there is no guarantee that the TPM will continue to 2923
properly increment the monotonic counter. 2924

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 97
 TCG Published

20. Design Section on Time Stamping 2925
Start of informative comment 2926

The TPM provides a service to apply a time stamp to various blobs. The time stamp provided 2927
by the TPM is not an actual universal time clock (UTC) value but is the number of timer 2928
ticks the TPM has counted. It is the responsibility of the caller to associate the ticks to an 2929
actual UTC time. 2930

The TPM counts ticks from the start of a timing session. Timing sessions are platform 2931
dependent events that may or may not coincide with TPM_Init and TPM_Startup sessions. 2932
The reason for this difference is the availability of power to the TPM. In a PC desktop, for 2933
instance power could be continually available to the TPM by using power from the wall 2934
socket. For a PC mobile platform, power may not be available when only using the internal 2935
battery. It is a platform designer’s decision as to when and how they supply power to the 2936
TPM to maintain the timing ticks. 2937

The TPM can provide a time stamping service. The TPM does not maintain an internal 2938
secure source of time rather the TPM maintains a count of the number of ticks that have 2939
occurred since the start of a timing session. 2940

On a PC, the TPM may use the timing source of the LPC bus or it may have a separate clock 2941
circuit. The anticipation is that availability of the TPM timing ticks and the tick resolution is 2942
an area of differentiation available to TPM manufactures and platform providers. 2943

End of informative comment 2944

1. This specification makes no requirement on the mechanism required to implement the 2945
tick counter in the TPM. 2946

2. This specification makes no requirement on the ability for the TPM to maintain the 2947
ability to increment the tick counter across power cycles or in different power modes on 2948
a platform. 2949

20.1 Tick Components 2950

Start of informative comment 2951

The TPM maintains for each tick session the following values: 2952

Tick Count Value (TCV) – The count of ticks for the session. 2953

Tick Increment Rate (TIR) – The rate at which the TCV is incremented. There is a set 2954
relationship between TIR and seconds, the relationship is set during manufacturing of the 2955
TPM and platform. This is the TPM_CURRENT_TICKS -> tickRate parameter. 2956

Tick Session Nonce (TSN) – The session nonce is set at the start of each tick session. 2957

End of informative comment 2958

1. The TCV MUST be set to 0 at the start of each tick session. The TPM MUST start a new 2959
tick session if the TPM loses the ability to increment the TCV according to the TIR. 2960

2. The TSN MUST be set to the next value from the TPM RNG at the start of each new tick 2961
session. When the TPM loses the ability to increment the TCV according to the TIR the 2962
TSN MUST be set to NULLS. 2963

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

98 Revision 94 29 March 2006
 TCG Published

3. If the TPM discovers tampering with the tick count (through timing changes etc) the TPM 2964
MUST treat this as an attack and shut down further TPM processing as if a self-test had 2965
failed. 2966

20.2 Basic Tick Stamp 2967

Start of informative comment 2968

The TPM does not provide a secure time source, nor does it provide a signature over some 2969
time value. The TPM does provide a signature over some current tick counter. The signature 2970
covers a hash of the blob to stamp, the current counter value, the tick session nonce and 2971
some fixed text. 2972

The Tick Stamp Result (TSR) is the result of the tick stamp operation that associates the 2973
TCV, TSN and the blob. There is no association with the TCV or TSR with any UTC value at 2974
this point. 2975

End of informative comment 2976

20.3 Associating a TCV with UTC 2977

Start of informative comment 2978

An outside observer would like to associate a TCV with a relevant time value. The following 2979
shows how to accomplish this task. This protocol is not required but shows how to 2980
accomplish the job. 2981

EntityA wants to have BlobA time stamped. EntityA performs TPM_TickStamp on BlobA. 2982
This creates TSRB (TickStampResult for Blob). TSRB records TSRBTCV, the current value of 2983
the TCV, and associates TSRBTCV with the TSN. 2984

Now EntityA needs to associate a TCV with a real time value. EntityA creates blob TS which 2985
contains some known text like “Tick Stamp”. EntityA performs TPM_TickStamp on blob TS 2986
creating TSR1. This records TSR1TCV, the current value of the TCV, and associates 2987
TSR1TCV with the TSN. 2988

EntityA sends TSR1 to a Time Authority (TA). TA creates TA1 which associates TSR1 with 2989
UTC1. 2990

EntityA now performs TPM_TickStamp on TA1. This creates TSR2. TSR2 records TSR2TCV, 2991
the current values of the TCV, and associates TSR2TCV with the TSN. 2992

Analyzing the associations 2993

EntityA has three TSR’s; TSRB the TSR of the blob that we wanted to time stamp, TSR1 the 2994
TSR associated with the TS blob and TSR2 the TSR associated with the information from 2995
the TA. EntityA wants to show an association between the various TSR such that there is a 2996
connection between the UTC and BlobA. 2997

From TSR1 EntityA knows that TSR1TCV is less than the UTC. This is true since the TA is 2998
signing TSR1 and the creation of TSR1 has to occur before the signature of TSR1. Stated 2999
mathematically: 3000

 TSR1TCV < UTC1 3001

From TSR2 EntityA knows that TSR2TCV is greater than the UTC. This is true since the 3002
TPM is signing TA1 which must be created before it was signed. Stated mathematically: 3003

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 99
 TCG Published

 TSR2TCV > UTC1 3004

EntityA now knows TSR1TCV and TSR2TCV bound UTC1. Stated mathematically: 3005

 TSR1TCV < UTC1 < TSR2TCV 3006

This association holds true if the TSN for TSR1 matches the TSN for TSR2. If some event 3007
occurs that causes the TPM to create a new TSN and restart the TCV then EntityA must 3008
start the process all over again. 3009

EntityA does not know when UTC1 occurred in the interval between TSR1TCV and 3010
TSR2TCV. In fact, the value TSR2TCV minus TSR1TCV (TSRDELTA) is the amount of 3011
uncertainty to which a TCV value should be associated with UTC1. Stated mathematically: 3012

 TSRDELTA = TSR2TCV – TSR1TCV iff TSR1TSN = TSR2TSN 3013

EntityA can obtains k1 the relationship between ticks and seconds using the 3014
TPM_GetCapability command. EntityA also obtains k2 the possible errors per tick. EntityA 3015
now calculate DeltaTime which is the conversion of ticks to seconds and the TSRDELTA. 3016
State mathematically: 3017

 DeltaTime = (k1 * TSRDELTA) + (k2 * TSRDELTA) 3018

 3019

To make the association between DeltaTime, UTC and TSRB note the following: 3020

 DeltaTime = (k1*TSRDelta) + Drift = TimeChange + Drift 3021

 Where ABSOLUTEVALUE(Drift)<k2*TSRDelta 3022

(1) TSR1TCV < UTC1 < TSR2TCV 3023

 True since you cannot sign something before it exists 3024

(2) TSR1TCV < UTC1 < TSR1TCV + TSR2TCV-TSR1TCV <= TSR1TCV + DeltaTime (= 3025
TSR1TCV +TimeChange +Drift) 3026

 True because TSR1 and TSR2 are in the same tick session proved by the same TSN. (Note 3027
TimeChange is positive!) 3028

(3) 0 < UTC1-TSR1TCV < DeltaTime 3029

 (Subtract TSR1TCV from all sides) 3030

(4) 0 > TSR1TCV - UTC1 > -DeltaTime = -TimeChange - Drift 3031

 (Multiply through by -1) 3032

(5) TimeChange/2 > [TSR1TCV - (UTC1-TimeChange/2)] > -TimeChange/2 - Drift 3033

 (add TimeChange/2 to all sides) 3034

(6) TimeChange/2 + ABSOLUTEVALUE(Drift) > [TSR1TCV - (UTC1-TimeChange/2)] 3035

> -TimeChange/2 - ABSOLUTEVALUE(Drift) 3036

 Making the large side of an equality bigger, and potentially making the small side smaller. 3037

(7) ABSOLUTEVALUE[TSR1TCV - (UTC1-TimeChange/2)] < TimeChange/2 + 3038

ABSOLUTEVALUE(Drift) 3039

 (Definition of Absolute Value, and TimeChange is positive) 3040

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

100 Revision 94 29 March 2006
 TCG Published

 3041

From which we see that TSR1TCV is approximately UTC1-TimeChange/2 with a symmetric 3042
possible error of TimeChange/2 + AbsoluteValue(Drift) 3043

We can calculate this error as being less than k1*TSRDelta/2 + k2*TSRDelta. 3044

 3045

EntityA now has the ability to associate UTC1 with TSBTSV and by allow others to know 3046
that BlobA was signed at a certain time. First TSBTSN must equal TSR1TSN. This 3047
relationship allows EntityA to assert that TSRB occurs during the same session as TSR1 3048
and TSR2. 3049

EntityA calculates HashTimeDelta which is the difference between TSR1TCV and TSRBTCV 3050
and the conversion of ticks to seconds. HashTimeDelta includes the same k1 and k2 as 3051
calculated above. Stated mathematically: 3052

 E = k2(TSR1TCV – TSRBTCV) 3053

 HashTimeDelta = k1(TSR1TCV – TSRBTCV) + E 3054

Now the following relationships hold: 3055

(1) UTC1 – DeltaTime < TSRBTCV – (TSRBTCV – TSR1TCV) < UTC1 3056

(2) UTC1 – DeltaTime < TSRBTCV + HashTimeDelta + E < UTC1 3057

(3) UTC1 – HashTimeDelta – DeltaTime – E < TSRBTCV < UTC1 – HashTimeDelta + E 3058

(4) TSRBTCV = (UTC1 – HashTimeDelta – DeltaTime/2) + (E + DeltaTime/2) 3059

This has the correct properties 3060

As DeltaTime grows so does the error bar (or the uncertainty of the time association) 3061

As the difference between the time of the measurement and the time of the time stamp 3062
grows, so does the E as a function of E is HashTimeDelta 3063

End of informative comment 3064

20.4 Additional Comments and Questions 3065

Start of informative comment 3066

Time Difference 3067

If two things are time stamped, say at TCVs and TCVe (for TCV at start, TCV at end) then 3068
any entity can calculate the time difference between the two events and will get: 3069

 TimeDiff = k1*|TCVe – TCVs| + k2*|TCVe – TCVs| 3070

This TimeDiff does not indicate what time the two events occurred at it merely gives the 3071
time between the events. This time difference doesn’t require a Time Authority. 3072

Why is TSN (tick session nonce) required? 3073

Without it, there is no way to associate a Time Authority stamp with any TSV, as the TSV 3074
resets at the start of every tick session. The TSN proves that the concatenation of TSV and 3075
TSN is unique. 3076

How does the protocol prevent replay attacks? 3077

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 101
 TCG Published

The TPM signs the TSR sent to the TA. This TSR contains the unique combination of TSV 3078
and TSN. Since the TSN is unique to a tick session and the TSV continues to increment any 3079
attempt to recreate the same TSR will fail. If the TPM is reset such that the TSV is at the 3080
same value, the TSN will be a new value. If the TPM is not reset then the TSV continues to 3081
increment and will not repeat. 3082

How does EntityA know that the TSR1 that the TA signs is recent? 3083

It doesn't. EntityA checks however to ensure that the TSN is the same in all TSR. This 3084
ensures that the values are all related. If TSR1 is an old value then the HashTimeDelta will 3085
be a large value and the uncertainty of the relation of the signing to the UTC will be large. 3086

Why does associating a UTC time with a TSV take two steps? 3087

This is because it takes some time between when a request goes to a time authority and 3088
when the response comes. The protocol measures this time and uses it to create the time 3089
deltas. The relationship of TSV to UTC is somewhere between the request and response. 3090

Affect of power on the tick counter 3091

As the TPM is not required to maintain an internal clock and battery, how the platform 3092
provides power to the TPM affects the ability to maintain the tick counter. The original 3093
mechanism had the TPM maintaining an indication of how the platform provided the power. 3094
Previous performance does not predict what might occur in the future, as the platform may 3095
be unable to continue to provide the power (dead battery, pulled plug from wall etc). With 3096
the knowledge that the TPM cannot accurately report the future, the specification deleted 3097
tick type from the TPM. 3098

The information relative to what the platform is doing to provide power to the TPM is now a 3099
responsibility of the TSS. The TSS should first determine how the platform was built, using 3100
the platform credential. The TSS should also attempt to determine the actual performance 3101
of the TPM in regards to maintaining the tick count. The TSS can help in this determination 3102
by keeping track of the tick nonce. The tick nonce changes each time the tick count is lost. 3103
By comparing the tick nonce across system events the TSS can obtain a heuristic that 3104
represents how the platform provides power to the TPM. 3105

The TSS must define a standard set of values as to when the tick nonce continues to 3106
increment across system events. 3107

The following are some PC implementations that give the flavor of what is possible regarding 3108
the clock on a specific platform. 3109

TICK_INC - No TPM power battery. Clock comes from PCI clock, may stop from time to time 3110
due to clock stopping protocols such as CLKRUN. 3111

TICK_POWER - No TPM power battery. Clock source comes from PCI clock, always runs 3112
except in S3+. 3113

TICK_STSTATE - External power (might be battery) consumed by TPM during S3 only. Clock 3114
source comes either from a system clock that runs during S3 or from crystal/internal TPM 3115
source. 3116

TICK_STCLEAR - Standby power used to drive counter. In desktop, may be related to when 3117
system is plugged into wall. Clock source comes either from a system clock that runs when 3118
standby power is available or from crystal/internal TPM source. 3119

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

102 Revision 94 29 March 2006
 TCG Published

TICK_ALWAYS - TPM power battery. Clock source comes either from a battery powered 3120
system clock that crystal/internal TPM source. 3121

End of informative comment 3122

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 103
 TCG Published

21. Context Management 3123
Start of informative comment 3124

The TPM is a device that contains limited resources. Caching of the resources may occur 3125
without knowledge or assistance from the application that loaded the resource. In version 3126
1.1 there were two types of resources that had need of this support keys and authorization 3127
sessions. Each type had a separate load and restore operation. In version 1.2 there is the 3128
addition of transport sessions. To handle these situations generically 1.2 is defining a single 3129
context manager that all types of resources may use. 3130

The concept is simple, a resource manager requests that wrapping of a resource in a 3131
manner that securely protects the resource and only allows the restoring of the resource on 3132
the same TPM and during the same operational cycle. 3133

Consider a key successfully loaded on the TPM. The parent keys that loaded the key may 3134
have required a different set of PCR registers than are currently set on the TPM. For 3135
example, the end result is to have key5 loaded. Key3 is protected by key2, which is 3136
protected by key1, which is protected by the SRK. Key1 requires PCR1 to be in a certain 3137
state, key2 requires PCR2 to load and key3 requires PCR3. Now at some point in time after 3138
key1 loaded key2, PCR1 was extended with additional information. If key3 is evicted then 3139
there is no way to reload key3 until the platform is rebooted. To avoid this type of problem 3140
the TPM can execute context management routines. The context management routines save 3141
key3 in its current state and allow the TPM to restore the state without having to use the 3142
parent keys (key1 and key2). 3143

There are numerous issues with performing context management on sessions. These issues 3144
revolve around the use of the nonces in the session. If an attacker can successfully store, 3145
attack, fail and then reload the session the attacker can repeat the attack many times. 3146

The key that the TPM uses to encrypt blobs may be a volatile or non-volatile key. One 3147
mechanism would be for the TPM to generate a new key on each TPM_Startup command. 3148
Another would be for the TPM to generate the key and store it persistently in the 3149
TPM_PERMANENT_DATA area. 3150

The symmetric key should be relatively the same strength as a 2048-bit RSA key. 128-bit 3151
AES or a full three key triple DES would be appropriate. 3152

End of informative comment 3153

1. Context management is a required function. 3154

2. Execution of the context commands MUST NOT cause the exposure of any TPM shielded 3155
location. 3156

3. The TPM MUST NOT allow the context saving of the EK or the SRK. 3157

4. The TPM MAY use either symmetric or asymmetric encryption. For asymmetric 3158
encryption the TPM MUST use a 2048 RSA key. 3159

5. A wrapped session blob MUST only be loadable once. A wrapped key blob MAY be 3160
reloadable. 3161

6. The TPM MUST support a minimum of 16 concurrent saved contexts other than keys. 3162
There is no minimum or maximum number of concurrent saved key contexts. 3163

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

104 Revision 94 29 March 2006
 TCG Published

7. All external session blobs (of type TPM_RT_TRANS or TPM_RT_AUTH) can be invalidated 3164
upon specific request (via TPM_FlushXXX using TPM_RT_CONTEXT as resource type), 3165
this does not include session blobs of type TPM_RT_KEY. 3166

8. External session blobs are invalidated on TPM_Startup(ST_CLEAR) or on 3167
TPM_Startup(any) based on the startup effects settings 3168

a. Session blobs of type TPM_RT_KEY with the attributes of parentPCRStatus = FALSE 3169
and IsVolatile = FALSE SHOULD not invalidated on TPM_Startup(any) 3170

