
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16. NO. 6, JUNE 1990

ABYSS: An Architecture for
STEVE R. WHITE AND LIAM

Absrracr-ABYSS (A Basic Yorktown Security System) is an archi-
tecture for protecting the execution of application software. It supports
a uniform security service across the range of computing systems. The
use of ABYSS discussed in this paper is oriented towards solving the
software protection problem, especially in the lower end of the market.
Both current and planned software distribution channels are support-
able by the architecture, and the system is nearly transparent to legit-
imate users. A novel use-once authorization mechanism, called a to-
ken, is introduced as a solution to the problem of providing
authorizations without direct communication. Software vendors may
use the system to obtain technical enforcement of virtually any terms
and conditions of the sale of their software, including such things as
rental software. Software may be transferred between systems, and
backed up to guard against loss in case of failure. We discuss the proh-
lem of protecting software on these systems, and offer guidelines to its
solution.

Index Terms-Authorization, copy protection, physical security,
software distribution, software license, software protection, tamper
resistant.

I. INTRODUCTION
S computers become a more important source of in- A formation and services in our lives, problems of soft-

ware and data security become increasingly significant.
The illicit duplication and use of commercial software is
only one example of these problems, but it is increasingly
worrisome in the low end of the software market.

Technical methods addressing this problem have in-
cluded writing the application software so that it looks for
an unusual, and supposedly uncopyable, feature on the
distribution diskette [11, and the attachment of special
hardware devices for each application to be used in the
system.

These technical methods have not succeeded because
of two complementary shortcomings. First, they are not
an effective barrier to duplication. Today’s low-end com-
puters are both logically and physically open systems. The
user is capable of examining every aspect of the system.
Once the behavior of the application is understood, it can
be changed to subvert the software protection measures.
Second, existing technical methods have imposed unac-
ceptable burdens on the legitimate user. Users are often
prevented from making backup copies of their software,
and from installing their software on hard disks or file
servers.

A practical software protection system must overcome
these shortcomings. It must ensure that the effort involved

Manuscript received August 1 , 1989; revised January 29, 1990. Rec-

The authors are with the IBM Thomas J . Watson Research Center, P.O.

IEEE Log Number 9034812.

ommended by T. A. Berson and S. B. Lipner.

Box 704, Yorktown Heights, NY 10598.

619

Software Protection

in illicitly duplicating an application is at least as hard as
rewriting it from scratch. It must also be extremely con-
venient for the legitimate user, and flexible enough to
support a broad spectrum of computing environments and
software distribution systems.

A variety of authors have explored ideas which go be-
yond the more common diskette-based protection
schemes. Kent [2] discusses a variety of secure system
architectures. He mentions the valuable idea of tamper-
resistant modules, which provide physical security, and
uses cryptographic techniques to protect applications from
exposure. Best [3]-[7] and Goldreich [8] present a crypto-
microprocessor approach, in which application software
exists in plaintext only within the instruction decoder of
the processor.

Other authors [9]-[151 consider approaches related to
the one presented here, but which have limitations. Some
limit the ways in which software can be distributed. Some
require the use of public key systems. Others do not deal
adequately with backup.

11. OVERVIEW OF ABYSS
ABYSS (A Basic Yorktown Security System) is an ar-

chitecture for protecting the execution of application soft-
ware, and can be used as a uniform security service across
the range of computing systems. This paper is oriented
towards a solution to the problem of software protection,
especially in the lower end of the market. It addresses
both security and ease-of-use concerns. Both current and
planned software distribution methods are supportable.
Users may back up applications at any time, and install
them onto any other system in the event of failure, with-
out the intervention of any other party at that time. A gen-
eral discussion of ABYSS and software protection can be
found in [161 and [171.

The ABYSS architecture provides the software vendor
with tools to enforce the conditions under which the ap-
plication may be used. Software run under ABYSS exe-
cutes exactly as it was written, and cannot be modified
arbitrarily by the user.

The only information which must be kept secret are cer-
tain encryption and decryption keys. Aside from these, all
of the details of both architecture and implementation may
be made public without compromising the integrity of the
system.

A. Architecture of ABYSS
The architecture of the system presented here is shown

in Fig. 1. Applications are parririoned into processes

0098-5589/90/0600-0619$01 .OO O 1990 IEEE

620

Unprotected

Applicati~ 1
P u t o f -

-

Unprotected

Application N
P u t O f --

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO 6. J U N E 1990

h M c d
Part of

Applbmtion 1

HWI * - - supavlmor *
* ~ D D .

Protected
Put d * ApplbmtlonN

Fig. 1 . The architecture of a protected processor system

which are protected, and processes which are not. Pro-
tected application processes are executed within a secure
computing environment called a protected processor. The
conditions under which an application may execute are
embodied in a logical object called a Right-To-Execute.
These conditions are enforced by the protected processor.
The movement of Rights-To-Execute into and out of pro-
tected processors may require authorization from exter-
nally-supplied authorization processes.

I) Protected Processors: A protected processor con-
stitutes a minimal, but complete, computing system. It
contains a processor, a real-time clock, a random or
pseudo-random number generator, and sufficient memory
to store protected parts of applications while they execute.
It also contains secure memory for storage of Rights-To-
Execute. This storage retains its contents even when the
system power is off.

The protected processor is a logically, physically, and
procedurally secure unit. It is logically secure, in that an
application cannot directly access the supervisor process,
or the protected part of any other application, to violate
their protection. It is physically secure (which is indicated
by the heavy box in Fig. l) , in that it is contained in a
tamper-resistant package [I8]-[20]. It is procedurally se-
cure in that the services which move information, and
Rights-To-Execute in particular, into and out of the pro-
tected processor cannot be used to subvert the protection.

It is possible for the protected processor to contain the
only processors and memory of the entire computing sys-
tem. Or, the protected processor may be part of a larger
computing system, and interact with it through the unpro-
tected processes.

