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ABYSS: An Architecture for 
STEVE R. WHITE AND LIAM 

Absrracr-ABYSS (A Basic Yorktown Security System) is an archi- 
tecture for protecting the execution of application software. It supports 
a uniform security service across the range of computing systems. The 
use of ABYSS discussed in this paper is oriented towards solving the 
software protection problem, especially in the lower end of the market. 
Both current and planned software distribution channels are support- 
able by the architecture, and the system is nearly transparent to legit- 
imate users. A novel use-once authorization mechanism, called a to- 
ken, is introduced as a solution to the problem of providing 
authorizations without direct communication. Software vendors may 
use the system to obtain technical enforcement of virtually any terms 
and conditions of the sale of their software, including such things as 
rental software. Software may be transferred between systems, and 
backed up to guard against loss in case of failure. We discuss the proh- 
lem of protecting software on these systems, and offer guidelines to its 
solution. 

Index Terms-Authorization, copy protection, physical security, 
software distribution, software license, software protection, tamper 
resistant. 

I. INTRODUCTION 
S computers become a more important source of in- A formation and services in our lives, problems of soft- 

ware and data security become increasingly significant. 
The illicit duplication and use of commercial software is 
only one example of these problems, but it is increasingly 
worrisome in the low end of the software market. 

Technical methods addressing this problem have in- 
cluded writing the application software so that it looks for 
an unusual, and supposedly uncopyable, feature on the 
distribution diskette [ 11, and the attachment of special 
hardware devices for each application to be used in the 
system. 

These technical methods have not succeeded because 
of two complementary shortcomings. First, they are not 
an effective barrier to duplication. Today’s low-end com- 
puters are both logically and physically open systems. The 
user is capable of examining every aspect of the system. 
Once the behavior of the application is understood, it can 
be changed to subvert the software protection measures. 
Second, existing technical methods have imposed unac- 
ceptable burdens on the legitimate user. Users are often 
prevented from making backup copies of their software, 
and from installing their software on hard disks or file 
servers. 

A practical software protection system must overcome 
these shortcomings. It must ensure that the effort involved 
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in illicitly duplicating an application is at least as hard as 
rewriting it from scratch. It must also be extremely con- 
venient for the legitimate user, and flexible enough to 
support a broad spectrum of computing environments and 
software distribution systems. 

A variety of authors have explored ideas which go be- 
yond the more common diskette-based protection 
schemes. Kent [2] discusses a variety of secure system 
architectures. He mentions the valuable idea of tamper- 
resistant modules, which provide physical security, and 
uses cryptographic techniques to protect applications from 
exposure. Best [3]-[7] and Goldreich [8] present a crypto- 
microprocessor approach, in which application software 
exists in plaintext only within the instruction decoder of 
the processor. 

Other authors [9]-[ 151 consider approaches related to 
the one presented here, but which have limitations. Some 
limit the ways in which software can be distributed. Some 
require the use of public key systems. Others do not deal 
adequately with backup. 

11. OVERVIEW OF ABYSS 
ABYSS (A Basic Yorktown Security System) is an ar- 

chitecture for protecting the execution of application soft- 
ware, and can be used as a uniform security service across 
the range of computing systems. This paper is oriented 
towards a solution to the problem of software protection, 
especially in the lower end of the market. It addresses 
both security and ease-of-use concerns. Both current and 
planned software distribution methods are supportable. 
Users may back up applications at any time, and install 
them onto any other system in the event of failure, with- 
out the intervention of any other party at that time. A gen- 
eral discussion of ABYSS and software protection can be 
found in [ 161 and [ 171. 

The ABYSS architecture provides the software vendor 
with tools to enforce the conditions under which the ap- 
plication may be used. Software run under ABYSS exe- 
cutes exactly as it was written, and cannot be modified 
arbitrarily by the user. 

The only information which must be kept secret are cer- 
tain encryption and decryption keys. Aside from these, all 
of the details of both architecture and implementation may 
be made public without compromising the integrity of the 
system. 

A. Architecture of ABYSS 
The architecture of the system presented here is shown 

in Fig. 1. Applications are parririoned into processes 
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Fig. 1 .  The architecture of a protected processor system 

which are protected, and processes which are not. Pro- 
tected application processes are executed within a secure 
computing environment called a protected processor. The 
conditions under which an application may execute are 
embodied in a logical object called a Right-To-Execute. 
These conditions are enforced by the protected processor. 
The movement of Rights-To-Execute into and out of pro- 
tected processors may require authorization from exter- 
nally-supplied authorization processes. 