9. All external session invalidate automatically upon installation of a new owner due to the 3171
setting of a new tpmProof. 3172

10. If the TPM enters failure mode ALL session blobs (including keys) MUST be invalidated 3173

a. Invalidation includes ensuring that contextNonceKey and contextNonceSession will 3174
change when the TPM recovers from the failure. 3175

11. Attempts to restore a wrapped blob after the successful completion of 3176
TPM_Startup(ST_CLEAR) MUST fail. The exception is a wrapped key blob which may be 3177
long-term and which MAY restore after a TPM_Startup(ST_CLEAR). 3178

12. The save and load context commands are the generic equivalent to the context 3179
commands in 1.1. Version 1.2 deprecates the following commands: 3180

a. TPM_AuthSaveContext 3181

b. TPM_AuthLoadContext 3182

c. TPM_KeySaveContext 3183

d. TPM_KeyLoadContext 3184

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 105
 TCG Published

22. Eviction 3185
Start of informative comment 3186

The TPM has numerous resources held inside of the TPM that may need eviction. The need 3187
for eviction occurs when the number or resources in use by the TPM exceed the available 3188
space. For resources that are hard to reload (i.e. keys tied to PCR values) the outside entity 3189
should first perform a context save before evicting items. 3190

In version 1.1 there were separate commands to evict separate resource types. This new 3191
command set uses the resource types defined for context saving and creates a generic 3192
command that will evict all resource types. 3193

End of informative comment 3194

1. The TPM MUST NOT flush the EK or SRK using this command. 3195

2. Version 1.2 deprecates the following commands: 3196

a. TPM_Terminate_Handle 3197

b. TPM_EvictKey 3198

c. TPM_Reset 3199

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

106 Revision 94 29 March 2006
 TCG Published

23. Session pool 3200
Start of informative comment 3201

The TPM supports two types of sessions that use the rolling nonce protocol, authorization 3202
and transport. These sessions require much of the same handling and internal storage by 3203
the TPM. To allow more flexibility the internal storage for these sessions will be defined as 3204
coming from the same pool (or area). 3205

The pool requires that three (3) sessions be available. The entities using the TPM can 3206
determine the usage models of what sessions are active. This allows a TPM to have 3 3207
authorization sessions or 3 transport sessions at one time. 3208

Using all available pool resources for transport sessions is not a very usable model. If all 3209
resources are in use by transport there is no resources available for authorization sessions 3210
and hence no ability to execute any commands requiring authorization. A more realistic 3211
model would be to have two transport sessions and one authorization session. While this is 3212
an unrealistic model for actual execution there will be no requirement that the TPM prevent 3213
this from happening. A model of how it could occur would be when there are two 3214
applications running, both using 2 transport sessions and one authorization session. When 3215
switching between the applications if the requirement was that only 2 transport sessions 3216
could be active the TSS that would provide the context switch would have to ensure that the 3217
transport sessions were context saved first. 3218

Sessions can be virtualized, so while the TPM may only have 3 loaded sessions, there may 3219
be an unlimited number of context saved sessions stored outside the TPM. 3220

End of informative comment 3221

1. The TPM MUST support a minimum of three (3) concurrent sessions. The sessions MAY 3222
be any mix of authentication and transport sessions. 3223

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 107
 TCG Published

24. Initialization Operations 3224
Start of informative comment 3225

Initialization is the process where the TPM establishes an operating environment from a no 3226
power state. Initialization occurs in many different flavors with PCR, keys, handles, sessions 3227
and context blobs all initialized, reloaded or unloaded according to the rules and platform 3228
environment. 3229

Initialization does not affect the operational characteristics of the TPM (like TPM 3230
Ownership). 3231

Clear is the process of returning the TPM to factory defaults. The clear commands need 3232
protection from unauthorized use and must allow for the possibility of changing Owners. 3233
The clear process requires authorization to execute and locks to prevent unauthorized 3234
operation. 3235

The clear functionality performs the following tasks: 3236

Invalidate SRK. Invalidating the SRK invalidates all protected storage areas below the SRK 3237
in the hierarchy. The areas below are not destroyed they just have no mechanism to be 3238
loaded anymore. 3239

All TPM volatile and non-volatile data is set to default value except the endorsement key 3240
pair. The clear includes the Owner-AuthData, so after performing the clear, the TPM has no 3241
Owner. The PCR values are undefined after a clear operation. 3242

The TPM shall return TPM_NOSRK until an Owner is set. After the execution of the clear 3243
command, the TPM must go through a power cycle to properly set the PCR values. 3244

The Owner has ultimate control of when a clear occurs. 3245

The Owner can perform the TPM_OwnerClear command using the TPM Owner 3246
authorization. If the Owner wishes to disable this clear command and require physical 3247
access to perform the clear, the Owner can issue the TPM_DisableOwnerClear command. 3248

During the TPM startup processing anyone with physical access to the machine can issue 3249
the TPM_ForceClear command. This command performs the clear. The 3250
TPM_DisableForceClear disables the TPM_ForceClear command for the duration of the 3251
power cycle. TSS startup code that does not issue the TPM_DisableForceClear leaves the 3252
TPM vulnerable to a denial of service attack. The assumption is that the TSS startup code 3253
will issue the TPM_DisableForceClear on each power cycle after the TSS determines that it 3254
will not be necessary to issue the TPM_ForceClear command. The purpose of the 3255
TPM_ForceClear command is to recover from the state where the Owner has lost or 3256
forgotten the TPM Ownership token. 3257

The TPM_ForceClear must only be possible when the issuer has physical access to the 3258
platform. The manufacturer of a platform determines the exact definition of physical access. 3259

End of informative comment 3260

1. The TPM MUST support proper initialization. Initialization MUST properly configure the 3261
TPM to execute in the platform environment. 3262

2. Initialization MUST ensure that handles, keys, sessions, context blobs and PCR are 3263
properly initialized, reloaded or invalidated according to the platform environment. 3264

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

108 Revision 94 29 March 2006
 TCG Published

3. The description of the platform environment arrives at the TPM in a combination of 3265
TPM_Init and TPM_Startup. 3266

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 109
 TCG Published

25. HMAC digest rules 3267
Start of informative comment 3268

The order of calculation of the HMAC is critical to being able to validate the authorization 3269
and parameters of a command. All commands use the same order and format for the 3270
calculation. 3271

A more exact representation of a command would be the following 3272

 *** 3273
 * TAG | LEN | ORD | HANDLES | DATA | AUTH1 (o) | AUTH2 (o) * 3274
 *** 3275
The text area for the HMAC calculation would be the concatenation of the following: 3276

ORD || DATA 3277

End of informative comment 3278

The HMAC digest of parameters uses the following order 3279

1. Skip tag and length 3280

2. Include ordinal. This is the 1S parameter in the HMAC column for each command 3281

3. Skip handle(s). This includes key and other session handles 3282

4. Include data and other parameters for the command. This starts with the 2S parameter 3283
in the HMAC column for each command. 3284

5. Skip all AuthData values. 3285

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

110 Revision 94 29 March 2006
 TCG Published

26. Generic authorization session termination rules 3286
Start of informative comment 3287

These rules are the generic rules that govern all authorization sessions, a specific session 3288
type may have additional rules or modifications of the generic rules 3289

End of informative comment 3290

1. A TPM SHALL unilaterally perform the actions of TPM_FlushSpecific for a session upon 3291
any of the following events 3292

a. “continueUse” flag in the authorization session is FALSE 3293

b. Shared secret of the session in use to create the exclusive-or for confidentiality of 3294
data. Example is TPM_ChangeAuth terminates the authorization session. 3295
TPM_ExecuteTransport does not terminate the session due to protections inherent in 3296
transport sessions. 3297

c. When the associated entity is invalidated 3298

d. When the command returns a fatal error. This is due to error returns not setting a 3299
nonceEven. Without a new nonceEven the rolling nonces sequence is broken hence 3300
the TPM MUST terminate the session. 3301

e. Failure of an authorization check at the start of the command 3302

f. Execution of TPM_Startup(ST_CLEAR) 3303

2. The TPM MAY perform the actions of TPM_FlushSpecific for a session upon the following 3304
events 3305

a. Execution of TPM_Startup(ST_STATE) 3306

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 111
 TCG Published

27. PCR Grand Unification Theory 3307
Start of informative comment 3308

This section discusses the unification of PCR definition and use with locality. 3309

The PCR allow the definition of a platform configuration. With the addition of locality, the 3310
meaning of a configuration is somewhat larger. This section defines how the two combine to 3311
provide the TPM user information relative to the platform configuration. 3312

These are the issues regarding PCR and locality at this time 3313

Definition of configuration 3314

A configuration is the combination of PCR, PCR attributes and the locality. 3315

Passing the creators configuration to the user of data 3316

For many reasons, from the creator’s viewpoint and the user’s viewpoint, the configuration 3317
in use by the creator is important information. This information needs transmitting to the 3318
user with the data and with integrity. 3319

The configuration must include the locality and may not be the same configuration that will 3320
use the data. This allows one configuration to seal a value for future use and the end user 3321
to know the genealogy of where the data comes from. 3322

Definition of “Use” 3323

See the definition of TPM_PCR_ATTRIBUTES for the attributes and the normative 3324
statements regarding the use of the attributes. The use of a configuration is when the TPM 3325
needs to ensure that the proper platform configuration is present. The first example is for 3326
Unseal, the TPM must only release the information sealed if the platform configuration 3327
matches the configuration specified by the seal creator. Here the use of locality is implicit in 3328
the PCR attributes, if PCR8 requires locality 2 to be present then the seal creator ensures 3329
that locality 2 is asserted by defining a configuration that uses PCR8. 3330

The creation of a blob that specifies a configuration for use is not a “use” itself. So the SEAL 3331
command does is not a use for specifying the use of a PCR configuration. 3332

 3333

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

112 Revision 94 29 March 2006
 TCG Published

 3334
By using the “new style” or TPM_PCR_INFO_LONG structure the user can determine that 3335
Blob2 is different that Blob3. 3336

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 113
 TCG Published

 3337
Case B is the only failure and this shows the use of the locality modifier and PCR locality 3338
attribute. 3339

Additional attempts are obvious failures, config3 and config4 are unable to unseal any of 3340
the 4 blobs. 3341

One example is illustrative of the problems of just specifying locality without an 3342
accompanying PCR. Assume Blob5 which specifies a dar of config1 and a locality 4 modifier. 3343
Now either config2 or config4 can unseal Blob5. In fact there is no way to restrict ANY 3344
process that gains access to locality 4 from performing the unseal. As many platforms will 3345
have no restrictions as to which process can load in locality 4 there is no additional benefit 3346
of specifying a locality modifier. If the sealer wants protections, they need to specify a PCR 3347
that requires a locality modifier. 3348

Defining locality modifiers dynamically 3349

This feature would enable the platform to specify how and when a locality modifier applies 3350
to a PCR. The current definition of PCR attributes has the values set in TPM manufacturing 3351
and static for all TPM in a specific platform type (like a PC). 3352

Defining dynamic attributes would make the use of a PCR very difficult. The sealer would 3353
have to have some way of ensuring that their wishes were enforced and challengers would 3354
have to pay close attention to the current PCR attributes. For these reasons the setting of 3355

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

114 Revision 94 29 March 2006
 TCG Published

the PCR attributes is defined as a static operation made during the platform specific 3356
specification. 3357

End of informative comment 3358

27.1 Validate Key for use 3359

Start of informative comment 3360

The following shows the order and checks done before the use of a key that has PCR or 3361
locality restrictions. 3362

Note that there is no check for the PCR registers on the DSAP session. This is due to the 3363
fact that DSAP checks for the continued validity of the PCR that are attached to the DSAP 3364
and any change causes the invalidation of the DSAP session. 3365

The checks must validate the locality of the DSAP session as the PCR registers in use could 3366
have locality restrictions. 3367

End of informative comment 3368

1. If the authorization session is DSAP 3369

a. If the DSAP -> localityAtRelease is not 0x1F (or in other words some localities are not 3370
allowed) 3371

i. Validate that TPM_STANY_FLAGS -> localityModifier is matched by DSAP -> 3372
pcrInfo -> localityAtRelease, on mismatch return TPM_BAD_LOCALITY 3373

b. If DSAP -> digestAtRelease is not 0 3374

i. Calculate the current digest and compare to digestAtRelease, return 3375
TPM_BAD_PCR on mismatch 3376

c. If the DSAP points to an ordinal delegation 3377

i. Check that the DSAP authorizes the use of the intended ordinal 3378

d. If the DSAP points to a key delegation 3379

i. Check that the DSAP authorizes the use of the key 3380

e. If the key delegated is a CMK key 3381

i. The TPM MUST check the CMK_DELEGATE restrictions 3382

2. Set LK to the loaded key that is being used 3383

3. If LK -> pcrInfoSize is not 0 3384

a. If LK -> pcrInfo -> releasePCRSelection identifies the use of one or more PCR 3385

i. Calculate H1 a TPM_COMPOSITE_HASH of the PCR selected by LK -> pcrInfo -> 3386
releasePCRSelection 3387

ii. Compare H1 to LK -> pcrInfo -> digestAtRelease on mismatch return 3388
TPM_WRONGPCRVAL 3389

b. If localityAtRelease is NOT 0x1F 3390

i. Validate that TPM_STANY_FLAGS -> localityModifier is matched by LK -> pcrInfo -3391
> localityAtRelease on mismatch return TPM_BAD_LOCALITY 3392

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 115
 TCG Published

4. Allow use of the key 3393

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

116 Revision 94 29 March 2006
 TCG Published

28. Non Volatile Storage 3394
Start of informative comment 3395

The TPM contains protected non-volatile storage. There are many uses of this type of area; 3396
however, a TPM needs to have a defined set of operations that touch any protected area. 3397
The idea behind these instructions is to provide an area that the manufacturers and owner 3398
can use for storing information in the TPM. 3399

The TCG will define a limited set of information that it sees a need of storing in the TPM. 3400
The TPM and platform manufacturer may add additional areas. 3401

The NV storage area has a limited use before it will no longer operate, hence the NV 3402
commands are under TPM Owner control. 3403

A defined set of indexes are available when no TPM Owner is present to allow TPM and 3404
platform manufacturers the ability to fill in values before a TPM Owner exists. 3405

To locate if an index is available, use TPM_GetCapability to return the index and the size of 3406
the are in use by the index. 3407

The area may not be larger than the TPM input buffer. The TPM will report the maximum 3408
size available to allocate. 3409

The storage area is an opaque area to the TPM. The TPM, other than providing the storage, 3410
does not review the internals of the area. 3411

To SEAL a blob the creator of the area specifies the use of PCR registers to read the value. 3412
This is the exact property of SEAL. 3413

To obtain a signed indication of what is in a NV store area the caller would setup a 3414
transport session with logging on and then get the signed log. The log shows the parameters 3415
so the caller can validate that the TPM holds the value. 3416

There is an attribute, for each index, that defines the expected write scheme for the index. 3417
The TPM may handle data storage differently based on the write scheme attribute that 3418
defines the expected for the index. Whenever possible the NV memory should be allocated 3419
with the write scheme attribute set to update as one block and not as individual bytes. 3420

End of informative comment 3421

1. The TPM MUST support the NV commands. The TPM MUST support the NV area as 3422
defined by the TPM_NV_INDEX values. 3423

2. The TPM MAY manage the storage area using any allocation and garbage collection 3424
scheme. 3425

3. To remove an area from the NV store the TPM owner would use the 3426
TPM_NV_DefineSpace command with a size of 0. Any authorized user can change the 3427
value written in the NV store. 3428

4. The TPM MUST treat the NV area as a shielded location. 3429

a. The TPM does not provide any additional protections (like additional encryption) to 3430
the NV area. 3431

5. If a write operation is interrupted, then the TPM makes no guarantees about the data 3432
stored at the specified index. It MAY be the previous value, MAY be the new value or 3433

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 117
 TCG Published

MAY be undefined or unpredictable. After the interruption the TPM MAY indicate that 3434
the index contains unpredictable information. 3435

a. The TPM MUST ensure that in case of interruption of a write to an index that all 3436
other indexes are not affected 3437

6. Minimum size of NV area is platform specific. The maximum area is TPM vendor specific. 3438

7. A TPM MUST NOT use the NV area to store any data dependent on data structures 3439
defined in Part II of the TPM specifications, except for the NV Storage Structures implied 3440
by required index values or reserved index values 3441

8. A TPM MUST NOT use the NV area to store any data dependent on data structures 3442
defined in Part II of the TPM specifications, except for the NV Storage Structures implied 3443
by required index values or reserved index values 3444