In addition to executing protected application pro-
cesses, the protected processor executes a supervisor pro-
cess. The supervisor process is responsible for ensuring
the logical and procedural security of the protected pro-
cessor. It executes at a higher privilege level than the ap-
plication processes, and restricts them to isolated protec-

tion domains [2 11. This isolation of application processes
from each other, and from their unprotected parts, pro-
tects an application process from attacks originating in
other application processes, or in the unprotected parts of
the computing system.

The supervisor process contains a cryptographic facility
for managing encryption/decryption keys. This facility
decrypts the protected parts of applications as they are
loaded into the protected processor. We place the cryp-
tographic transformation between primary memory (such
as RAM) and secondary memory (such as a disk). Best
[3] - [7] places this transformation between primary mem-
ory and the instruction decoder of the processor. Placing
it closer to the instruction decoder in the memory hier-
archy forces a choice between significant performance
degradation of the application, and the use of a crypto-
system which is relatively weak.

Placing the transformation between primary and sec-
ondary memory, on the other hand, allows the bandwidth
of a relatively strong cryptographic facility to be matched
to the data transfer bandwidth, allows efficient pipelining
of the data to be decrypted, and allows decrypted instruc-
tions to be used numerous times without being decrypted
each time. It also allows the efficient use of message au-
thentication or manipulation detection codes on parts of
the application.

2) Software Partitioning: For systems in which appli-
cations include unprotected processes, it is necessary to
partition the application into protected and unprotected
parts. The protected part is encrypted when it is outside
the protected processor, and only decrypted when it is
loaded into the protected processor. The unprotected part
is exposed to view.

The protected part cannot be examined or modified by
any party external to the protected processor. It is pro-
tected by physical security while inside the protected pro-
cessor, and by cryptographic means while outside. It can-
not be modified by rewriting it in a different way, because

WHITE AND COMERFORD. ABYSS-ARCHITECTURE FOR SOFTWARE PROTECTION 62 I

the partition should be chosen so that the protected part is
difficult to reconstruct from knowing only the unprotected
part.

The partition is designed so that both parts of the ap-
plication must be present in order to execute the applica-
tion. Eliminating accesses to the protected part from the
unprotected part should result in a nonfunctional appli-
cation.

3) Rights-to-Execute: The software is separated from
the right to execute it. Only systems which are authorized
to use an application have a Right-To-Execute for that
application. Rights-To-Execute are created by software
vendors, and are used by the supervisor to control the en-
tire range of actions that can be taken with respect to the
application.

A Right-To-Execute consists of:
An encryption andlor decryption key for software

packages. This is required to decrypt the application be-
fore execution.

Information about how the Right-To-Execute may be
used by supervisor software. For instance, the software
vendor may choose not to allow the Right-To-Execute to
be transferred to another protected processor once it is
installed.

Information about how the supervisor may permit the
Right-To-Execute to be used by software decrypted under
its key. The software vendor may wish to allow the ap-
plication to change the information in the Right-To-Exe-
cute, for instance.

Information about how the supervisor may permit the
Right-To-Execute to be used by nonsupervisor software
which is not decrypted under its key. For instance, a util-
ity could summarize information about all Rights-To-Ex-
ecute owned by a user.

Additional information, at the discretion of software
decrypted under the above key. As will be seen later, the
application may store such things as an expiration date for
its Right-To-Execute, and be assured that the application
will not execute after that date.

4) Authorization Processes: Various supervisor ser-
vices must be authorized to proceed. For instance, the
software vendor must authorize the installation of the
Right-To-Execute on a protected processor. Authoriza-
tion processes may be carried out in a number of ways.
Brief descriptions of two of these are given here for clarity
in subsequent sections.

Smart Cards: Smart cards are cards the size of a
credit card, which contain a microprocessor and memory.
They can be constructed to perform a subset of the actions
of a protected processor which deal with movement and
storage of Rights-To-Execute, but not with application
execution. Since authorizing supervisor services and stor-
ing Rights-To-Execute do not require memory for loada-
ble applications, current smart cards can perform this
function. They can then be used as temporary repositories
of Rights-To-Execute being transferred between pro-
tected processors, and for a number of other useful ser-
vices.

Tokens: Tokens have the same physical appearance
as smart cards, but contain a less expensive chip called a
token. The token is useful as a one-time-only authoriza-
tion of supervisor services.

Both smart cards and tokens must be physically secure,
to prevent information contained in them from being re-
vealed. Techniques for chip-level security applicable to
smart cards and tokens are discussed in [20].

111. TOKENS: USE-ONCE, FORGERY-RESISTANT
AUTHORIZATIONS

We introduce a new authorization mechanism, called a
token process. The token process is capable of participat-
ing in a query-response sequence with a cryptosystem ex-
actly once. Even if the query and response are carried out
over insecure channels, the response can still be obtained
in such a way that it is extremely improbable that an eaves-
dropper can forge the behavior of a token process in a
subsequent query-response sequence. The token process
can be carried out by any simple computing system. It can
also be carried out by a small piece of hardware, called a
tokeri, which is significantly less expensive than hardware
capable of providing strong cryptographic services.

A. How Tokens Operate
Tokens fulfill the following criteria.

The queries, which are generated randomly by pro-
tected processors, are sufficiently numerous that it is ex-
teremely improbable that two queries will be the same.
Since different queries generate different responses, the
response from one query cannot be used as the response
to a different query.

The responses are sufficiently numerous that it is ex-
tremely improbable that a random guess at a response will
be correct.

The responses are sufficiently independent of each
other, that knowing the response to one query is not sig-
nificantly helpful in predicting the response to another
query.

The query-response behavior of the token is com-
pletely determined by data contained in the token. An en-
crypted form of these data is delivered to the querying
protected processor. This can be done in conjunction with
the query-response sequence, or independent of it. Once
the protected processor receives the token data and de-
crypts it, it can predict the correct response to any query.

The token data is erased from the token as it is read.
Thus, a token can only respond to a single query. Sub-
sequent queries reveal no useful information.