I) Protected Processors: A protected processor con- 
stitutes a minimal, but complete, computing system. It 
contains a processor, a real-time clock, a random or 
pseudo-random number generator, and sufficient memory 
to store protected parts of applications while they execute. 
It also contains secure memory for storage of Rights-To- 
Execute. This storage retains its contents even when the 
system power is off. 

The protected processor is a logically, physically, and 
procedurally secure unit. It is logically secure, in that an 
application cannot directly access the supervisor process, 
or the protected part of any other application, to violate 
their protection. It is physically secure (which is indicated 
by the heavy box in Fig. l ) ,  in that it is contained in a 
tamper-resistant package [ I8]-[20]. It is procedurally se- 
cure in that the services which move information, and 
Rights-To-Execute in particular, into and out of the pro- 
tected processor cannot be used to subvert the protection. 

It is possible for the protected processor to contain the 
only processors and memory of the entire computing sys- 
tem. Or, the protected processor may be part of a larger 
computing system, and interact with it through the unpro- 
tected processes. 

In addition to executing protected application pro- 
cesses, the protected processor executes a supervisor pro- 
cess. The supervisor process is responsible for ensuring 
the logical and procedural security of the protected pro- 
cessor. It executes at a higher privilege level than the ap- 
plication processes, and restricts them to isolated protec- 

tion domains [2 11. This isolation of application processes 
from each other, and from their unprotected parts, pro- 
tects an application process from attacks originating in 
other application processes, or in the unprotected parts of 
the computing system. 

The supervisor process contains a cryptographic facility 
for managing encryption/decryption keys. This facility 
decrypts the protected parts of applications as they are 
loaded into the protected processor. We place the cryp- 
tographic transformation between primary memory (such 
as RAM) and secondary memory (such as a disk). Best 
[ 3 ] - [ 7 ]  places this transformation between primary mem- 
ory and the instruction decoder of the processor. Placing 
it closer to the instruction decoder in the memory hier- 
archy forces a choice between significant performance 
degradation of the application, and the use of a crypto- 
system which is relatively weak. 

Placing the transformation between primary and sec- 
ondary memory, on the other hand, allows the bandwidth 
of a relatively strong cryptographic facility to be matched 
to the data transfer bandwidth, allows efficient pipelining 
of the data to be decrypted, and allows decrypted instruc- 
tions to be used numerous times without being decrypted 
each time. It also allows the efficient use of message au- 
thentication or manipulation detection codes on parts of 
the application. 

2) Software Partitioning: For systems in which appli- 
cations include unprotected processes, it is necessary to 
partition the application into protected and unprotected 
parts. The protected part is encrypted when it is outside 
the protected processor, and only decrypted when it is 
loaded into the protected processor. The unprotected part 
is exposed to view. 

The protected part cannot be examined or modified by 
any party external to the protected processor. It is pro- 
tected by physical security while inside the protected pro- 
cessor, and by cryptographic means while outside. It can- 
not be modified by rewriting it in a different way, because 
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the partition should be chosen so that the protected part is 
difficult to reconstruct from knowing only the unprotected 
part. 

The partition is designed so that both parts of the ap- 
plication must be present in order to execute the applica- 
tion. Eliminating accesses to the protected part from the 
unprotected part should result in a nonfunctional appli- 
cation. 

3)  Rights-to-Execute: The software is separated from 
the right to execute it. Only systems which are authorized 
to use an application have a Right-To-Execute for that 
application. Rights-To-Execute are created by software 
vendors, and are used by the supervisor to control the en- 
tire range of actions that can be taken with respect to the 
application. 

A Right-To-Execute consists of: 
An encryption andlor decryption key for software 

packages. This is required to decrypt the application be- 
fore execution. 

Information about how the Right-To-Execute may be 
used by supervisor software. For instance, the software 
vendor may choose not to allow the Right-To-Execute to 
be transferred to another protected processor once it is 
installed. 

Information about how the supervisor may permit the 
Right-To-Execute to be used by software decrypted under 
its key. The software vendor may wish to allow the ap- 
plication to change the information in the Right-To-Exe- 
cute, for instance. 