28.1 NV storage design principles 3445

Start of informative comment 3446

This section lists the design principles that motivate the NV area in the TPM. There was the 3447
realization that the current design made use of NV storage but not necessarily efficiently. 3448
The DIR, BIT and other commands placed demands on the TPM designer and required 3449
areas that while allowing for flexible use reserved space most likely never used (like DIR for 3450
locality 1). 3451

The following are the design principles that drive the function definitions. 3452

1. Provide efficient use of NV area on the TPM. NV storage is a very limited resource and 3453
data stored in the NV area should be as small as possible. 3454

2. The TPM does not control, edit, validate or manipulate in any manner the information in 3455
the NV store. The TPM is merely a storage device. The TPM does enforce the access rules as 3456
set by the TPM Owner. 3457

3. Allocation of the NV area for a specific use must be under control of the TPM Owner. 3458

4. The TPM Owner, when defining the area to use, will set the access and use policy for the 3459
area. The TPM Owner can set AuthData values, delegations, PCR values and other controls 3460
on the access allowed to the area. 3461

5. There must be a capability to allow TPM and platform manufacturers to use this area 3462
without a TPM Owner being present. This allows the manufacturer to place information into 3463
the TPM without an onerous manufacturing flow. Information in this category would 3464
include EK credential and platform credential. 3465

6. The management and use of the NV area should not require a large number of ordinals. 3466

7. The management and use of the NV area should not introduce new operating strategies 3467
into the TPM and should be easy to implement. 3468

End of informative comment 3469

28.1.1 NV Storage use models 3470

Start of informative comment 3471

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

118 Revision 94 29 March 2006
 TCG Published

This informative section describes some of the anticipated use models and the attributes a 3472
user of the storage area would need to set. 3473

 3474

Owner authorized for all access 3475

TPM_NV_DefineSpace: attributes = PER_OWERREAD || PER_OWNERWRITE 3476

WriteValue(TPM Owner Auth, data) 3477

ReadValue(TPM Owner Auth, data) 3478

 3479

Set AuthData value 3480

TPM_NV_DefineSpace: attributes = PER_AUTHREAD || PER_AUTHWRITE, auth = 3481
authValue 3482

WriteValue(authValue, data) 3483

ReadValue(authValue, data) 3484

 3485

Write once, only way to change is to delete and redefine 3486

TPM_NV_DefineSpace: attributes = PER_WRITEDEFINE 3487

WriteValue(size = x, data) // successful 3488

WriteValue(size = 0) // locks 3489

WriteValue(size = x) // fails 3490

… 3491

TPM_Startup(ST_Clear) // Does not affect lock 3492

WriteValue(size = x, data) // fails 3493

 3494

Write until specific index is locked, lock reset on Startup(ST_Clear) 3495

TPM_NV_DefineSpace: index = 3, attributes = PER_WRITE_STCLEAR 3496

TPM_NV_DefineSpace: index = 5, attributes = PER_WRITE_STCLEAR 3497

WriteValue(index = 3, size = x, data) // successful 3498

WriteValue(index = 5, size = x, data) // successful 3499

WriteValue(index = 3, size = 0) // locks 3500

WriteValue(index = 3, size = x, data) // fails 3501

WriteValue(index = 5, size = x, data) // successful 3502

… 3503

TPM_Startup(ST_Clear) // clears lock 3504

WriteValue(index = 3, size = x, data) // successful 3505

WriteValue(index = 5, size = x, data) // successful 3506

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 119
 TCG Published

 3507

Write until index 0 is locked, lock reset by Startup(ST_Clear) 3508

TPM_NV_DefineSpace: attributes = PER_GLOBALLOCK, index = 5 3509

TPM_NV_DefineSpace: attributes = PER_GLOBALLOCK, index = 3 3510

WriteValue(index = 3, size = x, data) // successful 3511

WriteValue(index = 5, size = x, data) // successful 3512

 3513

WriteValue(index = 0) // sets SV -> bGlobalLock to TRUE 3514

WriteValue(index = 3, size = x, data) // fails 3515

WriteValue(index = 5, size = x, data) // fails 3516

… 3517

TPM_Startup(ST_Clear) // clears lock 3518

WriteValue(index = 3, size = x, data) // successful 3519

WriteValue(index = 5, size = x, data) // successful 3520

End of informative comment 3521

28.2 Use of NV storage during manufacturing 3522

Start of informative comment 3523

The TPM needs the ability to write values to the NV store during manufacturing. It is 3524
possible that the values written at this time would require authorization during normal TPM 3525
use. The actual enforcement of these authorizations during manufacturing would cause 3526
numerous problems for the manufacturer. 3527

The TPM will not enforce the NV authorization restrictions until the execution of a 3528
TPM_NV_DefineSpace with the handle of TPM_NV_INDEX_LOCK. 3529

End of informative comment 3530

1. The TPM MUST NOT enforce the NV authorizations (auth values, PCR etc.) prior to the 3531
execution of TPM_NV_DefineSpace with an index of TPM_NV_INDEX_LOCK 3532

a. While the TPM is not enforcing NV authorizations, the TPM SHALL allow the use of 3533
TPM_NV_DefineSpace in any operational state (disabled, deactivated) 3534

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

120 Revision 94 29 March 2006
 TCG Published

29. Delegation Model 3535
Start of informative comment 3536

The TPM Owner is an entity with a single “super user” privilege to control TPM operation. 3537
Thus if any aspect of a TPM requires management, the TPM Owner must perform that task 3538
himself or reveal his privilege information to another entity. This other entity thereby 3539
obtains the privilege to operate all TPM controls, not just those intended by the Owner. 3540
Therefore the Owner often must have greater trust in the other entity than is strictly 3541
necessary to perform an arbitrary task. 3542

This delegation model addresses this issue by allowing delegation of individual TPM Owner 3543
privileges (the right to use individual Owner authorized TPM commands) to individual 3544
entities, which may be trusted processes. 3545

Basic requirements: 3546

Consumer user does not need to enter or remember a TPM Owner password. This is an 3547
ease of use and security issue. Not remembering the password may lead to bad security 3548
practices, increased tech support calls and lost data. 3549

Role based administration and separation of duty. It should be possible to delegate just 3550
enough Owner privileges to perform some administration task or carry out some duty, 3551
without delegating all Owner privileges. 3552

TPM should support multiple trusted processes. When a platform has the ability to load 3553
and execute multiple trusted processes then the TPM should be able to participate in the 3554
protection of secrets and proper management of the processes and their secrets. In fact, the 3555
TPM most likely is the root of storage for these values. The TPM should enable the proper 3556
management, protection and distribution of values held for the various trusted processes 3557
that reside on the same platform. 3558

Trusted processes may require restrictions. A fundamental security tenet is the principle 3559
of least privilege, that is, to limit process functionality to only the functions necessary to 3560
accomplish the task. This delegation model provides a building block that allows a system 3561
designer to create single purpose processes and then ensure that the process only has 3562
access to the functions that it requires to complete the task. 3563

Maintain the current authorization structure and protocols. There is no desire to 3564
remove the current TPM Owner and the protocols that authorize and manage the TPM 3565
Owner. The capabilities are a delegation of TPM Owner responsibilities. The delegation 3566
allows the TPM Owner to delegate some or all of the actions that a TPM Owner can perform. 3567
The TPM Owner has complete control as to when and if the capability delegation is in use. 3568

End of informative comment 3569

29.1 Table Requirements 3570

Start of informative comment 3571

No ocean front property in table – We want the table to be virtually unlimited in size. 3572
While we need some storage, we do not want to pick just one number and have that be the 3573
min and max. This drives the need for the ability to save, off the TPM, delegation elements. 3574

Revoking a delegation, does not affect other delegations – The TPM Owner may, at any 3575
time, determine that a delegation is no longer appropriate. The TPM Owner needs to be able 3576

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 121
 TCG Published

to ensure the revocation of all delegations in the same family. The TPM Owner also wants to 3577
ensure that revocation done in one family does not affect any other family of delegations. 3578

Table seeded by OEM – The OEM should do the seeding of the table during manufacturing. 3579
This allows the OEM to ship the platform and make it easy for the platform owner to 3580
startup the first time. The definition of manufacturing in this context includes any time 3581
prior to or including the time the user first turns on the platform. 3582

Table not tied to a TPM owner – The table is not tied to the existence of a TPM owner. This 3583
facilitates the seeding of the table by the OEM. 3584

External delegations need authorization and assurance of revocation – When a 3585
delegation is held external to the TPM, the TPM must ensure authorization of the delegation 3586
when loading the delegation. Upon revocation of a family or other family changes the TPM 3587
must ensure that prior valid delegations are not successfully loaded. 3588

90% case, no need for external store – The normal case should be that the platform does 3589
not need to worry about having external delegations. This drives the need for some NV 3590
storage to hold a minimum number of table rows. 3591

End of informative comment 3592

29.2 How this works 3593

Start of informative comment 3594

The existing TPM owner authorization model is that certain TPM commands require the 3595
authorization of the TPM Owner to operate. The authorization value is the TPM Owners 3596
token. Using the token to authorize the command is proof of TPM Ownership. There is only 3597
one token and knowledge of this token allows all operations that require proof of TPM 3598
Ownership. 3599

This extension allows the TPM Owner to create a new AuthData value and to delegate some 3600
of the TPM Ownership rights to the new AuthData value. 3601

The use model of the delegation is to create an authorization session (DSAP) using the 3602
delegated AuthData value instead of the TPM Owner token. This allows delegation to work 3603
without change to any current command. 3604

The intent is to permit delegation of selected Owner privileges to selected entities, be they 3605
local or remote, separate from the current software environment or integrated into the 3606
current software environment. Thus Owner privileges may be delegated to entities on other 3607
platforms, to entities (trusted processes) that are part of the normal software environment 3608
on the Owner’s platform, or to a minimalist software environment on the Owner’s platform 3609
(created by booting from a CDROM, or special disk partition), for example. 3610

Privileges may be delegated to a particular entity via definition of a particular process on the 3611
Owner’s platform (by dictating PCR values), and/or by stipulating a particular AuthData 3612
value. The resultant TPM_DELEGATE_OWNER_BLOB and any AuthData value must be 3613
passed by the Owner to the chosen entity. 3614

Delegation to an external entity (not on the Owner’s platform) probably requires an 3615
AuthData value and a NULL PCR selection. (But the AuthData value might be sealed to a 3616
desired set of PCRs in that remote platform.) 3617

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

122 Revision 94 29 March 2006
 TCG Published

Delegation to a trusted process provided by the local OS requires a PCR that indicates the 3618
trusted process. The authorization token should be a fixed value (any well known value), 3619
since the OS has no means to safely store the authorization token without sealing that 3620
token to the PCR that indicates the trusted process. It is suggested that the value 3621
0x111…111 be used. 3622

Delegation to a specially booted entity requires either a PCR or an authorization token, and 3623
preferably both, to recognize both the process and the fact that the Owner wishes that 3624
process to execute. 3625

The central delegation data structure is a set of tables. These tables indicate the command 3626
ordinals delegated by the TPM Owner to a particular defined environment. The tables allow 3627
the distinction of delegations belonging to different environments. 3628

The TPM is capable of storing internally a few table elements to enable the passing of the 3629
delegation information from an entity that has no access to memory or storage of the 3630
defined environment. 3631

The number of delegations that the tables can hold is a dynamic number with the 3632
possibility of adding or deleting entries at any time. As the total number is dynamic, and 3633
possibly large, the TPM provides a mechanism to cache the delegations. The cache of a 3634
delegation must include integrity and confidentiality. The term for the encrypted cached 3635
entity is blob. The blob contains a counter (verificationCount) validated when the TPM loads 3636
the blob. 3637

An Owner uses the counter mechanism to prevent the use of undesirable blobs; they 3638
increment verificationCount inside the TPM and insert the current value of 3639
verificationCount into selected table elements, including temporarily loaded blobs. (This is 3640
the reason why a TPM must still load a blob that has an incorrect verificationCount.) An 3641
Owner can verify the delegation state of his platform (immediately after updating 3642
verificationCount) by keeping copies of the elements that have just been given the current 3643
value of verificationCount, signing those copies, and sending them to a third party. 3644

Verification probably requires interaction with a third party because acceptable table 3645
profiles will change with time and the most important reason for verification is suspicion of 3646
the state of a TOS in a platform. Such suspicion implies that the verification check must be 3647
done by a trusted security monitor (perhaps separate trusted software on another platform 3648
or separate trusted software on CDROM, for example). The signature sent to the third party 3649
must include a freshness value, to prevent replay attacks, and the security monitor must 3650
verify that a response from the third party includes that freshness value. In situations 3651
where the highest confidence is required, the third party could provide the response by an 3652
out-of-band mechanism, such as an automated telephone service with spoken confirmation 3653
of acceptability of platform state and freshness value. 3654

A challenger can verify an entire family using a single transport session with logging, that 3655
increments the verification count, updates the verification count in selected blobs, reads the 3656
tables and obtains a single transport session signature over all of the blobs in a family. 3657

If no Owner is installed, the delegation mechanisms are inoperative and third party 3658
verification of the tables is impossible, but tables can still be administered and corrected. 3659
(See later for more details.) 3660

To perform an operation using the delegation the entity establishes an authorization session 3661
and uses the delegated AuthData value for all HMAC calculations. The TPM validates the 3662
AuthData value, and in the case of defined environments checks the PCR values. If the 3663

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 123
 TCG Published

validation is successful, the TPM then validates that the delegation allows the intended 3664
operation. 3665

There can be at least two delegation rows stored in non-volatile storage inside a TPM, and 3666
these may be changed using Owner privilege or delegated Owner privilege. Each delegation 3667
table row is a member of a family, and there can be at least eight family rows stored in non-3668
volatile storage inside a TPM. An entity belonging to one family can be delegated the 3669
privilege to create a new family and edit the rows in its own family, but no other family. 3670

In addition to tying together delegations, the family concept and the family table also 3671
provides the mechanism for validation and revocation of exported delegate table rows, as 3672
well as the mechanism for the platform user to perform validation of all delegations in a 3673
family. 3674

End of informative comment 3675

29.3 Family Table 3676

Start of informative comment 3677

The family table has three main purposes. 3678

1 - To provide for the grouping of rows in the TPM_DELEGATE_TABLE; entities identified in 3679
delegate table rows as belonging to the same family can edit information in the other 3680
delegate table rows with the same family ID. This allows a family to manage itself and 3681
provides an easier mechanism during upgrades. 3682

2 - To provide the validation and revocation mechanism for exported 3683
TPM_DELEGATE_ROWS and those stored on the TPM in the delegation table 3684

3 - To provide the ability to perform validation of all delegations in a family 3685

The family table must have eight rows, and may have more. The maximum number of rows 3686
is TPM vendor-defined and is available using the TPM_GetCapability command. 3687

As the family table has a limited number of rows, there is the possibility that this number 3688
could be insufficient. However, the ability to create a virtual amount of rows, like done for 3689
the TPM_DELEGATE_TABLE would create the need to have all of the validation and 3690
revocation mechanisms that the family table provides for the delegate table. This could 3691
become a recursive process, so for this version of the specification, the recursion stops at 3692
the family table. 3693

The family table contains four pieces of information: the family ID, the family label, the 3694
family verification count, and the family flags. 3695

The family ID is a 32-bit value that provides a sequence number of the families in use. 3696

The family label is a one-byte field that family table manager software would use to help 3697
identify the information associated with the family. Software must be able to map the 3698
numeric value associated with each family to the ASCII-string family name displayable in 3699
the user interface. 3700

The family verification count is a 32-bit sequence number that identifies the last outside 3701
verification and attestation of the family information. 3702

Initialization of the family table occurs by using the TPM_Delegate_Manage command with 3703
the TPM_FAMILY_CREATE option. 3704

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

124 Revision 94 29 March 2006
 TCG Published

The verificationCount parameter enables a TPM to check that all rows of a family in the 3705
delegate table are approved (by an external verification process), even if rows have been 3706
stored off-TPM. 3707

The family flags allow the use and administration of the family table row, and its associated 3708
delegate table rows. 3709

Row contents 3710

Family ID – 32-bits 3711

Row label – One byte 3712

Family verification count – 32-bits 3713

Family enable/disable use/admin flags – 32-bits 3714

End of informative comment 3715

29.4 Delegate Table 3716

Start of informative comment 3717

The delegate table has three main purposes, from the point of view of the TPM. This table 3718
holds: 3719

The list of ordinals allowable for use by the delegate 3720

The identity of a process that can use the ordinal list 3721

The AuthData value to use the ordinal list 3722

The delegate table has a minimum of two (2) rows; the maximum number of rows is TPM 3723
vendor-defined and is available using the TPM_GetCapability command. Each row 3724
represents a delegation and, optionally, an assignment of that delegation to an identified 3725
trusted process. 3726

The non-volatile delegate rows permit an entity to pass delegation rows to a software 3727
environment without regard to shared memory between the entity and the software 3728
environment. The size of the delegate table does not restrict the number of delegations 3729
because TPM_Delegate_CreateOwnerDelegation can create blobs for use in a DSAP session, 3730
bypassing the delegate table. 3731