Fig. 2 shows a simple conceptual realiz,ation of a token.
(This is intended to be representational. Real implemen-
tations require a small amount of additional support cir-
cuitry.) It consists of two shift registers connected to a
multiplexor. The registers are shifted left simultaneously
in response to a signal on the multiplexor’s query line.
Each time they are shifted, one bit from either the up or
the down register appears on the output line, depending
upon the value of the query bit. At the same time, nulls

622 IEEE TRANSACTlnNS ON SOFTWARE ENGINEERING, VOL. 16, NO. 6, J U N E 1990

Query -

0

0
Response - 0

Fig. 2 . How tokens work

are shifted into both registers from the right. This cycle
is repeated until the token is completely discharged.

The token is haded by the software vendor with ran-
dom binary strings into both the up and the down regis-
ters. These constitute the token data T,, and should be
effectively unique for each token j . (If an attacker pos-
sesses two tokens known to have identical token data, the
entire token data can be revealed by querying only the up
register of one token, and only the down register of the
other.) The software vendor encrypts this data under a key
A , called the application key, chosen by the software ven-
dor for a particular application, to form E A ().’ The
plaintext token data is protected by making the token
physically secure against tampering.

The token can then act as a one-time-only authorization
from the software vendor, to a protected processor which
possesses the application key A . (The means by which the
protected processor obtains the application key are dis-
cussed later.) To do this, the protected processor reads in
and decrypts E A (T J) to obtain the token data T,. It then
generates a random query Q , which consits of a string of
bits as long as either of the token’s registers. The query
is presented to the token to obtain the token’s response R.
By construction, all of the token data are lost when it is
read, even though only half of the data are revealed by
the response.

The protected processor can use its knowledge of the
complete token data T, to simulate the token, and predict
the correct response R‘ to the query Q . By comparing R
to R‘, it can determine whether or not the token is a valid
authorization, prepared by a party which knows A . Since
all of the token data is discharged when it is read, this can
only be done once.

‘The expression EK(M) represents a message M that haa been encrypted
under a key K The cryptographic system used, and the mode in which i t

is used, may depend upon the situation in which they are used

In their ability to prove that they contain certain secret
information without revealing a significant fraction of it,
tokens resemble the “verify-only memory” of [2 2] . They
differ from zero-knowledge proof protocols [2 3] in that
the response from a token does reveal information about
the contents of the token. The single possible response,
however, does not reveal a sufficient amount of informa-
tion to be useful to an attacker, as explained in the next
section.

B. Forging a Token
Suppose that an attacker has observed the query and

response sequence for a token. What is the probability
that, armed with this information, the attacker can re-
spond as that token would have to another query by a pro-
tected processor? If successful, this would constitute a
successful forgery of a token process, and could produce
an illicit authorization.

The query to which the attacker must respond is gen-
erated randomly, so it will not have a statistically signif-
icant correlation to the observed query. The probability
of responding correctly to each bit in the query is the
probability that that bit in the query is the same as the one
previously observed (in which case the attacker knows the
correct response), plus the probability that it is different,
times the probability of guessing correctly. For a token
with n uncorrelated bits in each shift register,

If there are no statistically significant correlations present,

- 1 Psame query _ - 2

WHITE AND COMERFORD: ABYSS-ARCHITECTURE FOR SOFTWARE PROTECTION 623

SO 9

Pforgely = (2)’’.
A token with shift registers of length n = 128 can be

implemented on a very small chip, and gives pforgery <

Since it is a protected processor which generates the
query to a token, the protected processor can limit the
frequency of queries by controlling the amount of time it
takes to generate a query. This inhibits a high-speed
“guessing” attack on tokens. The average number of
guesses required to come up with a single correct response
to a query for a given token is

1.02 x 10-l6.

(3)
1 N = -

log2 (1 - Pforgely 1 ’
If the time to generate a query is required to be one sec-
ond, the average time required to forge a response for an
n = 128 bit token successfully is raverage > 10’ years.
Token forgery is covered in more detail in [24].

IV. SUPERVISOR SERVICES

This section describes the supervisor services which
were introduced in the previous section. Each of these
services can employ either a symmetric cryptosystem or
a public key cryptosystem. In this discussion, they are
oriented towards a symmetric cryptosystem such as DES.
since it is the best match to both the cost and performance
requirements of today’s lower-end computers. These pro-
tocols, with only trivial modifications, can be used with
a public key cryptosystem.

Each service could use tokens, or communication be-
tween protected processors, as authorization mechanisms.
Only one of these authorization mechanisms is illustrated
in each case for simplicity. The services are simplified for
clarity. An actual implementation would include com-
munication handshaking, verification of the completion of
each step of the service, and error recovery.

In order to guarantee the procedural security of the sys-
tem, each service must ensure four things. It must ensure
that no cryptographic keys are exposed in plaintext, that
protected software is not exposed in plaintext, that pro-
tected software only executes under the terms and condi-
tions chosen by the software vendor, and that the pro-
tected software has not been modified.

Clearly, the security of the protected processor requires
that its underlying operating system be secure. Operating
system security has received a great deal of attention in
recent years [25]. While a general discussion of the costs
of ensuring the security of any particular implementation
of a protected processor is beyond the scope of this ar-
chitecture paper, a few observations can be made. If the
unprotected processor is a single-tasking system, as are
many low-end personal computers today, the protected
processor need only be single-tasking. It is quite straight-
forward to create a small, secure, single-tasking system
that implements the supervisor services outline below. In

a larger multitasking system, it may be possible to use the
same (secure) operating system in both the unprotected
and protected processor, and implement the supervisor
services as privileged applications. This minimizes the in-
cremental effort involved in assuring the security of the
protected processor.

A. Creating Protected Software
The ABYSS architecture supports the execution of ap-

plications which are not protected, so it can allow existing
applications to be migrated to systems with protected pro-
cessors with no change. To protect an application, the
software vendor must create a part of the application to
be executed securely, encrypt it, create a corresponding
Right-To-Execute, and create an authorization process for
installing that Right-To-Execute. The same ABYSS pro-
cessors which execute protected applications can be used
to perform the critical steps in this process, so no special
development systems are needed.

I) Writing Partitioned Applications: The application
must be written so that at least part of it resides in the
protected processor during execution. Depending upon
implementation details, this may be the entire application,
or it may be a small fraction of it. The section “Secure
Software Partitioning” discusses the problem of parti-
tioning an application into protected and unprotected
parts.