Information about how the supervisor may permit the 
Right-To-Execute to be used by nonsupervisor software 
which is not decrypted under its key. For instance, a util- 
ity could summarize information about all Rights-To-Ex- 
ecute owned by a user. 

Additional information, at the discretion of software 
decrypted under the above key. As will be seen later, the 
application may store such things as an expiration date for 
its Right-To-Execute, and be assured that the application 
will not execute after that date. 

4) Authorization Processes: Various supervisor ser- 
vices must be authorized to proceed. For instance, the 
software vendor must authorize the installation of the 
Right-To-Execute on a protected processor. Authoriza- 
tion processes may be carried out in a number of ways. 
Brief descriptions of two of these are given here for clarity 
in subsequent sections. 

Smart Cards: Smart cards are cards the size of a 
credit card, which contain a microprocessor and memory. 
They can be constructed to perform a subset of the actions 
of a protected processor which deal with movement and 
storage of Rights-To-Execute, but not with application 
execution. Since authorizing supervisor services and stor- 
ing Rights-To-Execute do not require memory for loada- 
ble applications, current smart cards can perform this 
function. They can then be used as temporary repositories 
of Rights-To-Execute being transferred between pro- 
tected processors, and for a number of other useful ser- 
vices. 

Tokens: Tokens have the same physical appearance 
as smart cards, but contain a less expensive chip called a 
token. The token is useful as a one-time-only authoriza- 
tion of supervisor services. 

Both smart cards and tokens must be physically secure, 
to prevent information contained in them from being re- 
vealed. Techniques for chip-level security applicable to 
smart cards and tokens are discussed in [20]. 

111. TOKENS: USE-ONCE, FORGERY-RESISTANT 
AUTHORIZATIONS 

We introduce a new authorization mechanism, called a 
token process. The token process is capable of participat- 
ing in a query-response sequence with a cryptosystem ex- 
actly once. Even if the query and response are carried out 
over insecure channels, the response can still be obtained 
in such a way that it is extremely improbable that an eaves- 
dropper can forge the behavior of a token process in a 
subsequent query-response sequence. The token process 
can be carried out by any simple computing system. It can 
also be carried out by a small piece of hardware, called a 
tokeri, which is significantly less expensive than hardware 
capable of providing strong cryptographic services. 

A. How Tokens Operate 
Tokens fulfill the following criteria. 

The queries, which are generated randomly by pro- 
tected processors, are sufficiently numerous that it is ex- 
teremely improbable that two queries will be the same. 
Since different queries generate different responses, the 
response from one query cannot be used as the response 
to a different query. 

The responses are sufficiently numerous that it is ex- 
tremely improbable that a random guess at a response will 
be correct. 

The responses are sufficiently independent of each 
other, that knowing the response to one query is not sig- 
nificantly helpful in predicting the response to another 
query. 

The query-response behavior of the token is com- 
pletely determined by data contained in the token. An en- 
crypted form of these data is delivered to the querying 
protected processor. This can be done in conjunction with 
the query-response sequence, or independent of it. Once 
the protected processor receives the token data and de- 
crypts it, it can predict the correct response to any query. 

The token data is erased from the token as it is read. 
Thus, a token can only respond to a single query. Sub- 
sequent queries reveal no useful information. 

Fig. 2 shows a simple conceptual realiz,ation of a token. 
(This is intended to be representational. Real implemen- 
tations require a small amount of additional support cir- 
cuitry.) It consists of two shift registers connected to a 
multiplexor. The registers are shifted left simultaneously 
in response to a signal on the multiplexor’s query line. 
Each time they are shifted, one bit from either the up or 
the down register appears on the output line, depending 
upon the value of the query bit. At the same time, nulls 
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Fig. 2 .  How tokens work 

are shifted into both registers from the right. This cycle 
is repeated until the token is completely discharged. 

The token is haded by the software vendor with ran- 
dom binary strings into both the up and the down regis- 
ters. These constitute the token data T,, and should be 
effectively unique for each token j .  (If an attacker pos- 
sesses two tokens known to have identical token data, the 
entire token data can be revealed by querying only the up 
register of one token, and only the down register of the 
other.) The software vendor encrypts this data under a key 
A ,  called the application key, chosen by the software ven- 
dor for a particular application, to form E A (  ).’ The 
plaintext token data is protected by making the token 
physically secure against tampering. 