The TPM Owner controls the tables that control the delegations, but (recursively) the TPM 3732
Owner can delegate the management of the tables to delegated entities. Entities belonging 3733
to a particular group (family) of delegation processes may edit delegate table entries that 3734
belong to that family. 3735

After creation of a delegation entry there is no restriction on the use of the delegation in a 3736
properly authorized session. The TPM Owner has properly authorized the creation of the 3737
delegation so the use of the delegation occurs whenever the delegate wishes to use it. 3738

The rows of the delegate table held in non-volatile storage are only changeable under TPM 3739
Owner authorization. 3740

The delegate table contains six pieces of information: PCR information, the AuthData value 3741
for the delegated capabilities, the delegation label, the family ID, the verification count, and 3742
a profile of the capabilities that are delegated to the trusted process identified by the PCR 3743
information. 3744

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 125
 TCG Published

Row Elements 3745

ASCII label – Label that provides information regarding the row. This is not a sensitive item. 3746

Family ID – The family that the delegation belongs to; this is not a sensitive item. 3747

Verification count – Specifies the version, or generation, of this row; version validity 3748
information is in the family table. This is not a sensitive value. 3749

Delegated capabilities – The capabilities granted, by the TPM Owner, to the identified 3750
process. This is not a sensitive item. 3751

Authorization and Identity 3752

The creator of the delegation sets the AuthData value and the PCR selection. The creator is 3753
responsible for the protection and dissemination of the AuthData value. This is a sensitive 3754
value. 3755

End of informative comment 3756

1. The TPM_DELEGATE_TABLE MUST have at least two (2) rows; the maximum number of 3757
table rows is TPM-vendor defined and MUST be reported in response to a 3758
TPM_GetCapability command 3759

2. The AuthData value and the PCR selection must be set by the creator of the delegation 3760

29.5 Delegation Administration Control 3761

Start of informative comment 3762

The delegate tables (both family and delegation) present some control problems. The tables 3763
must be initialized by the platform OEM, administered and controlled by the TPM Owner, 3764
and reset on changes of TPM Ownership. To provide this level of control there are three 3765
phases of administration with different functions available in the phases. 3766

The three phases of table administration are; manufacturing (P1), no-owner (P2) and owner 3767
present (P3). These three phases allow different types of administration of the delegation 3768
tables. 3769

Manufacturing (P1) 3770

A more accurate definition of this phase is open, un-initialized and un-owned. It occurs 3771
after TPM manufacturing and as a result of TPM_OwnerClear or TPM_ForceClear. 3772

In P1 TPM_Delegate_Manage can initialize and manage non-volatile family rows in the TPM. 3773
TPM_Delegate_LoadOwnerDelegation can load non-volatile delegation rows in the TPM. 3774

Attacks that attempt to burnout the TPM’s NV storage are frustrated by the NV store’s own 3775
limits on the number of writes when no Owner is installed. 3776

No-Owner (P2) 3777

This phase occurs after the platform has been properly setup. The setup can occur in the 3778
platform manufacturing flow, during the first boot of the platform or at any time when the 3779
platform owner wants to lock the table settings down. There is no TPM Owner at this time. 3780

TPM_Delegate_Manage locks both the family and delegation rows. This lock can be opened 3781
only by the Owner (after the Owner has been installed, obviously) or by the act of removing 3782

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

126 Revision 94 29 March 2006
 TCG Published

the Owner (even if no Owner is installed). Thus locked tables can be unlocked by asserting 3783
Physical Presence and executing TPM_ForceClear, without having to install an Owner. 3784

In P2, the relevant TPM_Delegate_xxx commands all return the error 3785
TPM_DELEGATE_LOCKED. This is not an issue as there is no TPM Owner to delegate 3786
commands, so the inability to change the tables or create delegations does not affect the 3787
use of the TPM. 3788

Owned (P3) 3789

In this phase, the TPM has a TPM Owner and the TPM Owner manages the table as the 3790
Owner sees fit. This phase continues until the removal of the TPM Owner. 3791

Moving from P2 to P3 is automatic upon establishment of a TPM Owner. Removal of the 3792
TPM Owner automatically moves back to P1. 3793

The TPM Owner always has the ability to administer any table. The TPM Owner may 3794
delegate the ability to manipulate a single family or all families. Such delegations are 3795
operative only if delegations are enabled. 3796

End of informative comment 3797

1. When DelegateAdminLock is TRUE the TPM MUST disallow any changes to the delegate 3798
tables 3799

2. With a TPM Owner installed, the TPM Owner MUST authorize all delegate table changes 3800

29.5.1 Control in Phase 1 3801

Start of informative comment 3802

The TPM starts life in P1. The TPM has no owner and the tables are empty. It is desirable 3803
for the OEM to initialize the tables to allow delegation to start immediately after the Owner 3804
decides to enable delegation. As the setup may require changes and validation, a simple 3805
mechanism of writing to the area once is not a valid option. 3806

TPM_Delegate_Manage and TPM_Delegate_LoadOwnerDelegation allow the OEM to fill the 3807
table, read the public parts of the table, perform reboots, reset the table and when finally 3808
satisfied as to the state of the platform, lock the table. 3809

Alternatively, the OEM can leave the tables NULL and turn off table administration leaving 3810
the TPM in an unloaded state waiting for the eventual TPM Owner to fill the tables, as they 3811
need. 3812

Flow to load tables 3813

Default values of DelegateAdminLock are set either during manufacturing or are the result 3814
of TPM_OwnerClear or TPM_ForceClear. 3815

TPM_Delegate_Manage verifies that DelegateAdminLock is FALSE and that there is no TPM 3816
Owner. The command will therefore load or manipulate the family tables as specified in the 3817
command. 3818

TPM_Delegate_LoadOwnerDelegation verifies that DelegateAdminLock is FALSE and no TPM 3819
owner is present. The command loads the delegate information specified in the command. 3820

End of informative comment 3821

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 127
 TCG Published

29.5.2 Control in Phase 2 3822

Start of informative comment 3823

In phase 2, no changes are possible to the delegate tables. The platform owner must install 3824
a TPM Owner and then manage the tables, or use TPM_ForceClear to revert to phase 1. 3825

End of informative comment 3826

29.5.3 Control in Phase 3 3827

Start of informative comment 3828

The TPM_DELEGATE_TABLE requires commands that manage the table. These commands 3829
include filling the table, turning use of the table on or off, turning administration of the 3830
table on or off, and using the table. 3831

The commands are: 3832

TPM_Delegate_Manage – Manages the family table on a row-by-row basis: creates a new 3833
family, enables/disables use of a family table row and delegate table rows that share the 3834
same family ID, enables/disables administration of a family’s rows in both the family table 3835
and the delegate table, and invalidates an existing family. 3836

TPM_Delegate_CreateOwnerDelegation increments the family verification count (if 3837
desired) and delegates the Owner’s privilege to use a set of command ordinals, by creating a 3838
blob. Such blobs can be used as input data for TPM_DSAP or 3839
TPM_Delegate_LoadOwnerDelegation. Incrementing the verification count and creating a 3840
delegation must be an atomic operation. Otherwise no delegations are operative after 3841
incrementing the verification count. 3842

TPM_Delegate_LoadOwnerDelegation loads a delegate blob into a non-volatile delegate 3843
table row, inside the TPM. 3844

TPM_Delegate_ReadTable is used to read from the TPM the public contents of the family 3845
and delegate tables that are stored on the TPM. 3846

TPM_Delegate_UpdateVerification sets the verificationCount in an entity (a blob or a 3847
delegation row) to the current family value, in order that the delegations represented by that 3848
entity will continue to be accepted by the TPM. 3849

TPM_Delegate_VerifyDelegation loads a delegate blob into the TPM, and returns success 3850
or failure, depending on whether the blob is currently valid. 3851

TPM_DSAP – opens a deferred authorization session, using either an input blob (created by 3852
TPM_Delegate_CreateOwnerDelegation) or a cached blob (loaded by 3853
TPM_Delegate_LoadOwnerDelegation into one of the TPM’s non-volatile delegation rows). 3854

End of informative comment 3855

29.6 Family Verification 3856

Start of informative comment 3857

The platform user may wish to have confirmation that the delegations in use provide a 3858
coherent set of delegations. This process would require some evaluation of the processes 3859
granted delegations. To assist in this confirmation the TPM provides a mechanism to group 3860

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

128 Revision 94 29 March 2006
 TCG Published

all delegations of a family into a signed blob. The signed blob allows the verification agent to 3861
look at the delegations, the processes involved and make an assessment as the validity of 3862
the delegations. The third party then sends back to the platform owner the results of the 3863
assessment. 3864

To perform the creation of the signed blob the platform owner needs the ability to group all 3865
of the delegations of a single family into a transport session. The platform owner also wants 3866
an assurance that no management of the table is possible during the verification. 3867

This verification does not prove to a third party that the platform owner is not cheating. 3868
There is nothing to prevent the platform owner from performing the validation and then 3869
adding an additional delegation to the family. 3870

Here is one example protocol that retrieves the information necessary to validate the rows 3871
belonging to a particular family. Note that the local method of executing the protocol must 3872
prevent a man-in-the-middle attack using the nonce supplied by the user. 3873

The TPM Owner can increment the family verification count or use the current family 3874
verification count. Using the current family verification count carries the risk that 3875
unexamined delegation blobs permit undesirable delegations. Using an incremented 3876
verification count eliminates that risk. The entity gathering the verification data requires 3877
Owner authorization or access to a delegation that grants access to transport session 3878
commands, plus other commands depending on whether verificationCount is to be 3879
incremented. This delegation could be a trusted process that can use the delegations 3880
because of its PCR measurements, a remote entity that can use the delegations because the 3881
Owner has sent it a TPM_DELEGATE_OWNER_BLOB and AuthData value, or the host 3882
platform booted from a CDROM that can use the delegations because of its PCR 3883
measurements, and TPM_DELEGATE_OWNER_BLOB and AuthData value submitted by the 3884
Owner, for example. 3885

Verification using the current verificationCount 3886

The gathering entity requires access to a delegation that grants access to at least the 3887
ordinals to perform a transport session, plus TPM_Delegate_ReadTable and 3888
TPM_Delegate_VerifyDelegation. 3889

The TPM Owner creates a transport session with the “no other activity” attribute set. This 3890
ensures notification if other operations occur on the TPM during the validation process. (If 3891
other operations do occur, the validation processes may have been subverted.) All 3892
subsequent commands listed are performed using the transport session. 3893

TPM_Delegate_ReadTable displays all public values (including the permissions and PCR 3894
values) in the TPM. 3895

TPM_Delegate_VerifyDelegation loads each cached blob, with all public values (including the 3896
permissions and PCR values) in plain text. 3897

After verifying all blobs, TPM_ReleaseTransportSigned signs the list of transactions. 3898

The gathering entity sends the log of the transport session plus any supporting information 3899
to the validation entity, which evaluates the signed transport session log and informs the 3900
platform owner of the result of the evaluation. This could be an out-of-band process. 3901

Verification using an incremented verificationCount 3902

The gathering entity requires Owner authorization or access to a delegation that grants 3903
access to at least the ordinals to perform a transport session, plus 3904

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 129
 TCG Published

TPM_Delegate_CreateOwnerDelegation, TPM_Delegate_ReadTable, and 3905
TPM_Delegate_UpdateVerification. 3906

The TPM Owner creates a transport session with the “no other activity” attribute set. 3907

To increment the count the TPM Owner (or a delegate) must use 3908
TPM_Delegate_CreateOwnerDelegation with increment == TRUE. That blob permits creation 3909
of new delegations or approval of existing tables and blobs. That delegation must set the 3910
PCRs of the desired (local) process and the desired AuthData value of the process. As noted 3911
previously, AuthData values should be a fixed value if the gathering entity is a trusted 3912
process that is part of the normal software environment. 3913

If new delegations are to be created, TPM_Delegate_CreateOwnerDelegation must be used 3914
with increment == FALSE. 3915

If existing blobs and delegation rows are to be reapproved, 3916
TPM_Delegate_UpdateVerification must be used to install the new value of verificationCount 3917
into those existing blobs and non-volatile rows. This exposes the blobs’ public information 3918
(including the permissions and PCR values) in plain text to the transport session. 3919

TPM_Delegate_ReadTable then exposes all public values (including the permissions and 3920
PCR values) of tables to the transport session. 3921

Again, after verifying all blobs, TPM_ReleaseTransportSigned signs the list of transactions. 3922

 End of informative comment 3923

29.7 Use of commands for different states of TPM 3924

Start of informative comment 3925

Use the ordinal table to determine when the various commands are available for use 3926

End of informative comment 3927

29.8 Delegation Authorization Values 3928

Start of informative comment 3929

This section describes why, when a PCR selection is set, the AuthData value may be a fixed 3930
value, and, when the PCR selection is null, the delegation creator must select an AuthData 3931
value. 3932

A PCR value is an indication of a particular (software) environment in the local platform. 3933
Either that PCR value indicates a trusted process or not. If the trusted process is to execute 3934
automatically, there is no point in allocating a meaningful AuthData value. (The only way 3935
the trusted process could store the AuthData value is to seal it to the process’s PCR values, 3936
but the delegation mechanism is already checking the process’s PCR values.) If execution of 3937
the trusted process is dependent upon the wishes of another entity (such as the Owner), the 3938
AuthData value should be a meaningful (private) value known only to the TPM, the Owner, 3939
and that other entity. Otherwise the AuthData value should be a fixed, well known, value. 3940

If the delegation is to be controlled from a remote platform, these simple delegation 3941
mechanisms provide no means for the platform to verify the PCRs of that remote platform, 3942
and hence access to the delegation must be based solely upon knowledge of the AuthData 3943
value. 3944

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

130 Revision 94 29 March 2006
 TCG Published

End of informative comment 3945

29.8.1 Using the authorization value 3946

Start of informative comment 3947

To use a delegation the TPM will enforce any PCR selection on use. The use definition is any 3948
command that uses the delegation authorization value to take the place of the TPM Owner 3949
authorization. 3950

PCR Selection defined 3951

In this case, the delegation has a PCR selection structure defined. Each time the TPM uses 3952
the delegation authorization value instead of the TPM Owner value the TPM would validate 3953
that the current PCR settings match the settings held in the delegation structure. The PCR 3954
selection includes the definition of localities and checks of locality occur with the checking 3955
of the PCR values. The TPM enforces use of the correct authorization value, which may or 3956
may not be a meaningful (private) value. 3957

PCR selection NULL 3958

In this case, the delegation has no PCR selection structure defined. The TPM does not 3959
enforce any particular environment before using the authorization value. Mere knowledge of 3960
the value is sufficient. 3961

End of informative comment 3962

29.9 DSAP description 3963

Start of informative comment 3964

The DSAP opens a deferred auth session, using either a TPM_DELEGATE_BLOB as input 3965
parameter or a reference to the TPM_DELEGATE_TABLE_ROW, stored inside the TPM. The 3966
DSAP command creates an ephemeral secret to authenticate a session. The purpose of this 3967
section is to illustrate the delegation of user keys or TPM Owner authorization by creating 3968
and using a DSAP session without regard to a specific command. 3969

A key defined for a certain usage (e.g. TPM_KEY_IDENTITY) can be applied to different 3970
functions within the use model (e.g. TPM_Quote or TPM_CertifiyKey). If an entity knows the 3971
AuthData for the key (key.usageAuth) it can perform all the functions, allowed for that use 3972
model of that particular key. This entity is also defined as delegation creation entity, since it 3973
can initiate the delegation process. Assume that a restricted usage entity should only be 3974
allowed to execute a subset or a single functions denoted as TPM_Example, within the 3975
specific use model of a key. (e.g. Allow the usage of a TPM_IDENTITY_KEY only for 3976
Certifying Keys, but no other function). This use model points to the selection of the DSAP 3977
as the authorization protocol to execute the TPM_Example command. 3978

To perform this scenario the delegation creation entity must know the AuthData for the key 3979
(key.usageAuth). It then has to initiate the delegation by creating a 3980
TPM_DELEGATE_KEY_BLOB via the TPM_Delegate_CreateKeyDelegation command. As a 3981
next step the delegation creation entity has to pass the TPM_DELEGATE_KEY_BLOB and 3982
the delegation AuthData (TPM_DELEGATE_SENSITIVE.authValue) to the restricted usage 3983
entity. The specification offers the TPM_DelTable_ReadAuth mechanism to perform this 3984
function. Other mechanisms may be used. 3985

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 131
 TCG Published

The restricted usage entity can now start an TPM_DSAP session by using the 3986
TPM_DELEGATE_KEY_BLOB as input. 3987

For the TPM_Example command, the inAuth parameter provides the authorization to 3988
execute the command. The following table shows the commands executed, the parameters 3989
created and the wire formats of all of the information. 3990