2) Encrypting the Protected Part of the Applica-
tion: Once the part P of the application to be protected is
complete, it is encrypted under an application key A , cho-
sen by the software vendor, to form E A (P) . The appli-
cation key may be unique to each application, or even to
each copy of each application. This key need not be re-
vealed to anyone else, and the encryption can be done
outside of the protected processor, if desired, by the soft-
ware vendor.

Two goals must be met by this encryption. First, it must
avoid the exposure of the plaintext application. Second,
it must prevent the protected part of the application from
being modified, even randomly. If the application could
be modified in a known way, it could be instructed to
reveal its entire plaintext content. Even if the application
could be modified randomly, it is still possible that the
random modifications, executing in the protected proces-
sor, will cause the revelation of important information
about the protected part. The second goal can be met by
using message authentication or manipulation detection
codes [26] when encrypting the protected part of the ap-
plication, and having the protected processor use them to
authenticate the application before it is executed.

3) Creating a Right-To-Execute: A plaintext file RTE,,
containing all of the necessary information for the Right-
To-Execute for the application, can be created by the soft-
ware vendor. It contains the application key A , and as-
sociated information about how it can be used.

This file is encrypted under a supervisor key S , which
is possessed by the protected processor on which the ap-
plication will be installed, to create Es(RTEA). This en-

624 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16. NO. 6. JUNE 1990

cryption is done by a protected processor, as a service to
the software vendor. It can be done without revealing the
supervisor key S , since the encryption can be done se-
curely inside the protected processor. For simplicity at
this point, consider the supervisor key S to be common to
all protected processors made by a given manufacturer.
Alternatives will be discussed later.

4) Creating an Authorization Process: The software
vendor must now create an authorization process which
will allow the user to install the Right-To-Execute once,
but only once. In this section, we will assume that tokens
are used as the authorization mechanism.

To prepare tokens as authorizations, the software ven-
dor must generate random token data ?;., which is essen-
tially unique for each token j . The token data are en-
crypted under the application key to form the encrypted
token data EA (T ,) .

5) Shipping the Protected Software: The above com-
ponents can now be distributed. The unprotected part of
the software U , the protected part EA (P), the Right-To-
Execute Es(RTEA), and the encrypted token data EA (T ,)
can be distributed by any means. The token data T,, which
is plaintext, must be kept physically secure, for example
in a token.

A typical means of distributing these components would
be to package U , EA (P), and Es(RTEA) on a floppy disk-
ette. This diskette could be bulk-reproduced, since every
such diskette can be identical. Tokens can be designed so
that T, and EA(T,) can be placed inside of a token. The
diskette and token can be packaged together or separately,
and shipped to retailers.

B. Installing a Right-To-Execute

There are several methods by which a user may install
Rights-To-Execute on a protected processor. The point of
each of these methods is to install the Right-To-Execute
for a particular application into the secure, persistent
memory of the protected processor, if and only if valid
authorization exists to do so. The use of protected pro-
cessors in preparing and installing Rights-To-Execute
creates a trusted path for distributing Rights-To-Execute.
Distribution methods based on communication between
two protected processors will be described later. A token-
based method proceeds as follows.

1) The user makes the token and distribution diskette
available to the protected processor.

2) The encrypted Right-To-Execute Es (RTEA) is read
into the protected processor, and decrypted under the su-
pervior key S. This gives the protected processor access
to the application key A .

3) The protected processor must now obtain authori-
zation to install RTEA as follows.

a) Read the encrypted token data EA (T ,) from the to-
ken and decrypt it under A to obtain ?. The fact that TJ
and the protected part of the application P are both en-
crypted under the application key A assures the protected
processor that they were created by the same party.

b) Generate a random query Q, send it to the token,
and obtain a response R from the token.

c) The protected processor can now use its knowl-
edge of what the complete token data T, is supposed to
be, and of its query Q, to simulate the token and calculate
the response R‘ expected from a valid token. There is a
valid authorization if and only if R = R‘. If it is different,
either the token was invalid, or an attempt was made by
an attacker to forge the token’s response.
4) If the authorization was valid, the protected proces-

sor installs the Right-To-Execute RTEA into its secure,
persistent memory. If not, RTEA is purged from the pro-
tected processor’s working memory and is not installed.

C. Loading and Executing Protected Software

Once a Right-To-Execute is installed on a protected
processor, it may be used at any time to enable the exe-
cution of applications associated with it. This is done as
follows.

1) The protected processor locates the Right-To-Exe-
cute and checks that it may be used to execute application
programs.

2) U is loaded into the unprotected memory area, and
EA (P) is loaded into the protected memory area and de-
crypted. If the decryption of EA (P) yields a valid mes-
sage authentication or manipulation detection code, exe-
cution of U and P is begun. If not, P is purged from
protected memory.

3) At any time during execution, including at the very
start, the protected part of the application may be allowed
to access (and perhaps modify) selected parts of its own
Right-To-Execute. It may use this in conjunction with the
real-time clock in the protected processor, for instance,
to verify that it is not being executed after its expiration
date. Should the protected part of the application find that
it is being executed contrary to the terms and conditions
specified in its Right-To-Execute, it may effectively ter-
minate its own execution.

D. Backing Up Rights-To-Execute

If a protected processor fails, the Rights-To-Execute
which it contains can become inaccessible. Since they are
necessary in order to execute the protected applications to
which they belong, the protected applications could be-
come inoperable unless there is some way to back up
Rights-To-Execute.

In this section, we describe a method for doing backup
which allows the user to install Rights-To-Execute on an-
other processor at any time, without the intervention of
the software vendors or the manufacturer of protected
processors. A user whose protected processor fails can be
up and running on another system immediately. Further-
more, this second protected processor need not be a pre-
viously unused one. Another user’s protected processor
can accept the backed-up Rights-To-Execute, without in-
terfering with any Rights-To-Execute currently installed

WHITE AND COMERFORD: ABYSS-ARCHITECTURE FOR SOFTWARE PROTECTION 625

on it. This backup method nonetheless preserves the in-
tegrity of the system, and cannot be used to create extra
copies of Rights-To-Execute.