The token can then act as a one-time-only authorization 
from the software vendor, to a protected processor which 
possesses the application key A .  (The means by which the 
protected processor obtains the application key are dis- 
cussed later.) To do this, the protected processor reads in 
and decrypts E A  ( T J  ) to obtain the token data T,. It then 
generates a random query Q ,  which consits of a string of 
bits as long as either of the token’s registers. The query 
is presented to the token to obtain the token’s response R. 
By construction, all of the token data are lost when it is 
read, even though only half of the data are revealed by 
the response. 

The protected processor can use its knowledge of the 
complete token data T, to simulate the token, and predict 
the correct response R‘ to the query Q .  By comparing R 
to R‘, it can determine whether or not the token is a valid 
authorization, prepared by a party which knows A .  Since 
all of the token data is discharged when it is read, this can 
only be done once. 

‘The expression EK(  M ) represents a message M that haa been encrypted 
under a key K The cryptographic system used, and the mode in which i t  

is used, may depend upon the situation in which they are used 

In their ability to prove that they contain certain secret 
information without revealing a significant fraction of it,  
tokens resemble the “verify-only memory” of [ 2 2 ] .  They 
differ from zero-knowledge proof protocols [ 2 3 ]  in that 
the response from a token does reveal information about 
the contents of the token. The single possible response, 
however, does not reveal a sufficient amount of informa- 
tion to be useful to an attacker, as explained in the next 
section. 

B. Forging a Token 
Suppose that an attacker has observed the query and 

response sequence for a token. What is the probability 
that, armed with this information, the attacker can re- 
spond as that token would have to another query by a pro- 
tected processor? If successful, this would constitute a 
successful forgery of a token process, and could produce 
an illicit authorization. 

The query to which the attacker must respond is gen- 
erated randomly, so it will not have a statistically signif- 
icant correlation to the observed query. The probability 
of responding correctly to each bit in the query is the 
probability that that bit in the query is the same as the one 
previously observed (in which case the attacker knows the 
correct response), plus the probability that it is different, 
times the probability of guessing correctly. For a token 
with n uncorrelated bits in each shift register, 

If there are no statistically significant correlations present, 

- 1  Psame query _ -  2 
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Pforgely = (2)’’. 
A token with shift registers of length n = 128 can be 

implemented on a very small chip, and gives pforgery < 

Since it is a protected processor which generates the 
query to a token, the protected processor can limit the 
frequency of queries by controlling the amount of time it 
takes to generate a query. This inhibits a high-speed 
“guessing” attack on tokens. The average number of 
guesses required to come up with a single correct response 
to a query for a given token is 

1.02 x 10-l6. 

( 3 )  
1 N =  - 

log2 ( 1 - Pforgely 1 ’ 
If the time to generate a query is required to be one sec- 
ond, the average time required to forge a response for an 
n = 128 bit token successfully is raverage > 10’ years. 
Token forgery is covered in more detail in [24]. 

IV. SUPERVISOR SERVICES 

This section describes the supervisor services which 
were introduced in the previous section. Each of these 
services can employ either a symmetric cryptosystem or 
a public key cryptosystem. In this discussion, they are 
oriented towards a symmetric cryptosystem such as DES. 
since it is the best match to both the cost and performance 
requirements of today’s lower-end computers. These pro- 
tocols, with only trivial modifications, can be used with 
a public key cryptosystem. 

Each service could use tokens, or communication be- 
tween protected processors, as authorization mechanisms. 
Only one of these authorization mechanisms is illustrated 
in each case for simplicity. The services are simplified for 
clarity. An actual implementation would include com- 
munication handshaking, verification of the completion of 
each step of the service, and error recovery. 

In order to guarantee the procedural security of the sys- 
tem, each service must ensure four things. It must ensure 
that no cryptographic keys are exposed in plaintext, that 
protected software is not exposed in plaintext, that pro- 
tected software only executes under the terms and condi- 
tions chosen by the software vendor, and that the pro- 
tected software has not been modified. 