<inParamDigest> is the result of the following calculation: SHA1(ordinal, inArgOne, 3991
inArgTwo). <outParamDigest> is the result of the following calculation: SHA1(returnCode, 3992
ordinal, outArgOne). inAuthSetupParams refers to the following parameters, in this order: 3993
authLastNonceEven, nonceOdd, continueAuthSession. OutAuthSetupParams refers to the 3994
following parameters, in this order: nonceEven, nonceOdd, continueAuthSession 3995

In addition to the two even nonces generated by the TPM (authLastNonceEven and 3996
nonceEven) that are used for TPM_OIAP, there is a third, labeled nonceEvenOSAP that is 3997
used to generate the shared secret. For every even nonce, there is also an odd nonce 3998
generated by the system. 3999

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

132 Revision 94 29 March 2006
 TCG Published

 4000

Caller On the wire Dir TPM

Send TPM_DSAP TPM_DSAP

keyHandle
nonceOddOSAP
entityType
entityValue

à Decrypt sensitiveArea of entityValue

If entityValue==TPM_ET_DEL_BLOB verify the integrity of the blob,
and if a TPM_DELEGATE_KEY_BLOB is input verify that KeyHandle
and entityValue match
Create session & authHangle

Generate authLastNonceEven
Save authLastNonceEven with authHandle
Generate nonceEvenOSAP
Generate sharedSecret = HMAC(sensitiveArea.authValue.,
nonceEvenOSAP, nonceOddOSAP)
Save keyHandle, sharedSecret with authHandle and permissions

Save authHandle, authLastNonceEven
Generate sharedSecret =
HMAC(sensitiveArea.authValue,
nonceEvenOSAP, nonceOddOSAP)
Save sharedSecret

authHandle,
authLastNonceEven

nonceEvenOSAP

ß Returns

Generate nonceOdd & save with
authHandle.
Compute inAuth = HMAC (sharedSecret,
inParamDigest, inAuthSetupParams)

Send TPM_Example tag
paramSize

ordinal
inArgOne
inArgTwo
authHandle

nonceOdd
continueAuthSession
inAuth

à Verify authHandle points to a valid session, mismatch returns
TPM_AUTHFAIL

Retrieve authLastNonceEven from internal session storage
HM = HMAC (sharedSecret, inParamDigest, inAuthSetupParams)
Compare HM to inAuth. If they do not compare return with
TPM_AUTHFAIL

Check if command ordinal of TPM_Example is allowed in
permissions. If not return TPM_DISABLED_CMD
Execute TPM_Example and create returnCode
Generate nonceEven to replace authLastNonceEven in session

Set resAuth = HMAC(sharedSecret, outParamDigest,
outAuthSetupParams)

Save nonceEven
HM = HMAC(sharedSecret,
outParamDiges t, outAuthSetupParams)
Compare HM to resAuth. This verifies
returnCode and output parameters.

tag
paramSize

returnCode
outArgOne
nonceEven
continueAuthSession

resAuth

ß Return output parameters
If continueAuthSession is FALSE then destroy session

 4001

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 133
 TCG Published

 4002

Suppose now that the TPM user wishes to send another command using the same session 4003
to operate on the same key. For the purposes of this example, we will assume that the same 4004
ordinal is to be used (TPM_Example). To re-use the previous session, the 4005
continueAuthSession output boolean must be TRUE. 4006

The following table shows the command execution, the parameters created and the wire 4007
formats of all of the information. 4008

In this case, authLastNonceEven is the nonceEven value returned by the TPM with the 4009
output parameters from the first execution of TPM_Example. 4010

Caller On the wire Dir TPM

Generate nonceOdd
Compute inAuth = HMAC (sharedSecret,
inParamDigest, inAuthSetupParams)
Save nonceOdd with authHandle

Send TPM_Example tag
paramSize
ordinal
inArgOne

inArgTwo
nonceOdd
continueAuthSession
inAuth

à Retrieve authLastNonceEven from internal session storage
HM = HMAC (sharedSecret, inParamDigest, inAuthSetupParams)
Compare HM to inAuth. If they do not compare return with
TPM_AUTHFAIL

Execute TPM_Example and create returnCode
Generate nonceEven to replace authLastNonceEven in session
Set resAuth = HMAC(sharedSecret, outParamDigest,
outAuthSetupParams)

Save nonceEven
HM = HMAC(sharedSecret,
outParamDigest, outAuthSetupParams)
Compare HM to resAuth. This verifies
returnCode and output parameters.

tag
paramSize
returnCode
outArgOne

nonceEven
continueAuthSession
resAuth

ß Return output parameters
If continueAuthSession is FALSE then destroy session

 4011

The TPM user could then use the session for further authorization sessions or terminate it 4012
in the ways that have been described above in TPM_OIAP. Note that termination of the 4013
DSAP session causes the TPM to destroy the shared secret. 4014

End of informative comment 4015

1. The DSAP session MUST enforce any PCR selection on use. The use definition is any 4016
command that uses the delegation authorization value to take the place of the TPM 4017
Owner authorization. 4018

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

134 Revision 94 29 March 2006
 TCG Published

30. Physical Presence 4019
Start of informative comment 4020

Physical presence is a signal from the platform to the TPM that indicates the operator 4021
manipulated the hardware of the platform. Manipulation would include depressing a 4022
switch, setting a jumper, depressing a key on the keyboard or some other such action. 4023

TCG does not specify an implementation technique. The guideline is the physical presence 4024
technique should make it difficult or impossible for rogue software to assert the physical 4025
presence signal. 4026

A PC-specific physical presence mechanism might be an electrical connection from a switch, 4027
or a program that loads during power on self-test. 4028

End of informative comment 4029

The TPM MUST support a signal from the platform for the assertion of physical presence. A 4030
TCG platform specific specification MAY specify what mechanisms assert the physical 4031
presence signal. 4032

The platform manufacturer MUST provide for the physical presence assertion by some 4033
physical mechanism. 4034

30.1 Use of Physical Presence 4035

Start of informative comment 4036

For control purposes there are numerous commands on the TPM that require TPM Owner 4037
authorization. Included in this group of commands are those that turn the TPM on or off 4038
and those that define the operating modes of the TPM. The TPM Owner always has complete 4039
control of the TPM. What happens in two conditions: there is no TPM Owner or the TPM 4040
Owner forgets the TPM Owner AuthData value. Physical presence allows for an 4041
authorization to change the state in these two conditions. 4042

No TPM Owner 4043

This state occurs when the TPM ships from manufacturing (it can occur at other times 4044
also). There is no TPM Owner. It is imperative to protect the TPM from remote software 4045
processes that would attempt to gain control of the TPM. To indicate to the TPM that the 4046
TPM operating state can change (allow for the creation of the TPM Owner) the human 4047
asserts physical presence. The physical presence assertion than indicates to the TPM that 4048
changing the operating state of the TPM is authorized. 4049

Lost TPM Owner authorization 4050

In the case of lost, or forgotten, authorization there is a TPM Owner but no way to manage 4051
the TPM. If the TPM will only operate with the TPM Owner authorization then the TPM is no 4052
longer controllable. Here the operator of the machine asserts physical presence and 4053
removes the current TPM Owner. The assumption is that the operator will then immediately 4054
take ownership of the TPM and insert a new TPM Owner AuthData value. 4055

Operator disabling 4056

Another use of physical presence is to indicate that the operator wants to disable the use of 4057
the TPM. This allows the operator to temporarily turn off the TPM but not change the 4058
permanent operating mode of the TPM as set by the TPM Owner. 4059

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 135
 TCG Published

End of informative comment 4060

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

136 Revision 94 29 March 2006
 TCG Published

31. TPM Internal Asymmetric Encryption 4061
Start of Informative comment 4062

For asymmetric encryption schemes, the TPM is not required to perform the blocking of 4063
information where that information cannot be encrypted in a single cryptographic 4064
operation. The schemes TPM_ES_RSAESOAEP_SHA1_MGF1 and TPM_ES_RSAESPKCSV15 4065
allow only single block encryption. When using these schemes, the caller to the TPM must 4066
perform any blocking and unblocking outside the TPM. It is the responsibility of the caller 4067
to ensure that multiple blocks are properly protected using a chaining mechanism. 4068

Note that there are inherent dangers associated with splitting information so that it can be 4069
encrypted in multiple blocks with an asymmetric key, and then chaining together these 4070
blocks together. For example, if an integrity check mechanism is not used, an attacker can 4071
encrypt his own data using the public key, and substitute this rogue block for one of the 4072
original blocks in the message, thus forcing the TPM to replace part of the message upon 4073
decryption. 4074

There is also a more subtle attack to discover the data encrypted in low-entropy blocks. The 4075
attacker makes a guess at the plaintext data, encrypts it, and substitutes the encrypted 4076
guess for the original block. When the TPM decrypts the complete message, a successful 4077
decryption will indicate that his guess was correct. 4078

There are a number of solutions which could be considered for this problem – One such 4079
solution for TPMs supporting symmetric encryption is specified in PKCS#7, section 10, and 4080
involves using the public key to encrypt a symmetric key, then using that symmetric key to 4081
encrypt the long message. 4082

For TPMs without symmetric encryption capabilities, an alternative solution may be to add 4083
random padding to each message block, thus increasing the block’s entropy. 4084

End of informative comment 4085

1. For a TPM_UNBIND command where the parent key has pubKey.algorithmId equal to 4086
TPM_ALG_RSA and pubKey.encScheme set to TPM_ES_RSAESPKCSv15 the TPM SHALL 4087
NOT expect a PAYLOAD_TYPE structure to prepend the decrypted data. 4088

2. The TPM MUST perform the encryption or decryption in accordance with the 4089
specification of the encryption scheme, as described below. 4090

3. When a null terminated string is included in a calculation, the terminating null SHALL 4091
NOT be included in the calculation. 4092

31.1.1 TPM_ES_RSAESOAEP_SHA1_MGF1 4093

1. The encryption and decryption MUST be performed using the scheme RSA_ES_OAEP 4094
defined in [PKCS #1v2.0: 7.1] using SHA1 as the hash algorithm for the encoding 4095
operation. 4096

2. Encryption 4097

a. The OAEP encoding P parameter MUST be the 4 character string “TCPA”. 4098

b. While the TCG now controls this specification the string value will NOT change to 4099
allow for interoperability and backward compatibility with TCPA 1.1 TPM’s 4100

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 137
 TCG Published

c. If there is an error with the encryption, the TPM must return the error 4101
TPM_ENCRYPT_ERROR. 4102

3. Decryption 4103

a. The OAEP decoding P parameter MUST be the 4 character string “TCPA”. 4104

b. While the TCG now controls this specification the string value will NOT change to 4105
allow for interoperability and backward compatibility with TCPA 1.1 TPM’s 4106

c. If there is an error with the decryption, the TPM must return the error 4107
TPM_DECRYPT_ERROR. 4108

31.1.2 TPM_ES_RSAESPKCSV15 4109

1. The encryption MUST be performed using the scheme RSA_ES_PKCSV15 defined in 4110
[PKCS #1v2.0: 7.2]. 4111

2. Encryption 4112

a. If there is an error with the encryption, return the error TPM_ENCRYPT_ERROR. 4113

3. Decryption 4114

a. If there is an error with the decryption, return the error TPM_DECRYPT_ERROR. 4115

31.1.3 TPM_ES_SYM_CNT 4116

Start of informative comment 4117

This defines an encryption mode in use with symmetric algorithms. The actual definition is 4118
at 4119

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf 4120

The underlying symmetric algorithm may be AES128, AES192, AES256 or 3DES. The 4121
definition for these algorithms is in the NIST document Appendix E. 4122

End of informative comment 4123

1. Given a current counter value, the next counter value is obtained by treating the lower 4124
32 bits of the current counter value as an unsigned 32-bit integer x, then replacing the 4125
lower 32 bits of the current counter value with the bits of the incremented integer (x + 1) 4126
mod 2^32. This method is described in Appendix B.1 of the NIST document 4127
(b=32).30.1.3 TPM_ES_SYM_CNT 4128

31.1.4 TPM_ES_SYM_OFB 4129

Start of informative comment 4130

This defines an encryption mode in use with symmetric algorithms. The actual definition is 4131
at 4132

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf 4133

The underlying symmetric algorithm may be AES128, AES192, AES256 or 3DES. The 4134
definition for these algorithms is in the NIST document Appendix E. 4135

End of informative comment 4136

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

138 Revision 94 29 March 2006
 TCG Published

31.2 TPM Internal Digital Signatures 4137

Start of informative comment 4138

These values indicate the approved schemes in use by the TPM to generate digital 4139
signatures. 4140

End of informative comment 4141

 4142

The TPM MUST perform the signature or verification in accordance with the specification of 4143
the signature scheme, as described below. 4144

31.2.1 TPM_SS_RSASSAPKCS1v15_SHA1 4145

1. The signature MUST be performed using the scheme RSASSA-PKCS1-v1.5 defined in 4146
[PKCS #1v2.0: 8.1] using SHA1 as the hash algorithm for the encoding operation. 4147

31.2.2 TPM_SS_RSASSAPKCS1v15_DER 4148

Start of informative comment 4149

This signature scheme is designed to permit inclusion of DER coded information before 4150
signing, which is inappropriate for most TPM capabilities 4151

End of informative comment 4152

1. The signature MUST be performed using the scheme RSASSA-PKCS1-v1.5 defined in 4153
[PKCS #1v2.0: 8.1]. The caller must properly format the area to sign using the DER 4154
rules. The provided area maximum size is k-11 octets. 4155

2. TPM_Sign SHALL be the only TPM capability that is permitted to use this signature 4156
scheme. If a capability other than TPM_Sign is requested to use this signature scheme, 4157
it SHALL fail with the error code TPM_INAPPROPRIATE_SIG 4158

31.2.3 TPM_SS_RSASSAPKCS1v15_INFO 4159

Start of informative comment 4160

This signature scheme is designed to permit signatures on arbitrary information but also 4161
protect the signature mechanism from being misused. 4162

End of informative comment 4163

1. The scheme MUST work just as TPM_SS_RSASSAPKCS1V15_SHA1 except in the 4164
TPM_Sign command 4165

a. In the TPM_Sign command the scheme MUST use a properly constructed 4166
TPM_SIGN_INFO structure, and hash it before signing 4167

31.2.4 Use of Signature Schemes 4168

Start of informative comment 4169

The PKCS1v15_INFO scheme is a new addition for 1.2. It causes a new functioning for 1.1 4170
and 1.2 keys. The following details the use of the new scheme and how the TPM handles 4171
signatures and hashing 4172

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 139
 TCG Published

End of informative comment 4173

1. For the commands (TPM_GetAuditDigestSigned, TPM_TickStampBlob, 4174
TPM_ReleaseTransportSigned): 4175

a. The TPM MUST create a TPM_SIGN_INFO and sign it using the key specified and 4176
TPM_SS_RSASSAPKCS1v15_SHA1 4177

2. For the commands (TPM_IdentityKey, TPM_Quote and TPM_CertifyKey): 4178

a. Create the structure as defined by the command and sign using 4179
TPM_SS_RSASSAPKCS1v15_SHA1 for either SHA1 or SIGN_INFO 4180

3. For TPM_Sign: 4181

a. Create the structure as defined by the command and key scheme 4182

b. If key->sigScheme is SHA1 sign the 20 byte parameter 4183

c. If key->sigScheme is DER, sign the DER value using 4184
TPM_SS_RSASSAPKCS1v15_DER 4185

d. If key->sigScheme is SIGN_INFO, sign any value using the SIGN_INFO structure and 4186
TPM_SS_RSASSAPKCS1v15_INFO 4187

4. When data is signed and the data comes from INSIDE the TPM, the TPM is MUST do the 4188
hash, and prepend the DER encoding correctly before performing the padding and 4189
private key operation. 4190

5. When data is signed and the data comes from OUTSIDE the TPM, the software, not the 4191
TPM, MUST do the hash. 4192

6. When the TPM knows, or is told by implication, that the hash used is SHA-1, the TPM 4193
MUST prepend the DER encoding correctly before performing the padding and private 4194
key operation 4195

7. When the TPM does not know, or told by implication, that the hash used is SHA-1, the 4196
software, not the TPM) MUST provide the DER encoding to be prepended. 4197

8. The TPM MUST perform the padding and private key operation in any signing operations 4198
it does. 4199

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

140 Revision 94 29 March 2006
 TCG Published

32. Key Usage Table 4200
This table summarizes the types of keys associated with a given TPM command. 4201

It is the responsibility of each command to check the key usage prior to executing the 4202
command 4203