It proceeds in three steps. In the first, a backup set of
the Rights-To-Execute in a processor is created. This is
similar to creating a backup of a hard disk. If the proces-
sor fails, the second step is to install the backup set on a
second protected processor. The newly-installed Rights-
To-Execute have an inactivation date associated with
them. They will become temporarily inactive after that
date unless a message is received from the hardware man-
ufacturer, authorizing the removal of the inactivation date.
After the inactivation date is removed, the Rights-To-Ex-
ecute behave just as they had in the original processor.

1) Creating a Backup: There are many ways to per-
form the backup service. A convenient way is for the user
to have a smart card, which is associated with the pro-
tected processor to be backed up, and this is the way we
will use to illustrate the process. This is not critical, as
any other protected processor could be used instead.

The smart card, and its associated processor, each have
a supervisor key S, within them, which is unique to the
two of them. Given this supervisor key, a backup set is
created as follows.

a) The protected processor and smart card use the
unique supervisor key S, to establish a secure session be-
tween each other, which is mediated by a session key B .

of Rights-To-Execute to be backed up is encrypted under

c) EB (C) is written to an external storage medium. If
there is sufficient storage on the smart card, it may be kept
there. It could also be kept on a diskette. This file may be
copied as many times as desired.

d) The smart card stores the key B, and identifies it as
the current backup key.

2) Installing a Backup: Each smart card also contains
a supervisor key S, which is common to all protected pro-
cessors made by a given manufacturer. If the protected
processor fails, this key may be used to establish a secure
session between the smart card and any other protected
processor.

Protected processors also contain common supervisor
keys S, and Sh, which are used only for communicating
with the hardware manufacturer. S, is used only for send-
ing information to the manufacturer, and Sk is used only
for receiving information from the manufacturer.

Installation of the backup is done as follows.
a) The smart card and the second protected processor

use the common supervisor key S, to establish a secure
session between each other, mediated by a session key B .

b) The backup key B , and the unique supervisor key
S,, are encrypted under B, transmitted to the second pro-
tected processor, and decrypted. Remember that s, is the
unique supervisor key of the first (failed) processor.

c) The backup key B , and the unique supervisor key
S,, are erased from the smart card. This prevents the smart
card from installing the backup set in another protected

b) The collection C = { RTEA,, RTEA2, *
3 RTEAn 1

B to form E B (C) .

processor. This also prevents any subsequent backup set
from the first processor from being installed.

d) The collection of backed up Rights-To-Execute
Es(C) is read into the second protected processor, de-
crypted, and installed.

e) The Rights-To-Execute in this collection are made
conditional on the existence of a Right-To-Execute asso-
ciated with S,, and RTE,,, is given an inactivation date.

f) The second protected processor prepares a message
for the hardware manufacturer, Es,,,(S,), and writes it to
an external medium. The user sends this medium, along
with the first (failed) processor, back to the hardware
manufacturer.

3) Retaining Backed- Up Rights-To-Execute: The
Rights-To-Execute in the second processor will continue
to operate as usual. If no authorizing message were re-
ceived prior to the inactivation date, the Rights-To-Exe-
cute which were part of the backup process would become
inactive, but would not be erased. They could not be used,
but would remain in the protected processor, awaiting re-
ceipt of the message from the hardware manufacturer.

The hardware manufacturer, upon receiving the first
(failed) processor and E,,“(&), decrypts the message, and
verifies that the serial number of the failed processor cor-
responds to the one associated with the unique supervisor
key S,. This correspondence is checked to ensure that the
correct processor has been returned. If a different proces-
sor were returned, and the authorization were given to
remove the inactivation date from the second processor
anyway, the installed Rights-To-Execute would have been
permanently’ duplicated.

Assuming that the correspondence is verified, the in-
activation date is removed as follows.

a) The hardware manufacturer encrypts a message
Es; (S ,) , authorizing the removal of RTE,,,, and the elim-
ination of any dependency of other Rights-To-Execute on
RTEsu. Es;, (S ,) is sent to the user.

b) The seLond protected processor reads E,;,, (S ,) and
decrypts it. Since it was encrypted under Sh, it is guar-
anteed to have originated from the hardware manufac-
turer. The protected processor then erases RTE,<, and
eliminates all dependencies on it. The installed Rights-
To-Execute may now be used just as they were on the
original processor.

E. Transferring Rights-To-Execute
A Right-To-Execute need not be permanently associ-

ated with the protected processor on which it was first
installed. Conceptually, it is straightforward to transfer a
Right-To-Execute From Alice’s protected processor to
Bob’s by establishing a secure session, transmitting the
Right-To-Execute from the Alice’s processor to Bob’s,
installing the Right-To-Execute on Alice’s processor, and
erasing it from Bob’s.

1) A Necessaly Connection Between Transfer and
Backup: There is a hole in the transfer method outlined
above, which permits Rights-To-Execute to be duplica-
ted. The same hole exists in any system which supports

626 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16, NO. 6, JUNE 1990

both transfer and backup. Rights-To-Execute could be du-
plicated as follows.

a) A backup of C = { RTEAI, RTEA,, * , RTEA,} is
made from Alice’s protected processor.

b) The Rights-To-Execute in C are transferred to Bob’s
processor. Naturally, they are erased from Alice’s pro-
cessor in the process.

c) The backed-up Rights-To-Execute are installed in
Carol’s processor. This is unaffected by the fact that Al-
ice’s processor (the one backed up) no longer contains
these Rights-To-Execute, as a result of transferring them
to Bob.

d) Alice’s processor is broken, and returned to the
manufacturer as failed.

e) The manufacturer verifies the failure, and permits C
to be permanently installed in Carol’s processor.

At this point, both Bob’s and Carol’s processors have
C installed permanently, and the Rights-To-Execute have
been successfully duplicated. While Alice’s processor
must be sacrificed in the process, this may be a small price
to pay if the collection of Rights-To-Execute was very
valuable.