Clearly, the security of the protected processor requires 
that its underlying operating system be secure. Operating 
system security has received a great deal of attention in 
recent years [25]. While a general discussion of the costs 
of ensuring the security of any particular implementation 
of a protected processor is beyond the scope of this ar- 
chitecture paper, a few observations can be made. If the 
unprotected processor is a single-tasking system, as are 
many low-end personal computers today, the protected 
processor need only be single-tasking. It is quite straight- 
forward to create a small, secure, single-tasking system 
that implements the supervisor services outline below. In 

a larger multitasking system, it may be possible to use the 
same (secure) operating system in both the unprotected 
and protected processor, and implement the supervisor 
services as privileged applications. This minimizes the in- 
cremental effort involved in assuring the security of the 
protected processor. 

A. Creating Protected Software 
The ABYSS architecture supports the execution of ap- 

plications which are not protected, so it can allow existing 
applications to be migrated to systems with protected pro- 
cessors with no change. To protect an application, the 
software vendor must create a part of the application to 
be executed securely, encrypt it, create a corresponding 
Right-To-Execute, and create an authorization process for 
installing that Right-To-Execute. The same ABYSS pro- 
cessors which execute protected applications can be used 
to perform the critical steps in this process, so no special 
development systems are needed. 

I) Writing Partitioned Applications: The application 
must be written so that at least part of it resides in the 
protected processor during execution. Depending upon 
implementation details, this may be the entire application, 
or it may be a small fraction of it. The section “Secure 
Software Partitioning” discusses the problem of parti- 
tioning an application into protected and unprotected 
parts. 

2)  Encrypting the Protected Part of the Applica- 
tion: Once the part P of the application to be protected is 
complete, it is encrypted under an application key A ,  cho- 
sen by the software vendor, to form E A ( P ) .  The appli- 
cation key may be unique to each application, or even to 
each copy of each application. This key need not be re- 
vealed to anyone else, and the encryption can be done 
outside of the protected processor, if desired, by the soft- 
ware vendor. 

Two goals must be met by this encryption. First, it must 
avoid the exposure of the plaintext application. Second, 
it must prevent the protected part of the application from 
being modified, even randomly. If the application could 
be modified in a known way, it could be instructed to 
reveal its entire plaintext content. Even if the application 
could be modified randomly, it is still possible that the 
random modifications, executing in the protected proces- 
sor, will cause the revelation of important information 
about the protected part. The second goal can be met by 
using message authentication or manipulation detection 
codes [26] when encrypting the protected part of the ap- 
plication, and having the protected processor use them to 
authenticate the application before it is executed. 

3) Creating a Right-To-Execute: A plaintext file RTE,, 
containing all of the necessary information for the Right- 
To-Execute for the application, can be created by the soft- 
ware vendor. It contains the application key A ,  and as- 
sociated information about how it can be used. 

This file is encrypted under a supervisor key S ,  which 
is possessed by the protected processor on which the ap- 
plication will be installed, to create Es( RTEA). This en- 
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cryption is done by a protected processor, as a service to 
the software vendor. It can be done without revealing the 
supervisor key S ,  since the encryption can be done se- 
curely inside the protected processor. For simplicity at 
this point, consider the supervisor key S to be common to 
all protected processors made by a given manufacturer. 
Alternatives will be discussed later. 

4) Creating an Authorization Process: The software 
vendor must now create an authorization process which 
will allow the user to install the Right-To-Execute once, 
but only once. In this section, we will assume that tokens 
are used as the authorization mechanism. 

To prepare tokens as authorizations, the software ven- 
dor must generate random token data ?;., which is essen- 
tially unique for each token j .  The token data are en- 
crypted under the application key to form the encrypted 
token data EA ( T , ) .  

5) Shipping the Protected Software: The above com- 
ponents can now be distributed. The unprotected part of 
the software U ,  the protected part EA ( P  ), the Right-To- 
Execute Es(RTEA),  and the encrypted token data EA ( T , )  
can be distributed by any means. The token data T,, which 
is plaintext, must be kept physically secure, for example 
in a token. 

A typical means of distributing these components would 
be to package U ,  EA ( P  ), and Es( RTEA ) on a floppy disk- 
ette. This diskette could be bulk-reproduced, since every 
such diskette can be identical. Tokens can be designed so 
that T, and EA( T,) can be placed inside of a token. The 
diskette and token can be packaged together or separately, 
and shipped to retailers. 