 First Key Second Key
N

am
e

Fi
rs

t K
ey

Se
co

nd
 K

ey

SI
G

NI
NG

ST
O

RA
G

E

ID
EN

TI
TY

AU
TH

CH
G

BI
ND

LE
EG

AC
Y

SI
G

NI
NG

ST
O

RA
G

E

ID
EN

TI
TY

AU
TH

CH
G

BI
ND

LE
G

AC
Y

TPM_ActivateIdentity idKey x

TPM_CertifyKey certKey inKey x x x x x x x x

TPM_CertifyKey2 (Note 3) inKey certKey x x x x x x x x

TPM_CertifySelfTest key x x x

TPM_ChangeAuth parent blob x 2 2 2 2 2 2

TPM_ChangeAuthAsymFinish parent ephemeral x x

TPM_ChangeAuthAsymStart idKey ephemeral x x

TPM_CMK_ConvertMigration parent x

TPM_CMK_CreateBlob parent x

TPM_CMK_CreateKey parent x

TPM_ConvertMigrationBlob parent x

TPM_CreateMigrationBlob parent blob x 2 2 2 2 2 2

TPM_CreateWrapKey parent x

TPM_Delegate_CreateKeyDelegation key x x x x x x

TPM_DSAP entity x x x x x x

TPM_EstablishTransport key x x

TPM_GetAuditDigestSigned certKey x x x

TPM_GetAuditEventSigned certKey x x

TPM_GetCapabilitySigned key x x x

TPM_GetPubKey key x x x x x x

TPM_KeyControlOwner key x x x x x

TPM_LoadKey 2 parent inKey x x x x x x

TPM_LoadKey parent inKey x x x x x x

TPM_MigrateKey maKey 1

TPM_OSAP entity x x x x x x

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 141
 TCG Published

TPM_Quote key x x x

TPM_Quote2 key x x x

TPM_Seal key x

TPM_Sealx key x

TPM_Sign key x x

TPM_UnBind key x x

TPM_Unseal parent x

TPM_ReleaseTransport key x

TPM_TickStampBlob key x x x

Notes 4204

1 – Key is not a storage key but TPM_MIGRATE_KEY 4205

2 – TPM unable to determine key type 4206

3 – The order is correct; the reason is to support a single auth version. 4207

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

142 Revision 94 29 March 2006
 TCG Published

33. Direct Anonymous Attestation 4208
Start of informative comment 4209

TPM_DAA_Join and TPM_DAA_Sign are highly resource intensive commands. They require 4210
most of the internal TPM resources to accomplish the complete set of operations. A TPM 4211
may specify that no other commands are possible during the join or sign operations. To 4212
allow for other operations to occur the TPM does allow the TPM_SaveContext command to 4213
save off the current join or sign operation. 4214

Operations that occur during a join or sign result in the loss of the join or sign session in 4215
favour of the interrupting command. 4216

End of informative comment 4217

1. The TPM MUST support one concurrent TPM_DAA_Join or TPM_DAA_Sign session. The 4218
TPM MAY support additional sessions 4219

2. The TPM MAY invalidate a join or sign session upon the receipt of any additional 4220
command other than the join/sign or TPM_SaveContext 4221

33.1 TPM_DAA_JOIN 4222

Start of informative comment 4223

TPM_DAA_Join creates new JOIN data. If a TPM supports only one JOIN/SIGN operation, 4224
TPM_DAA_Join invalidates any previous DAA attestation information inside a TPM. The 4225
JOIN phase of a DAA context requires a TPM to communicate with an issuer. 4226
TPM_DAA_Join outputs data to be sent to an issuing authority and receives data from that 4227
issuing authority. The operation potentially requires several seconds to complete, but is 4228
done in a series of atomic stages and TPM_SaveContext/RestoreContext can be used to 4229
cache data off-TPM in between atomic stages. 4230

The JOIN process is designed so a TPM will normally receive exactly the same DAA 4231
credentials from a given issuer, no matter how many times the JOIN process is executed 4232
and no matter whether the issuer changes his keys. This property is necessary because an 4233
issuer must give DAA credentials to a platform after verifying that the platform has the 4234
architecture of a trusted platform. Unless the issuer repeats the verification process, there 4235
is no justification for giving different DAA credentials to the same platform. Even after 4236
repeating the verification process, the issuer should give replacement (different) DAA 4237
credentials only when it is necessary to retire the old DAA credentials. Replacement DAA 4238
credentials erase the previous DAA history of the platform, at least as far as the DAA 4239
credentials from that issuer are concerned. Replacement might be desirable, as when a 4240
platform changes hands, for example, in order to eliminate any association via DAA between 4241
the seller and the buyer. On the other hand, replacement might be undesirable, since it 4242
enables a rogue to rejoin a community from which he has been barred. Replacement is done 4243
by submitting a different “count” value to the TPM during a JOIN process. A platform may 4244
use any value of “count” at any time, in any order, but only “counts” accepted by the issuer 4245
will elicit DAA credentials from that issuer. 4246

The TPM is forced to verify an issuer’s public parameters before using an issuer’s public 4247
parameters. This verification provides proof that the public parameters (which include a 4248
public key) were approved by an entity that knows the private key corresponding to that 4249
public key; in other words that the JOIN has previously been approved by the issuer. This 4250

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 143
 TCG Published

verification is necessary to prevent an attack by a rogue using a genuine issuer’s public 4251
parameters, which could reveal the secret created by the TPM using those public 4252
parameters. Verification uses a signature (provided by the issuer) over the public 4253
parameters. 4254

The exponent of the issuer’s key is fixed at 2^16+1, because this is the only size of exponent 4255
that a TPM is required to support. The modulus of the issuer’s public key is used to create 4256
the pseudonym with which the TPM contacts the issuer. Hence the TPM cannot produce the 4257
same pseudonym for different issuers (who have different keys). The pseudonym is always 4258
created using the issuer’s first key, even if the issuer changes keys, in order to produce the 4259
property described earlier. The issuer proves to the TPM that he has the right to use that 4260
first key to create a pseudonym by creating a chain of signatures from the first key to the 4261
current key, and submitting those signatures to the TPM. The method has the desirable 4262
property that only signatures and the most recent private key need be retained by the 4263
issuer: once the latest link in the signature chain has been created, previous private keys 4264
can be discarded. 4265

The use of atomic operations minimises the contiguous time that a TPM is busy with 4266
TPM_DAA_Join and hence unavailable for other commands. JOIN can therefore be done as 4267
a background activity without inconveniencing a user. The use of atomic operations also 4268
minimises the peak value of TPM resources consumed by the JOIN phase. 4269

The use of atomic operations introduces a need for consistency checks, to ensure that the 4270
same parameters are used in all atomic operations of the same JOIN process. 4271
DAA_tpmSpecific therefore contains a digest of the associated DAA_issuerSettings 4272
structure, and DAA_session contains a digest of associated DAA_tpmSpecific and 4273
DAA_joinSession structures. Each atomic operation verifies digests to ensure use of 4274
mutually consistent sets of DAA_issuerSettings, DAA_tpmSpecific, DAA_session, and 4275
DAA_joinSession data. 4276

JOIN operations and data structures are designed to minimise the amount of data that 4277
must be stored on a TPM in between atomic operations, while ensuring use of mutually 4278
consistent sets of data. Digests of public data are held in the TPM between atomic 4279
operations, instead of the actual public data (if a digest is smaller than the actual data). In 4280
each atomic operation, consistency checks verify that any public data loaded and used in 4281
that operation matches the stored digest. Thus non-secret DAA_generic_X parameters 4282
(loaded into the TPM only when required), are checked using digests DAA_digest_X 4283
(preloaded into the TPM in the structure DAA_issuerSettings). 4284

JOIN includes a challenge from the issuer, in order to defeat simple Denial of Service 4285
attacks on the issuer’s server by rogues pretending to be arbitrary TPMs. 4286

A first group of atomic operations generate all TPM-data that must be sent to the issuer. 4287
The platform performs other operations (that do not need to be trusted) using the TPM-data, 4288
and sends the resultant data to the issuer. The issuer sends values u2 and u3 back to the 4289
TPM. A second group of atomic operations accepts this data from the issuer and completes 4290
the protocol. 4291

The TPM outputs encrypted forms of DAA_tpmSpecific, v0 and v1. These encrypted data are 4292
later interpreted by the same TPM and not by any other entity, so any manufacturer-4293
specific wrapping can be used. It is suggested, however, that enc(DAA_tpmSpecific) or 4294
enc(v0) or enc(v1) data should be created by adapting a TPM_CONTEXT_BLOB structure. 4295

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

144 Revision 94 29 March 2006
 TCG Published

After executing TPM_DAA_Join, it is prudent to perform TPM_DAA_Sign, to verify that the 4296
JOIN process completed correctly. A host platform may choose to verify JOIN by performing 4297
TPM_DAA_Sign as both the target and the verifier (or could, of course, use an external 4298
verifier). 4299

End of informative comment 4300

33.2 TPM_DAA_Sign 4301

Start of informative comment 4302

TPM_DAA_Sign responds to a challenge and proves the attestation held by a TPM without 4303
revealing the attestation held by that TPM. The operation is done in a series of atomic 4304
stages to minimise the contiguous time that a TPM is busy and hence unavailable for other 4305
commands. TPM_SaveContext can be used to save a DAA context in between atomic stages. 4306
This enables the response to the challenge to be done as a background activity without 4307
inconveniencing a user, and also minimises the peak value of TPM resources consumed by 4308
the process. 4309

The use of atomic operations introduces a need for consistency checks, to ensure that the 4310
same parameters are used in all atomic operations of the same SIGN process. 4311
DAA_tpmSpecific therefore contains a digest of the associated DAA_issuerSettings 4312
structure, and DAA_session contains a digest of associated DAA_tpmSpecific structure. 4313
Each atomic operation verifies these digests and hence ensures use of mutually consistent 4314
sets of DAA_issuerSettings, DAA_tpmSpecific, and DAA_session data. 4315

SIGN operations and data structures are designed to minimise the amount of data that 4316
must be stored on a TPM in between atomic operations, while ensuring use of mutually 4317
consistent sets of data. Digests of public and private data are held in the TPM between 4318
atomic operations, instead of the actual public or private data (if a digest is smaller than the 4319
actual data). At each atomic operation, consistency checks verify that any data loaded and 4320
used in that operation matches the stored digest. Thus parameters DAA_digest_X are 4321
digests (preloaded into the TPM in the structure DAA_issuerSettings) of non-secret 4322
DAA_generic_X parameters (loaded into the TPM only when required), for example. 4323

The design enables the use of any number of issuer DAA-data, private DAA-data, and so on. 4324
Strictly, the design is that the *TPM* puts no limit on the number of sets of issuer DAA-data 4325
or sets of private DAA-data, or restricts what set is in the TPM at any time, but supports 4326
only one DAA-context in the TPM at any instant. Any number of DAA-contexts can, of 4327
course, be swapped in and out of the TPM using saveContext /loadContext, so applications 4328
do not perceive a limit on the number of DAA-contexts. 4329

TPM_DAA_Sign accepts a freshness challenge from the verifier and generate all TPM-data 4330
that must be sent to the verifier. The platform performs other operations (that do not need 4331
to be trusted) using the TPM-data, and sends the resultant data to the verifier. At one stage, 4332
the TPM incorporates a loaded public (non-migratable) key into the protocol. This is 4333
intended to permit the setup of a session, for any specific purpose, including doing the 4334
same job in TPM_ActivateIdentity as the EK. 4335

End of informative comment 4336

33.3 DAA Command summary 4337

Start of informative comment 4338

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 145
 TCG Published

The following is a conceptual summary of the operations that are necessary to setup a TPM 4339
for DAA, execute the JOIN process, and execute the SIGN process. 4340

The summary is partitioned according to the “stages” of the actual TPM commands. Thus 4341
the operations listed in JOIN under stage-2 briefly describe the operation of TPM_DAA_Join 4342
at stage-2, for example. 4343

This summary is in place to help in the connection between the mathematical definition of 4344
DAA and this implementation in a TPM. 4345

End of informative comment 4346

33.3.1 TPM setup 4347

1. A TPM generates a TPM-specific secret S (160-bit) from the RNG and stores S in 4348
nonvolatile store on the TPM. This value will never be disclosed and changed by the 4349
TPM. 4350

33.3.2 JOIN 4351

Start of informative comment 4352

This entire section is informative 4353

1. When the following is performed, this process does not increment the stage counter. 4354

a. TPM imports a non-secret values n0 (2048-bit). 4355

b. TPM computes a non-secret value N0 (160-bit) = H(n0). 4356

c. TPM computes a TPM-specific secret DAA_rekey (160-bit) = H(S, H(n0)). 4357

d. TPM stores a self-consistent set of (N0, DAA_rekey) 4358

2. The following is performed 0 or several times: (Note: If the stage mechanism is being 4359
used, then this branch does not increment the stage counter.) 4360

a. TPM imports 4361

i. a self consistent set of (N0, DAA_rekey) 4362

ii. a non-secret value DAA_SEED_KEY (2048-bit) 4363

iii. a non-secret value DEPENDENT_SEED_KEY (2048-bit) 4364

iv. a non-secret value SIG_DSK (2048-bit) 4365

b. TPM computes DIGEST (160-bit) = H(DAA_SEED_KEY) 4366

c. If DIGEST != N0, TPM refuses to continue 4367

d. If DIGEST == N0, TPM verifies validity of signature SIG_DSK on 4368
DEPENDENT_SEED_KEY with key (DAA_SEED_KEY, e0 (= 2^16 + 1)) by using 4369
TPM_Sign_Verify (based on PKCS#1 2.0). If check fails, TPM refuses to continue. 4370

e. TPM sets N0 = H(DEPENDENT_SEED_KEY) 4371

f. TPM stores a self consistent set of (N0, DAA_JOIN) 4372

3. Stage 2 4373

a. TPM imports a set of values, including 4374

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

146 Revision 94 29 March 2006
 TCG Published

i. a non-secret value n0 (2048-bit), 4375

ii. a non-secret value R0 (2048-bit), 4376

iii. a non-secret value R1 (2048-bit), 4377

iv. a non-secret value S0 (2048-bit), 4378

v. a non-secret value S1 (2048-bit), 4379

vi. a non-secret value n (2048-bit), 4380

vii. a non-secret value n1 (1024-bit), 4381

viii. a non-secret value gamma (2048-bit), 4382

ix. a non-secret value q (208-bit), 4383

x. a non-secret value COUNT (8-bit), 4384

xi. a self consistent set of (N0, DAA_rekey). 4385

xii. TPM saves them as part of a new set A. 4386

b. TPM computes DIGEST (160-bit) = H(n0) 4387

c. If DIGEST != N0, TPM refuses to continue. 4388

d. If DIGEST == N0, TPM computes DIGEST (160-bit) = H(R0, R1, S0, S1, n, n1, G, q) 4389

e. TPM imports a non-secret value SIG_ISSUER_KEY (2048-bit). 4390

f. TPM verifies validity of signature SIG_ISSUER_KEY (2048-bit) on DIGEST with key (n0, 4391
e0) by using TPM_Sign_Verify (based on PKCS#1 2.0). If check fails, TPM refuses to 4392
continue. 4393

g. TPM computes a TPM-specific secret f (208-bit) = H(DAA_rekey, COUNT, 4394
0)||H(DAA_rekey, COUNT, 1) mod q. 4395

h. TPM computes a TPM-specific secret f0 (104-bit) = f mod 2104. 4396

i. TPM computes a TPM-specific secret f1 (104-bit) = f >> 104. 4397

j. TPM save f, f0 and f1 as part of set A. 4398

4. Stage 3 4399

a. TPM generates a TPM-specific secret u0 (1024-bit) from the RNG. 4400

b. TPM generates a TPM-specific secret u'1 (1104-bit) from the RNG. 4401

c. TPM computes u1 (1024-bit) = u'1 mod n1. 4402

d. TPM stores u0 and u1 as part of set A. 4403

5. Stage 4 4404

a. TPM computes a non-secret value P1 (2048-bit) = (R0^f0) mod n and stores P1 as part of 4405
set A. 4406

6. Stage 5 4407

a. TPM computes a non-secret value P2 (2048-bit) = P1*(R1^f1) mod n, stores P2 as part of 4408
set A and erases P1 from set A. 4409

7. Stage 6 4410

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 147
 TCG Published

a. TPM computes a non-secret value P3 (2048-bit) = P2*(S0^u0) mod n, stores P3 as part of 4411
set A and erases P2 from set A. 4412

8. Stage 7 4413

a. TPM computes a non-secret value U (2048-bit) = P3*(S1^u1) mod n. 4414

b. TPM erases P3 from set A 4415

c. TPM computes and saves U1 (160-bit) = H(U||COUNT||N0) as part of set A. 4416

d. TPM exports U. 4417

9. Stage 8 4418

a. TPM imports ENC_NE (2048-bit). 4419

b. TPM decrypts NE (160-bit) from ENC_NE (2048-bit) by using privEK: NE = 4420
decrypt(privEK, ENC_NE). 4421

c. TPM computes U2 (160-bit) = H(U1||NE). 4422

d. TPM erases U1 from set A. 4423

e. TPM exports U2. 4424

10. Stage 9 4425

a. TPM generates a TPM-specific secret r0 (344-bit) from the RNG. 4426

b. TPM generates a TPM-specific secret r1 (344-bit) from the RNG. 4427

c. TPM generates a TPM-specific secret r2 (1024-bit) from the RNG. 4428

d. TPM generates a TPM-specific secret r3 (1264-bit) from the RNG. 4429

e. TPM stores r0, r1, r2, r3 as part of set A. 4430

f. TPM computes a non-secret value P1 (2048-bit) = (R0^r0) mod n and stores P1 as part of 4431
set A. 4432