2) Transfer with Backup: This hole is plugged by cou-
pling the services of transfer and backup. Each time a
transfer is made, all previous backup sets must be inval-
idated, and a new one created. A revised transfer service,
which transfers RTEAk from Alice’s processor to Bob’s, is
as follows.

a) Alice’s protected processor and its associated smart
card use their unique supervisor key S,, to establish a se-
cure session with each other, mediated by the session key
B’ .

RTEA,}, the revised backup set, is encrypted under B ‘ ,
and stored as described previously. The associated backup
key B‘ replaces the previous backup key B on Alice’s
smart card. Alice’s smart card is now capable of installing
only C ’ , the most recent backup set. It is not capable of
installing C , or any other previous backup set.

c) Alice’s and Bob’s protected processors use a com-
mon supervisor key S, to establish a secure session with
each other, mediated by the session key T .

d) RTEAk is encrypted under T by Alice’s processor,
transmitted to Bob’s, and erased from Alice’s. Bob’s pro-
cessor decrypts RTEAk and installs it.

The method of changing the encryption key for data
sets, to ensure that they are up to date, is described in a
somewhat different context in [2]. In general, this method
permits information, such as Rights-To-Execute, to be
encrypted, stored on secondary media, and still be guar-
anteed to be up to date.

b) C’ = { RTEA,, , RTEAk - 1 , RTEAk+ 1 , * * ,

V. SECURE SOFTWARE PARTITIONING
Software partitioning is necessary if part of the appli-

cation must execute from unprotected memory. Cost con-
straints may require that the protected processor be lim-
ited in available processing power and memory. Software
partitioning is a means of creating a dependence df the

unprotected part of the system on the protected part. This
can extend the protection of the protected part to the entire
application.

It is difficult to construct a partitioning method that is
both demonstrably secure, and convenient enough to use
in practical application development efforts. In this sec-
tion, we outline some ideas that may lead to a better un-
derstanding of this problem.

If it were possible to reconstruct the full application
without seeing the protected part, the protection of the
application would be compromised. It is sufficient if re-
constructing the protected part of the software is more dif-
ficult than rewriting it from scratch. We define two kinds
of complexity in partitioned software: semantic and com-
binatorial.

A . Semantic Complexity
Semantic complexity reflects the difficulty of recon-

structing the protected part by examining the environment
of its interaction with the unprotected part. At one end of
a spectrum of partitioning methods, selected obscure parts
of the application are protected. For instance, an appli-
cation may contain a proprietary algorithm, all of which
could be protected. If that part of the program was diffi-
cult to write initially, it may be difficult for an attacker to
reconstruct it. At the other end of this spectrum, random
parts of the application could execute in the protected pro-
cessor. For instance, every tenth line of program could be
executed by the protected processor. This is semantically
complex to the extent that it is difficult to understand a
program that has a large number of lines missing.

B. Combinatorial Complexity
Combinatorial complexity reflects the difficulty of ex-

haustively characterizing the behavior of the protected part
by watching what it does. Consider an application in
which there are n access points in the unprotected part, at
which accesses are made to the protected part. At each
access point, a k bit argument is passed to the protected
part, and the protected part performs some calculation. If
this results in Q (2 k) independent states of the system,2
essentially all possible values of the argument must be tried
by an attacker to completely characterize the effects of
that calculation. This is the case, for instance, in a one-
to-one function of the argument, whose value is returned
by the calculation. The characterization can be made even
more difficult if some or all of the results are stored in the
protected part instead.

If no state is stored in the protected part, each access
made to it by the unprotected part is independent of every
other access. In this case, the combinatorial complexity,
as measured by the number of times the attacker must ex-
ecute the protected part, is Q (n) in n .

If state can be stored, each access point can write its
argument into some location in protected storage, and re-

’The expression O (x) arises in complexity theory, and represents a
quantity which (asymptotically) is at least as large as x [27].

WHITE AND COMERFORD: ABYSS-ARCHITECTURE FOR SOFTWARE PROTECTION 621

turn a value read from another location. If the identity of
these locations are obscured in the unprotected part, by
hashing for instance, it is straightforward to show that
Q (n 2) executions of the protected part are required for
characterization. Ideally, a partitioning method should
have a combinatorial complexity which is Q(2“) , as well
as ~ (2 ~) .

VI. ATTACKS ON THE SYSTEM

Attempts at forging a token process were discussed ear-
lier. In this section, we discuss a number of other possible
attacks on the system, and their consequences.

A. Plaintext Software: The Asset Being Protected
Software protection is an unusual application of cryp-

tography. Often, messages being encrypted have value for
only a small amount of time. The contents of a telephone
call made a year ago may have little value, for instance.
Furthermore, many cryptographic systems can be con-
structed so that compromise of a single key, or the com-
promise of a single cryptographic facility, are of limited
value.

These things are not true of practical software protec-
tion systems. The asset being protected is the plaintext
application itself. If an attacker can obtain the plaintext
application, the attacker is in the same position as the
original software vendor. The application can be copied,
altered, and redistributed at will. It may even be repro-
tected with the protection system before distribution.

The essential point, which is so often overlooked in
software protection discussions, is that, once an attacker
obtains the plaintext of the application, the technical pro-
tection of that application has been rendered useless.

B. Cryptanalytic Attacks
The cryptographic protection of keys and applications

is at least as strong as the protection of the cryptosystem
against a nonchosen plaintext attack. Modem cryptosys-
tems, such as DES, are sufficiently resistant to these at-
tacks to permit their use in most software protection sit-
uations. If an attacker had a general method of breaking
a cryptosystem like DES, there are much more attractive
targets to attack than mass-market software!

A cryptanalytic attack on an application key could be
attempted, using the response from a token query and the
encrypted token data. This attack is more difficult than a
nonchosen plaintext attack, since not all of the corre-
sponding plaintext is available in the token response.

C. Physical Attacks
A physical attack on the protected processor itself, if

successful, could reveal both supervisor and application
keys. But, just as important, it could reveal the plaintext
for any application that can be executed on the compro-
mised processor. If the processor is compromised, the at-
tacker can simply purchase every application which is to
be compromised. They can each be installed, loaded onto

the compromised processor, and their plaintext can be read
out in turn.