B. Installing a Right-To-Execute 

There are several methods by which a user may install 
Rights-To-Execute on a protected processor. The point of 
each of these methods is to install the Right-To-Execute 
for a particular application into the secure, persistent 
memory of the protected processor, if and only if valid 
authorization exists to do so. The use of protected pro- 
cessors in preparing and installing Rights-To-Execute 
creates a trusted path for distributing Rights-To-Execute. 
Distribution methods based on communication between 
two protected processors will be described later. A token- 
based method proceeds as follows. 

1) The user makes the token and distribution diskette 
available to the protected processor. 

2) The encrypted Right-To-Execute Es (RTEA ) is read 
into the protected processor, and decrypted under the su- 
pervior key S. This gives the protected processor access 
to the application key A .  

3) The protected processor must now obtain authori- 
zation to install RTEA as follows. 

a) Read the encrypted token data EA ( T , )  from the to- 
ken and decrypt it under A to obtain ?. The fact that TJ 
and the protected part of the application P are both en- 
crypted under the application key A assures the protected 
processor that they were created by the same party. 

b) Generate a random query Q, send it to the token, 
and obtain a response R from the token. 

c) The protected processor can now use its knowl- 
edge of what the complete token data T, is supposed to 
be, and of its query Q, to simulate the token and calculate 
the response R‘ expected from a valid token. There is a 
valid authorization if and only if R = R‘. If it is different, 
either the token was invalid, or an attempt was made by 
an attacker to forge the token’s response. 
4) If the authorization was valid, the protected proces- 

sor installs the Right-To-Execute RTEA into its secure, 
persistent memory. If not, RTEA is purged from the pro- 
tected processor’s working memory and is not installed. 

C. Loading and Executing Protected Software 

Once a Right-To-Execute is installed on a protected 
processor, it may be used at any time to enable the exe- 
cution of applications associated with it. This is done as 
follows. 

1) The protected processor locates the Right-To-Exe- 
cute and checks that it may be used to execute application 
programs. 

2) U is loaded into the unprotected memory area, and 
EA ( P  ) is loaded into the protected memory area and de- 
crypted. If the decryption of EA ( P  ) yields a valid mes- 
sage authentication or manipulation detection code, exe- 
cution of U and P is begun. If not, P is purged from 
protected memory. 

3) At any time during execution, including at the very 
start, the protected part of the application may be allowed 
to access (and perhaps modify) selected parts of its own 
Right-To-Execute. It may use this in conjunction with the 
real-time clock in the protected processor, for instance, 
to verify that it is not being executed after its expiration 
date. Should the protected part of the application find that 
it is being executed contrary to the terms and conditions 
specified in its Right-To-Execute, it may effectively ter- 
minate its own execution. 

D. Backing Up Rights-To-Execute 

If a protected processor fails, the Rights-To-Execute 
which it contains can become inaccessible. Since they are 
necessary in order to execute the protected applications to 
which they belong, the protected applications could be- 
come inoperable unless there is some way to back up 
Rights-To-Execute. 

In this section, we describe a method for doing backup 
which allows the user to install Rights-To-Execute on an- 
other processor at any time, without the intervention of 
the software vendors or the manufacturer of protected 
processors. A user whose protected processor fails can be 
up and running on another system immediately. Further- 
more, this second protected processor need not be a pre- 
viously unused one. Another user’s protected processor 
can accept the backed-up Rights-To-Execute, without in- 
terfering with any Rights-To-Execute currently installed 
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on it. This backup method nonetheless preserves the in- 
tegrity of the system, and cannot be used to create extra 
copies of Rights-To-Execute. 

It proceeds in three steps. In the first, a backup set of 
the Rights-To-Execute in a processor is created. This is 
similar to creating a backup of a hard disk. If the proces- 
sor fails, the second step is to install the backup set on a 
second protected processor. The newly-installed Rights- 
To-Execute have an inactivation date associated with 
them. They will become temporarily inactive after that 
date unless a message is received from the hardware man- 
ufacturer, authorizing the removal of the inactivation date. 
After the inactivation date is removed, the Rights-To-Ex- 
ecute behave just as they had in the original processor. 

1)  Creating a Backup: There are many ways to per- 
form the backup service. A convenient way is for the user 
to have a smart card, which is associated with the pro- 
tected processor to be backed up, and this is the way we 
will use to illustrate the process. This is not critical, as 
any other protected processor could be used instead. 