11. Stage 10 4433

a. TPM computes a non-secret value P2 (2048-bit) = P1*(R1^r1) mod n, stores P2 as part of 4434
set A and erases P1 from set A. 4435

12. Stage 11 4436

a. TPM computes a non-secret value P3 (2048-bit) = P2*(S0^r2) mod n, stores P3 as part of 4437
set A and erases P2 from set A. 4438

13. Stage 12 4439

a. TPM computes a non-secret value P4 (2048-bit) = P3*(S1^r3) mod n, stores P4 as part of 4440
set A and erases P3 from set A. 4441

b. TPM exports P4. 4442

14. Stage 13 4443

a. TPM imports w (2048-bit). 4444

b. TPM computes w1 = w^q mod G. 4445

c. TPM verifies if w1 = 1 holds. If it doesn’t hold, TPM refuses to continue. 4446

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

148 Revision 94 29 March 2006
 TCG Published

d. If it does hold, TPM saves w as part of set A. 4447

15. Stage 14 4448

a. TPM computes a non-secret value E (2048-bit) = w^f mod G. 4449

b. TPM exports E. 4450

16. Stage 15 4451

a. TPM computes a TPM-specific secret r (208-bit) = r0 + 2^104*r1 mod q. 4452

b. TPM computes a non-secret value E1 (2048-bit) = w^r mod G. 4453

c. TPM exports E1 and erases w from set A. 4454

17. Stage 16 4455

a. TPM imports a non-secret value c1 (160-bit). 4456

b. TPM generates a non-secret value NT (160-bit) from the RNG. 4457

c. TPM computes a non-secret value c (160-bit) = H(c1||NT). 4458

d. TPM save c as part of set A. 4459

e. TPM exports NT 4460

18. Stage 17 4461

a. TPM computes a non-secret value s0 (352-bit) = r0 + c*f0 over the integers. 4462

b. TPM exports s0. 4463

19. Stage 18 4464

a. TPM computes a non-secret value s1 (352-bit) = r1 + c*f1 over the integers. 4465

b. TPM exports s1. 4466

20. Stage 19 4467

a. TPM computes a non-secret value s2 (1024-bit) = r2 + c*u0 mod 21024. 4468

b. TPM exports s2. 4469

21. Stage 20 4470

a. TPM computes a non-secret value s'2 (1024-bit) = (r2 + c*u0) >> 1024 over the integers. 4471

b. TPM saves s'2 as part of set A. 4472

c. TPM exports c 4473

22. Stage 21 4474

a. TPM computes a non-secret value s3 (1272-bit) = r3 + cu1 + s'2 over the integers. 4475

b. TPM exports s3 and erases s'2 from set A. 4476

23. Stage 22 4477

a. TPM imports a non-secret value u2 (1024-bit). 4478

b. TPM computes a TPM-specific secret v0 (1024-bit) = u2 + u0 mod 21024. 4479

c. TPM stores v0 as part of A. 4480

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 149
 TCG Published

d. TPM computes a TPM-specific secret v'0 (1024-bit) = (u2 + u0) >> 1024 over the integers. 4481

e. TPM saves v'0 as part of set A. 4482

24. Stage 23 4483

a. TPM imports a non-secret value u3 (1512-bit). 4484

b. TPM computes a TPM-specific secret v1 (1520-bit) = u3 + u1 + v'0 over the integers. 4485

c. TPM stores v1 as part of A. 4486

d. TPM erases v'0 from set A. 4487

25. Stage 24 4488

a. TPM makes self consistent set of all the data (n0, COUNT, R0, R1, S0, S1, n, G, q, v0, 4489
v1), where the values v0, v1 are secret – they need to be stored safely with the consistent 4490
set, and the remaining is non-secret. 4491

b. TPM erases set A. 4492

End of informative comment 4493

33.3.3 SIGN 4494

Start of informative comment 4495

This entire section is informative 4496

1. Stage 0 & 1 4497

a. TPM imports and verifies a self consistent set of all the data including: 4498

i. n0 (2048-bit), 4499

ii. COUNT (8-bit), 4500

iii. R0 (2048-bit), 4501

iv. R1 (2048-bit), 4502

v. S0 (2048-bit), 4503

vi. S1 (2048-bit), 4504

vii. n (2048-bit), 4505

viii. gamma (2048-bit), 4506

ix. q (208-bit), 4507

x. v0 (1024-bit), 4508

xi. v1 (1520-bit). 4509

xii. If the verification does not succeed, TPM refuses to continue. 4510

b. TPM stores the above values as part of a new set A. 4511

c. TPM computes a TPM-specific secret f0 (104-bit) = f mod 2104. 4512

d. TPM computes a TPM-specific secret f1 (104-bit) = f >> 104. 4513

e. TPM stores f0 and f1 as part of set A. 4514

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

150 Revision 94 29 March 2006
 TCG Published

f. TPM generates a TPM-specific secret r0 (344-bit) from the RNG. 4515

g. TPM generates a TPM-specific secret r1 (344-bit) from the RNG. 4516

h. TPM generates a TPM-specific secret r2 (1024-bit) from the RNG. 4517

i. TPM generates a TPM-specific secret r4 (1752-bit) from the RNG. 4518

j. TPM stores r0, r1, r2, r4, as part of set A. 4519

2. Stage 2 4520

a. TPM computes a non-secret value P1 (2048-bit) = (R0^r0) mod n and stores P1 as part of 4521
set A. 4522

3. Stage 3 4523

a. TPM computes a non-secret value P2 (2048-bit) = P1*(R1^r1) mod n, stores P2 as part of 4524
set A and erases P1 from set A. 4525

4. Stage 4 4526

a. TPM computes a non-secret value P3 (2048-bit) = P2*(S0^r2) mod n, stores P3 as part of 4527
set A and erases P2 from set A. 4528

5. Stage 5 4529

a. TPM computes a non-secret value T (2048-bit) = P3*(S1^r4) mod n. 4530

b. TPM erases P3 from set A. 4531

c. TPM exports T. 4532

6. Stage 6 4533

a. TPM imports a non-secret value w (2048-bit). 4534

b. TPM computes w1 = w^q mod G. 4535

c. TPM verifies if w1 = 1 holds. If it doesn’t hold, TPM refuses to continue. 4536

d. If it does hold, TPM saves w as part of set A. 4537

7. Stage 7 4538

a. TPM computes a non-secret value E (2048-bit) = w^f mod G. 4539

b. TPM exports E and erases f from set A. 4540

8. Stage 8 4541

a. TPM computes a TPM-specific secret r (208-bit) = r0 + 2^104*r1 mod q. 4542

b. TPM computes a non-secret value E1 (2048-bit) = w^r mod G. 4543

c. TPM exports E1 and erases w and E1 from set A. 4544

9. Stage 9 4545

a. TPM imports a non-secret value c1 (160-bit). 4546

b. TPM generates a non-secret value NT (160-bit) from the RNG. 4547

c. TPM computes a non-secret value c2 (160-bit) = H(c1||NT) and erases c1 from set A. 4548

d. TPM saves c2 as part of set A. 4549

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 151
 TCG Published

e. TPM exports NT. 4550

10. Stage 10 4551

a. TPM imports a non-secret value b (1-bit). 4552

b. If b = = 1, TPM imports a non-secret value m (160-bit). 4553

c. TPM computes a non-secret value c (160-bit) = H(c2||b||m) and erases c2 from set A. 4554

d. If b = = 0, TPM imports an RSA public key, eAIK (= 2^16 + 1) and nAIK (2048-bit). 4555

e. TPM computes a non-secret value c (160-bit) = H(c2||b||nAIK) and erases c2 from set 4556
A. 4557

f. TPM exports c. 4558

11. Stage 11 4559

a. TPM computes a non-secret value s0 (352-bit) = r0 + c*f0 over the integers. 4560

b. TPM exports s0. 4561

12. Stage 12 4562

a. TPM computes a non-secret value s1 (352-bit) = r1 + c*f1 over the integers. 4563

b. TPM exports s1. 4564

13. Stage 13 4565

a. TPM computes a non-secret value s2 (1024-bit) = r2 + c*v0 mod 21024. 4566

b. TPM exports s2. 4567

14. Stage 14 4568

a. TPM computes a non-secret value s'2 (1024-bit) = (r2 + c*v0) >> 1024 over the integers. 4569

b. TPM saves s'2 as part of set A. 4570

15. Stage 15 4571

a. TPM computes a non-secret value s3 (1760-bit) = r4 + cv1 + s'2 over the integers. 4572

b. TPM exports s3 and erases s'2 from set A. 4573

c. TPM erases set A. 4574

End of informative comment 4575

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

152 Revision 94 29 March 2006
 TCG Published

34. General Purpose IO 4576
Start of informative comment 4577

The GPIO capability allows an outside entity to output a signal on a GPIO pin, or read the 4578
status of a GPIO pin. The solution is for a single pin, with no timing information. There is 4579
no support for sending information on specific busses like SMBus or RS232. The design 4580
does support the designation of more than one GPIO pin. 4581

There is no requirement as to the layout of the GPIO pin, or the routing of the wire from the 4582
GPIO pin on the platform. A platform specific specification can add those requirements. 4583

To avoid the designation of additional command ordinals, the architecture uses the NV 4584
Storage commands. A set of GPIO NV indexes map to individual GPIO pins. 4585
TPM_NV_INDEX_GPIO_00 maps to the first GPIO pin. The platform specific specification 4586
indicates the mapping of GPIO zero to a specific package pin. 4587

The TPM does not reserve any NV storage for the indicated pin; rather the TPM uses the 4588
authorization mechanisms for NV storage to allow a rich set of controls on the use of the 4589
GPIO pin. The TPM owner can specify when and how the platform can use the GPIO pin. 4590
While there is no NV storage for the pin value, TRUE or FALSE, there is NV storage for the 4591
authorization requirements for the pin. 4592

Using the NV attributes the GPIO pin may be either an input pin or an output pin. 4593

End of informative comment 4594

1. The TPM MAY support the use of a GPIO pin defined by the NV storage mechanisms. 4595

2. The GPIO pin MAY be either an input or an output pin. 4596

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 153
 TCG Published

35. Redirection 4597
 Informative comment 4598

Redirection allows the TPM to output the results of operations to hardware other than the 4599
normal TPM communication bus. The redirection can occur to areas internal or external to 4600
the TPM. Redirection is only available to key operations (such as TPM_UnBind, 4601
TPM_Unseal, and TPM_GetPubKey). To use redirection the key must be created specifying 4602
redirection as one of the keys attributes. 4603

When redirecting the output the TPM will not interpret any of the data and will pass the 4604
data on without any modifications. 4605

The TPM_SetRedirection command connects a destination location or port to a loaded key. 4606
This connection remains so long as the key is loaded, and is saved along with other key 4607
information on a saveContext(key), loadContext(key). If the key is reloaded using 4608
TPM_LoadKey, then TPM_SetRedirection must be run again. 4609

Any use of TPM_SetRedirection with a key that does not have the redirect attribute must 4610
return an error. Use of key that has the redirect attribute without TPM_SetRedirection being 4611
set must return an error. 4612

End of informative comments 4613

1. The TPM MAY support redirection 4614

2. If supported, the TPM MUST only use redirection on keys that have the redirect attribute 4615
set 4616

3. A key that is tagged as a “redirect” key MUST be a leaf key in the TPM Protected Storage 4617
blob hierarchy. A key that is tagged as a “redirect” key CAN NEVER be a parent key. 4618

4. Output data that is the result of a cryptographic operation using the private portion of a 4619
“redirect” key: 4620

a. MUST be passed to an alternate output channel 4621

b. MUST NOT be passed to the normal output channel 4622

c. MUST NOT be interpreted by the TPM 4623

5. When command input or output is redirected the TPM MUST respond to the command 4624
as soon as the ordinal finishes processing 4625

a. The TPM MUST indicate to any subsequent commands that the TPM is busy and 4626
unable to accept additional command until the redirection is complete 4627

b. The TPM MUST allow for the resetting of the redirection channel 4628

6. Redirection MUST be available for the following commands: 4629

a. TPM_Unseal 4630

b. TPM_UnBind 4631

c. TPM_GetPubKey 4632

d. TPM_Seal 4633

e. TPM_Quote 4634

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

154 Revision 94 29 March 2006
 TCG Published

36. Structure Versioning 4635
Start of informative comment 4636

In version 1.1 some structures also contained a version indicator. The TPM set the indicator 4637
to indicate the version of the TPM that was creating the structure. This was incorrect 4638
behavior. The functionality of determining the version of a structure is radically different in 4639
1.2. 4640

Most structures will contain a TPM_STRUCTURE_TAG. All future structures must contain 4641
the tag, the only structures that do not contain the tag are 1.1 structures that are not 4642
modified in 1.2. This restriction keeps backwards compatibility with 1.1. 4643

Any 1.2 structure must not contain a 1.1 tagged structure. For instance the TPM_KEY 4644
complex, if set at 1.2, must not contain a PCR_INFO structure. The TPM_KEY 1.2 structure 4645
must contain a PCR_INFO_LONG structure. The converse is also true 1.1 structures must 4646
not contain any 1.2 structures. 4647

The TPM must not allow the creation of any mixed structures. This implies that a command 4648
that deals with keys, for instance, must ensure that a complete 1.1 or 1.2 structure is 4649
properly built and validated on the creation and use of the key. 4650

The tag structure is set as a UINT16. This allows for a reasonable number of structures 4651
without wasting space in the buffers. 4652

To obtain the current TPM version the caller must use the TPM_GetCapability command. 4653

The tag is not a complete validation of the validity of a structure. The tag provides a 4654
reference for the structure and the TPM or caller is responsible for determining the validity 4655
of any remaining fields. For instance, in the TPM_KEY structure the tag would indicate 4656
TPM_KEY but the TPM would still use tpmProof and the various digests to ensure the 4657
structure integrity. 4658

7. Compatibility and notification 4659

In 1.1 TPM_CAP_VERSION (index 19) returned a version structure with 1.1.x.x. The x.x was 4660
for manufacturer information and the x.x also was set version structures. In 1.2 4661
TPM_CAP_VERSION will return 1.1.0.0. Any 1.2 structure that uses the version information 4662
will set the x.x to 0.0 in the structure. TPM_CAP_MANUFACTURER_VER (index 21) will 4663
return 1.2.x.x. The 1.2 structures do not contain the version structure. The rationale 4664
behind this is that the structure tag will indicate the version of the structure. So changing a 4665
correct structure will result in a new tag and there is no need for a separate version 4666
structure. 4667

For further compatibility the quote function always returns 1.1.0.0 in the version 4668
information regardless of the size of the incoming structure. All other functions may regard 4669
a 2 byte sizeofselect structure as indicative of a 1.1 structure. The TPM handles all of the 4670
structures according to the input, the only exception being TPM_CertifyKey where the TPM 4671
does not need to keep the input version of the structure. 4672

End of informative comment 4673

1. The TPM MUST support 1.1 and 1.2 defined structures 4674

2. The TPM MUST ensure that 1.1 and 1.2 structures are not mixed in the same overall 4675
structure 4676

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 155
 TCG Published

a. For instance in the TPM_KEY structure if the structure is 1.1 then PCR_INFO MUST 4677
be set and if 1.2 the PCR_INFO_LONG structure must be set 4678

3. On input the TPM MUST ignore the lower two bytes of the version structure 4679

4. On output the TPM MUST set the lower two bytes to 0 of the version structure 4680

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

156 Revision 94 29 March 2006
 TCG Published

37. Certified Migration Key Type 4681
Start of informative comment 4682

In version 1.1 there were two key types, non-migration and migration keys. The TPM would 4683
only certify non-migrating keys. There is a need for a key that allows migration but allows 4684
for certification. This proposal is to create a key that allows for migration but still has 4685
properties that the TPM can certify. 4686

These new keys are “certifiable migratable keys” or CMK. This designation is to separate the 4687
keys from either the normal migration or non-migration types of keys. The TPM Owner is 4688
not required to use these keys. 4689

Two entities may participate in the CMK process. The first is the Migration-Selection 4690
Authority and the second is the Migration Authority (MA). 4691

Migration Selection Authority (MSA) 4692

The MSA controls the migration of the key but does not handle the migrated itself. 4693