Since it is necessary for virtually every application to
be installable on every processor, the physical security of
the protected processor is extremely important. Reference
[181 describes a low-cost tamper-resistant package which
is useful for protecting information in multichip systems.
The physical security of smart cards and tokens is also
critical, though losses due to a compromised token can be
limited to the ability to install a single application. Chip-
level security, which is applicable to smart cards and to-
kens, is discussed in [20].

D. On Trusting the Hardware Manufacturer
All software protection methods place a great deal of

trust in the party that manufactures the protection method.
Cryptographic keys must be kept secret, for instance, and
must not be used illicitly to reveal information which is
encrypted with them.

In [141, the authors maintain that public key cryptosys-
tems are superior to symmetric cryptosystems for soft-
ware protection, since public key cryptosystems can pre-
vent the hardware manufacturer from knowing the private
keys of each protected system. While this is true, it is of
limited utility if the hardware manufacturer is dishonest.

The hardware manufacturer could build a “protected”
system which is identical to those distributed commer-
cially, but which is not physically secure. Applications
could be purchased for that processor as usual, and their
plaintext exposed. Although the hardware manufacturer
cannot compromise another user’s processor per se, the
applications themselves can be compromised. If the hard-
ware manufacturer cannot be trusted, significant assets are
at risk, regardless of what cryptosystem is used.

ABYSS allows each software vendor to distribute only
to protected processors made by manufacturers that they
trust. This is done by creating Rights-To-Execute which
can be loaded only onto processors which have the trusted
manufacturer’s supervisor key.

VII. NEW CAPABILITIES
ABYSS opens up a wide variety of new capabilities in

computing systems, which were either too expensive, or
too inconvenient previously. Two important capabilities
are the technical enforcement of the terms and conditions
of software sales, and the protection of software distri-
bution channels.

A. Technical Enforcement of Terms and Conditions
A software vendor can specify the conditions under

which the Right-To-Execute can be used for an applica-
tion, or even for a particular copy of an application. This
enables each software vendor to enforce a very wide range
of conditions on the use of software, and to do so tech-
nically. In many cases, only legal enforccment was avail-
able previously.

The software vendor may choose not to allow a Right-
To-Execute to be transferred to another system, once it is

62 8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL 16. NO. 6. JUNE 1990

installed. This enforces the condition that execution only
occur on a given system.

Any terms and conditions that can be embodied in data
in the protected processor, as a part of the Right-To-Ex-
ecute, can be enforced by the application itself. By storing
an expiration time and date, or a maximum number of
allowed uses of the application, it is possible to enforce
the concept of limited lifetime software.

A single copy of an application can be kept on a file
server. The protected processor associated with this server
can store a Right-To-Execute which enables up to some
fixed number of copies to execute, for instance. When a
user requests the application, a single Right-To-Execute
is also transferred to the workstation, and the server’s
count is decremented. The transferred Right-To-Execute
may require renewal every minute or so to continue to be
valid. The workstation can request renewal of the Right-
To-Execute from the server at any time, and thus continue
to possess a valid Right-To-Execute as long as is neces-
sary. If the workstation does not check back with the
server, the server knows that the workstation’s Right-To-
Execute has expired, so the server can increment its count
of Rights-To-Execute for that application. This software
lending library is much like a lending library for books,
in which the books automatically reappear in the library
when they are due.

B. Protection of Distribution Channels
Separating the software from its Right-To-Execute per-

mits a large variety of distribution channels to be used for
either. Many electronic distribution methods are not em-
ployed today because of the difficulty of preventing illicit
interception of the applications. ABYSS can protect all of
these distribution channels.

When there can be secure two-way communication be-
tween the software vendor and the user, Rights-To-Exe-
cute may be distributed on demand to individual worksta-
tions. Both software, and Rights-To-Execute can then be
distributed on local or wide area networks, or by down-
load from host systems to workstations. By using super-
visor keys that are unique to each processor, installation
of Rights-To-Execute on only that processor can be en-
sured.

Compact disks have been suggested as possible distri-
bution media for software. Ironically, one of their disad-
vantages is that they are capable of storing so many ap-
plications on a single disk, that it is difficult to market the
entire set of applications together. With ABYSS, it is pos-
sible to sell a disk containing hundreds of protected ap-
plications at a very low price, and sell individual Rights-
To-Execute separately. Similarly, distribution by FM or
cable TV broadcast can be protected.

VIII. CONCLUSION
ABYSS is an architecture that enables the protected ex-

ecution of applications on protected processors, through
its use of logical, physical, and procedural security. Soft-
ware is separated from its Right-To-Execute, and strong

cryptographic methods are used to manage both. Secure
cryptographic channels can be used to move both software
and Rights-To-Execute between protected processors.
Tokens are introduced as a new use-once authorization
mechanism. They are useful when authorizations are dis-
tributed physically, rather than electronically.

ABYSS does not require changes to current or planned
software distribution methods. It is nearly transparent to
the legitimate user. Software installation is automated, and
there is no change in how software is executed. Rights-
To-Execute for software can be transferred between sys-
tems easily. Files containing the software may be stored
on the user’s hard disk, on network file servers, or on a
mainframe, and may be backed up at will. Furthermore,
Rights-To-Execute can themselves be backed up, to pre-
clude loss in the event of a failure of the protected pro-
cessor.

At the same time, all current and planned software dis-
tribution system are supported, and protected. Software
authors and vendors may use the system to enforce the
terms and conditions of their software sales technically.
This opens up many new opportunities for marketing soft-
ware.

ACKNOWLEDGMENT
The authors greatly appreciate the contributions of the

ABYSS group, W. C. Arnold, T. J . Nolan, B. Strohm,
and S . H. Weingart, without whom these ideas would not
have matured into working prototypes, of A. Chandra,
who suggested the privilege structure and helped with
early incarnations of this architecture, and of F. N . Parr,
who helped simplify and refine several key features of the
architecture. We also thank several anonymous reviewers
for helpful suggestions.