Migration Authority (MA) 4694

A Migration Authority actually handles the migrated key. 4695

Use of MSA and MA 4696

Migration of a CMK occurs using TPM_CMK_CreateBlob (TPM_CreateMigrationBlob cannot 4697
be used). The TPM Owner authorizes the migration destination (as usual), and the key 4698
owner authorizes the migration transformation (as usual). An MSA authorizes the migration 4699
destination as well. If the MSA is the migration destination, no MSA authorization is 4700
required. 4701

End of informative comment 4702

37.1 Certified Migration Requirements 4703

Start of informative comment 4704

The following list details the design requirements for the controlled migration keys 4705

Key Protections 4706

The key must be protected by hardware and an entity trusted by the key user. 4707

Key Certification 4708

The TPM must provide a mechanism to provide certification of the key protections (both 4709
hardware and trusted entity) 4710

Owner Control 4711

The TPM Owner must control the selection of the trusted entity 4712

Control Delegation 4713

The TPM Owner may delegate the ability to create the keys but the decision must be explicit 4714

Linkage 4715

The architecture must not require linking the trusted entity and the key user 4716

Key Type 4717

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 157
 TCG Published

The key may be any type of migratable key (storage or signing) 4718

Interaction 4719

There must be no required interaction between the trusted entity and the TPM during the 4720
key creation process 4721

End of informative comment 4722

37.2 Key Creation 4723

Start of informative comment 4724

The command TPM_CMK_CreateKey creates a CMK where control of the migration is by a 4725
MSA or MA. The process uses the MSA public key (actually a digest of the MA public key) as 4726
input to TPM_CMK_CreateKey. The key creation process establishes a migrationAuth that is 4727
SHA-1(tpmProof || SHA-1(MA pubkey) || SHA-1(source pubkey)). 4728

The use of tpmProof is essential to prove that CMK creation occurs on a TPM. The use of 4729
“source pubkey” explicitly links a migration AuthData value to a particular public key, to 4730
simplify verification that a specific key is being migrated. 4731

End of informative comment 4732

37.3 Migrate CMK to a MA 4733

Start of informative comment 4734

Migration of a CMK to a destination other than the MSA: 4735

TPM_MIGRATIONKEYAUTH Creation 4736

The TPM Owner authorizes the creation of a TPM_MIGRATIONKEYAUTH structure using 4737
TPM_AuthorizeMigrationKey command. The structure contains the destination 4738
migrationKey, the migrationScheme (which must be set to TPM_MS_RESTRICT_APPROVE 4739
or TPM_MS_RESTRICT_APPROVE_DOUBLE) and a digest of tpmProof. 4740

MA Approval 4741

The MA signs a TPM_CMK_AUTH structure, which contains the digest of the MA public key, 4742
the digest of the destination (or parent) public key and a digest of the public portion of the 4743
key to be migrated 4744

TPM Owner Authorization 4745

The TPM Owner authorizes the MA approval using TPM_CMK_CreateTicket and produces a 4746
signature ticket 4747

Key Owner Authorization 4748

The CMK owner passes the TPM Owner MA authorization, the MSA Approval and the 4749
signature ticket to the TPM_CMK_CreateBlob using the key owners authorization. 4750

Thus the TPM owner, the key’s owner, and the MSA, all cooperate to migrate a key 4751
produced by TPM_CMK_CreateBlob. 4752

End of informative comment 4753

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

158 Revision 94 29 March 2006
 TCG Published

37.4 Migrate CMK to a MSA 4754

Start of informative comment 4755

Migrate CMK directly to a MSA 4756

TPM_MIGRATIONKEYAUTH Creation 4757

The TPM Owner authorizes the creation of a TPM_MIGRATIONKEYAUTH structure using 4758
TPM_AuthorizeMigrationKey command. The structure contains the destination 4759
migrationKey (which must be the MSA public key), the migrationScheme (which must be set 4760
to TPM_MS_RESTRICT_MIGRATE) and a digest of tpmProof. 4761

Key Owner Authorization 4762

The CMK owner passes the TPM_MIGRATIONKEYAUTH to the TPM in a 4763
TPM_CMK_CreateBlob using the CMK owner authorization. 4764

Double Wrap 4765

If specified, through the MS_MIGRATE scheme, the TPM double wraps the CMK information 4766
such that the only way a recipient can unwrap the key is with the cooperation of the CMK 4767
owner. 4768

Proof of Control 4769

To prove to the MA and to a third party that migration of a key is under MSA control, a 4770
caller passes the MA’s public key (actually its digest) to TPM_CertifyKey, to create a 4771
TPM_CERTIFY_INFO structure. This now contains a digest of the MA’s public key. 4772

A CMK be produced without cooperation from the MA: the caller merely provides the MSA’s 4773
public key. When the restricted key is to be migrated, the public key of the intended 4774
destination, plus the CERTIFY_INFO structure are sent to the MSA. The MSA extracts the 4775
migrationAuthority digest from the CERTIFY_INFO structure, verifies that 4776
migrationAuthority corresponds to the MSA’s public key, creates and signs a 4777
TPM_RESTRICTEDKEYAUTH structure, and sends that signature back to the caller. Thus 4778
the MSA never needs to touch the actual migrated data. 4779

End of informative comment 4780

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 159
 TCG Published

38. Revoke Trust 4781
Start of informative comment 4782

There are circumstances where clearing all keys and values within the TPM is either 4783
desirable or necessary. These circumstances may involve both security and privacy 4784
concerns. 4785

Platform trust is demonstrated using the EK Credential, Platform Credential and the 4786
Conformance Credentials. There is a direct and cryptograph relationship between the EK 4787
and the EK Credential and the Platform Credential. The EK and Platform credentials can 4788
only demonstrate platform trust when they can be validated by the Endorsement Key. 4789

This command is called revoke trust because by deleting the EK, the EK Credential and the 4790
Platform Credential are dissociated from platform therefore invalidating them resulting in 4791
the revocation of the trust in the platform. From a trust perspective, the platform associated 4792
with these specific credentials no longer exists. However, any transaction that occurred 4793
prior to invoking this command will remain valid and trusted to the same extent they would 4794
be valid and trusted if the platform were physically destroyed. 4795

This is a non-reversible function. Also, along with the EK, the Owner is also deleted 4796
removing all non-migratable keys and owner-specified state. 4797

It is possible to establish new trust in the platform by creating a new EK using the 4798
TPM_CreateRevocableEK command. (It is not possible to create an EK using the 4799
TPM_CreateEndorsementKeyPair because that command is not allowed if the revoke trust 4800
command is allowed.) Establishing trust in the platform, however, is more than just 4801
creating the EK. The EK Credential and the Platform Credential must also be created and 4802
associated with the new EK as described above. (The conformance credentials may be 4803
obtained from the TPM and Platform manufacturer.) These credentials must be created by 4804
an entity that is trusted by those entities interested in the trust of the platform. This may 4805
not be a trivial task. For example, an entity willing to create these credentials my want to 4806
examine the platform and require physical access during the new EK generation process. 4807

Besides calling one of the two EK creation functions to create the EK, the EK may be 4808
"squirted" into the TPM by an external source. If this method is used, tight controls must be 4809
placed on the process used to perform this function to prevent exposure or intentional 4810
duplication of the EK. Since the revocation and re-creation of the EK are functions intended 4811
to be performed after the TPM leaves the trusted manufacturing process, squiring of the EK 4812
must be disallowed if the revoke trust command is executed. 4813

End of informative comment 4814

1. The TPM MUST not allow both the TPM_CreateRevocableEK and the 4815
TPM_CreateEndorsementKeyPair functions to be operational. 4816

2. After an EK is created the TPM MUST NOT allow a new EK to be "squirted" for the 4817
lifetime of the TPM. 4818

3. The EK Credential MUST provide an indication within the EK Credential as to how the 4819
EK was created. The valid permutations are: 4820

a. Squirted, non-revocable 4821

b. Squirted, revocable 4822

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

160 Revision 94 29 March 2006
 TCG Published

c. Internally generated, non-revocable 4823

d. Internally generated, revocable 4824

4. If the method for creating the EK during manufacturing is squiring the EK may be either 4825
non-revocable or revocable. If it is revocable, the method must provide the insertion or 4826
extraction of the EKreset value. 4827

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 161
 TCG Published

39. Mandatory and Optional Functional Blocks 4828
Start of informative comment 4829

This section lists the main functional blocks of a TPM (in arbitrary order), states whether 4830
that block is mandatory or optional in the main TPM specification, and provides brief 4831
justification for that choice. 4832

Important notes: 4833

1. The default classification of a TPM function block is “mandatory”, since reclassification 4834
from mandatory to optional enables the removal of a function from existing 4835
implementations, while reclassification from optional to mandatory may require the addition 4836
of functionality to existing implementations. 4837

2. Mandatory functions will be reclassified as optional functions if those functions are not 4838
required in some particular type of TCG trusted platform. 4839

3. If a functional block is mandatory in the main specification, the functionality must be 4840
present in all TCG trusted platforms. 4841

4. If a functional block is optional in the main specification, each individual platform-4842
specific specification must declare the status of that functionality as either (1) “mandatory-4843
specific” (the functionality must be present in all platforms of that type), or (2) “optional-4844
specific” (the functionality is optional in that type of platform), or (3) “excluded-specific” (the 4845
functionality must not be present in that type of platform). 4846

End of informative comment 4847

Classification of TPM functional blocks 4848

1. Legacy (v1.1b) features 4849

a. Anything that was mandatory in v1.1b continues to be mandatory in v1.2. Anything 4850
that was optional in v1.1b continues to be optional in v1.2. 4851

b. V1.2 must be backwards compatible with v1.1b. All TPM features in v1.1b were 4852
discussed in depth when v1.1b was written, and anything that wasn't thought 4853
strictly necessary was tagged as "optional". 4854

2. Number of PCRs 4855

a. The platform specific specification controls the number of PCR on a platform. The 4856
TPM MUST implement the mandatory number of PCR specified for a particular 4857
platform 4858

i. TPMs designed to work on multiple platforms MUST provide the appropriate 4859
number of TPM for all intended platforms. I.e. if one platform requires 16 PCR 4860
and the other platform 24 the TPM would have to supply 24 PCR. 4861

b. For TPMs providing backwards compatibility with 1.1 TPM on the PC platform, there 4862
MUST be 16 static PCR. 4863

3. Sessions 4864

a. The TPM MUST support a minimum of 3 active sessions 4865

i. Active means currently loaded and addressable inside the TPM 4866

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

162 Revision 94 29 March 2006
 TCG Published

ii. Without 3 active sessions many TPM commands cannot function 4867

b. The TPM MUST support a minimum of 16 concurrent sessions 4868

i. The contextList of currently available session has a minimum size of 16 4869

ii. Providing for more concurrent sessions allows the resource manager additional 4870
flexibility and speed 4871

4. NVRAM 4872

a. There are 20 bytes mandatory of NVRAM in v1.2 as specified by the main 4873
specification. A platform specific specification can require a larger amount of NVRAM 4874

b. Cost is important. The mandatory amount of NVRAM must be as small as possible, 4875
because different platforms will require different amounts of NVRAM. 20 bytes are 4876
required for (DIR) backwards compatibility with v1.1b. 4877

5. New key types 4878

a. The new signing keys are mandatory in v1.2 because they plug a security hole. 4879

6. Direct Anonymous Attestation 4880

a. This is optional in v1.2 4881

b. Cost is important. The DAA function consumes more TPM resources than any other 4882
TPM function, but some platform specific specifications (some servers, for example) 4883
may have no need for the anonymity and pseudonymity provided by DAA. 4884

7. Transport sessions 4885

a. These are mandatory in v1.2. 4886

b. Transport sessions 4887

i. Enable protection of data submitted to a TPM and produced by a TPM 4888

ii. Enable proof of the TPM commands executed during an arbitrary session. 4889

8. Resettable Endorsement Key 4890

a. This is optional in v1.2 4891

b. Cost is important. Resettable EKs are valuable in some markets segments, but cause 4892
more complexity than non-resettable EKs, which are expected to be the dominant 4893
type of EK 4894

9. Monotonic Counter 4895

a. This is mandatory in v1.2 4896

b. A monotonic counter is essential to enable software to defeat certain types of attack, 4897
by enabling it to determine the version (revision) of dynamic data. 4898

10. Time Ticks 4899

a. This is mandatory in v1.2 4900

b. Time stamping is a function that is potentially beneficial to both a user and system 4901
software. 4902

11. Delegation (includes DSAP) 4903

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 163
 TCG Published

a. This is mandatory in v1.2 4904

b. Delegation enables the well-established principle of least privilege to be applied to 4905
Owner authorized commands. 4906

12. GPIO 4907

a. This is optional in v1.2 4908

b. Cost is important. Not all types of platform will require a secure intra-platform 4909
method of key distribution 4910

13. Locality 4911

a. The use of locality is optional in v1.2 4912

b. The structures that define locality are mandatory 4913

c. Locality is an essential part of many (new) TPM commands, but the definition of 4914
locality varies widely from platform to platform, and may not be required by some 4915
types of platforms. 4916

d. It is mandatory that a platform specific specification indicate the definitions of 4917
locality on the platform. It is perfectly reasonable to only define one locality and 4918
ignore all other uses of locality on a platform 4919

14. TPM-audit 4920

a. This is optional in v1.2 4921

b. Proper TPM-audit requires support to reliably store logs and control access to the 4922
TPM, and any mechanism (an OS, for example) that could provide such support is 4923
potentially capable of providing an audit log without using TPM-audit. Nevertheless, 4924
TPM-audit might be useful to verify operation of any and all software, including an 4925
OS. TPM-audit is believed to be of no practical use in a client, but might be valuable 4926
in a server, for example. 4927

15. Certified Migration 4928

a. This is optional in v1.2 4929

b. Cost is important. Certified Migration enables a business model that may be 4930
nonsense for some platforms. 4931

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

164 Revision 94 29 March 2006
 TCG Published

40. Optional Authentication Encryption 4932
Start of informative comment 4933

The standard authorization encryption mechanism is to use XOR. This is sufficient for 4934
almost all use models. There may be additional use models where a different encryption 4935
mechanism would be beneficial. This section adds an optional encryption mechanism for 4936
those authorizations. 4937

The encryption algorithm is either AES or 3DES. The key and IV for the encryption uses the 4938
shared secret generated with the OSAP session. 4939

End of informative comment 4940

1. The TPM MAY support AES or 3DES encryption of AuthData secrets 4941

a. Encrypted AuthData values occur in the following commands 4942

i. TPM_CreateWrapKey 4943

ii. TPM_ChangeAuth 4944

iii. TPM_ChangeAuthOwner 4945

iv. TPM_Seal 4946

v. TPM_Sealx 4947

vi. TPM_MakeIdentity 4948

vii. TPM_CreateCounter 4949

viii. TPM_CMK_CreateKey 4950

ix. TPM_NV_DefineSpace 4951

x. TPM_Delegate_CreateKeyDelegation 4952

xi. TPM_Delegate_CreateOwnerDelegation 4953

2. The user indicates the use of the optional encryption by using a different entity type 4954
during the OSAP session creation. 4955

a. The upper byte of the entity type indicates the encryption algorithm. 4956

b. The TPM internally stores the encryption indication as part of the session and 4957
enforces the encryption choice on all subsequent uses of the session. 4958

c. When TPM_ENTITY_TYPE is used for ordinals other than TPM_OSAP or TPM_DSAP 4959
(i.e., for cases where there is no ADIP encryption action), the TPM_ENTITY_TYPE 4960
upper byte MUST be 0x00. 4961

3. If TPM_PERMANENT_FLAGS -> FIPS is TRUE 4962

a. Then all encrypted authorizations MUST use AES 4963

4. The key for the encryption algorithm is the OSAP shared secret. 4964

a. For AES128, the key is the first 16 bytes of the OSAP shared secret 4965

i. There is no support for AES keys greater than 128 4966

5. The IV is SHA-1 of (authLastNonceEven || nonceOdd) 4967

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 94 29 March 2006 165
 TCG Published

a. For AES128, use the first 16 bytes of the IV 4968

i. TPM_CreateWrapKey also uses nonceOdd for the IV 4969

Copyright © TCG TPM Main Part 1 Design Principles
 Specification Version 1.2

166 Revision 94 29 March 2006
 TCG Published

41. 1.1a and 1.2 Differences 4970
Start of informative comment 4971

All 1.2 TPM commands are completely compliant with 1.1b commands with the following 4972
known exceptions. 4973

1. TSC_PhysicalPresence does not support configuration and usage in a single step. 4974

2. TPM_GetPubKey is unable to read the SRK unless TPM_PERMANENT_FLAGS -> 4975
readSRKPub is TRUE 4976

3. TPM_SetTempDeactivated now requires either physical presence or TPM Operators 4977
authorization to execute 4978

4. TPM_OwnerClear does not modify TPM_PERMANENT_DATA -> authDIR[0]. 4979

End of informative comment 4980