REFERENCES
J . Voelker and P . Wallich, “How disks are ‘padlocked’,” IEEE
Sprctrum, p. 32. June 1986.
S. T . Kent. “Protecting externally supplied software in small coni-
puters,” Ph.D. dissertation, Lab. Comput. Sci . . Massachusett5 Inst.
Technol., Cambridge, MA, Sept. 1980.
R . M. Best. “Microprocessor for executing enciphered programs.”
U.S. Patent No. 4 168 396. issued Sept. 18. 1979.
-. “Preventing software piracy with crypto-microprocessors.” in
Proc. f E E E Spring COMPCON 80, San Francisco. CA, Feb. 25-28.
1980. p. 466.
-, “Crypto microprocessor for executing enciphered programs.”
U.S. Patent No. 4 278 837. issued July 14. 1981.
-, “Cryptographic decoder for computer programs.“ U.S. Patent
No. 4 433 207, issued Feb. 2 I , 1984.
-, “Ctypto microprocessor that executes enciphered programs.”
U.S. Patent No. 4 465 901. issued Aug. 14. 1984.
0. Goldreich, “Towards a theory of software protection.” in Proc.
Crwro ’86, Santa Barbara. CA, 1986. p . 35-1.

[9] G.’B. Purdy, G. J . Simmons. and J . A.‘Studier. “A software protec-
tion scheme,” in Proc. 1982 Symp. Srcurity c u d Priiuc.y, Oakland.
CA, Apr. 26-28. 1982. p. 99.

[I O] A. Herzberg, and G . Karmi, “On software protection.” in Proc.
Fourth ICIT, Apr. 1984, p. 388.

[I I] M . G. Arnold and Mark D. Winkel. “Computer systems to inhibit
unauthorized copying, unauthorized usage, and automated cracking
o f protected software.” U.S. Patent No. 4 558 176. ishued Dec. 10.
1985.

WHITE A N D COMERFORD ABYSS-ARCHITECTURE FOR SOFTWARE PROTECTION

~

629

D . Everett. “Padlock.” Cmiput . Bull., ser. 3 , no. I, pt. 1 , p. 16,
Mar. 1985.
G . J . Simmons. “How to (selectively) broadcast a secret,” in Proc.
1985 Syinp. Security wid Priiwcy. Oakland, CA. Apr. 22-24. 1985.
p. 108.
A. Herzberg and S . S . Pinier. “Public protection of software.” in
Arl ia i icw iri Cryptologyc Proc.. Crypto 85. H. C . Williams, Ed.. 1986.
p. 158.
R. Mori and S . Tashiro. “The concept o f a ‘software services system
(SSS),” Trans. Inst. Electron. IriJ Conimuri. Eng. D (Japan). vol.
J70D, no. 1 , p. 79, Jan. 1987.
S . R. White and L. Comerford, “ABYSS: A trusted architecture for
software protection,” in Proc. 1987 Syinp. Security urid Prilucy,
Oakland, CA. Apr. 27-29, 1987. p. 38.
V. J . Cina, Jr . , S . R. White, and L. Comerford, “ABYSS: A basic
Yorktown security system: PC software asset protection concepts.”
IBM Res. Rep. RC 12401, Dec. 18. 1986.
S . H. Weingart. “Physical security for the pABYSS system,” in Proc.
1987 Syrnp. Secwiry arid P r i v w y . Oakland, CA. Apr. 27-29. 1987,

D. Chaum. “Design concepts for tamper responding systems.“ in
Arhcrrice.~ i r i Cryprology: Proc. Crypto 83. D. Chaum. Ed. New
York: Plenum, 1984, pp. 387.
W. L. Price, “Physical security of transaction devices.” Nat. Phys-
ical Lab.. NPL Tech. Memo DITC 4186. Jan. 1986.
D. E. R. Denning. Cryprogruphy und Datcr Security. Reading, MA:
Addison-Wesley. 1983. p . 192.
C. H . Bennet, G. Brassard, S . Breidbart, and S . Wiesner. “Quantum
cryptography, o r unforgeable subway tokens,” in Advances in Cryp-
rology, Proc. Crypro 82. Chaum, Rivest. and Sherman, Eds. New
York: Plenum, 1983, p. 267.
S . Goldwasser, S . Micali. and C . Rackoff, “The knowledge com-
plexity of interactive proof systems.” in P m c . 17th ACM symp. Thr-
ory ofCornpuring, 1985, p . 291.
B. Strohm. L. Comerford, and S . R. White, “ABYSS tokens.” IBM
Res. Rep. RC 12402. Dec. 18, 1986.
M. Gasser, Buildirifi A Secure Cornpurer Sysrern. New York: Van
Nostrand Reinhold. 1988.

p. 52.

R. R . Jeuneman, S . M . Matyas, and C . H. Meyers, “Message au-
thentication with manipulation detection codes.” in Proc. 1983 Syrrrp.
Security and Privacy. p. 33.
P. W . Purdom, Jr . and C . A . Brown. The Ancr/ysis of Algo-
r i t h m . New York: Holt, Rinehart and Winston. 1985.

Laboratory at the IBM
Heights, NY. His resea
computing components
ruses and other self-repl

Steve R. White received the Ph.D. degree in the-
oretical physics from the University of California.
San Diego. in 1982.

He accepted a postdoctoral fellowship at IBM
Research. where he later became a Research Staff
Member. He has published in the fields of opti-
mization by simulated annealing, software protec-
tion. computer security. and computer viruses. and
holds several patents in security-related fields. He
is currently manager of the Distributed Security
Systems group and the High Integrity Computing
Thomas J . Watson Research Center, Yorktown

.rch interests include the role of physically secure
, and the long-term implications of computer vi-
licating programs in distributed systems.

Liam Comerford (S’73-A’73) has been a Re-
search Staff Member at the IBM Thomas J . Wat-
son Research Center. Yorktown Heights. NY.
since 1979. He has participated in research and
development activities involving holographic
semiconductor device fabrication. laser personal-
ization of integrated circuits. semiconductor op-
tical device design. manufacture, testing, pack-
agjng, and system application. He was the
coinventor and manager of the ABYSS Project.
His recent activities have centered on user inter-
face device technology development.