The smart card, and its associated processor, each have 
a supervisor key S,  within them, which is unique to the 
two of them. Given this supervisor key, a backup set is 
created as follows. 

a) The protected processor and smart card use the 
unique supervisor key S, to establish a secure session be- 
tween each other, which is mediated by a session key B .  

of Rights-To-Execute to be backed up is encrypted under 

c) EB ( C ) is written to an external storage medium. If 
there is sufficient storage on the smart card, it may be kept 
there. It could also be kept on a diskette. This file may be 
copied as many times as desired. 

d) The smart card stores the key B,  and identifies it as 
the current backup key. 

2) Installing a Backup: Each smart card also contains 
a supervisor key S,  which is common to all protected pro- 
cessors made by a given manufacturer. If the protected 
processor fails, this key may be used to establish a secure 
session between the smart card and any other protected 
processor. 

Protected processors also contain common supervisor 
keys S,  and Sh, which are used only for communicating 
with the hardware manufacturer. S, is used only for send- 
ing information to the manufacturer, and Sk is used only 
for receiving information from the manufacturer. 

Installation of the backup is done as follows. 
a) The smart card and the second protected processor 

use the common supervisor key S, to establish a secure 
session between each other, mediated by a session key B .  

b) The backup key B ,  and the unique supervisor key 
S,, are encrypted under B, transmitted to the second pro- 
tected processor, and decrypted. Remember that s, is the 
unique supervisor key of the first (failed) processor. 

c) The backup key B ,  and the unique supervisor key 
S,, are erased from the smart card. This prevents the smart 
card from installing the backup set in another protected 

b) The collection C = { RTEA,, RTEA2, * 
3 RTEAn 1 

B to form E B ( C ) .  

processor. This also prevents any subsequent backup set 
from the first processor from being installed. 

d) The collection of backed up Rights-To-Execute 
Es( C )  is read into the second protected processor, de- 
crypted, and installed. 

e) The Rights-To-Execute in this collection are made 
conditional on the existence of a Right-To-Execute asso- 
ciated with S,, and RTE,,, is given an inactivation date. 

f ) The second protected processor prepares a message 
for the hardware manufacturer, Es,,,(S,), and writes it to 
an external medium. The user sends this medium, along 
with the first (failed) processor, back to the hardware 
manufacturer. 

3) Retaining Backed- Up Rights-To-Execute: The 
Rights-To-Execute in the second processor will continue 
to operate as usual. If no authorizing message were re- 
ceived prior to the inactivation date, the Rights-To-Exe- 
cute which were part of the backup process would become 
inactive, but would not be erased. They could not be used, 
but would remain in the protected processor, awaiting re- 
ceipt of the message from the hardware manufacturer. 

The hardware manufacturer, upon receiving the first 
(failed) processor and E,,“(&), decrypts the message, and 
verifies that the serial number of the failed processor cor- 
responds to the one associated with the unique supervisor 
key S,. This correspondence is checked to ensure that the 
correct processor has been returned. If a different proces- 
sor were returned, and the authorization were given to 
remove the inactivation date from the second processor 
anyway, the installed Rights-To-Execute would have been 
permanently’ duplicated. 

Assuming that the correspondence is verified, the in- 
activation date is removed as follows. 

a) The hardware manufacturer encrypts a message 
Es; ( S , ) ,  authorizing the removal of RTE,,,, and the elim- 
ination of any dependency of other Rights-To-Execute on 
RTEsu. Es;, ( S , )  is sent to the user. 

b) The seLond protected processor reads E,;,, ( S , )  and 
decrypts it. Since it was encrypted under Sh, it is guar- 
anteed to have originated from the hardware manufac- 
turer. The protected processor then erases RTE,<, and 
eliminates all dependencies on it. The installed Rights- 
To-Execute may now be used just as they were on the 
original processor. 

E. Transferring Rights-To-Execute 
A Right-To-Execute need not be permanently associ- 

ated with the protected processor on which it was first 
installed. Conceptually, it is straightforward to transfer a 
Right-To-Execute From Alice’s protected processor to 
Bob’s by establishing a secure session, transmitting the 
Right-To-Execute from the Alice’s processor to Bob’s, 
installing the Right-To-Execute on Alice’s processor, and 
erasing it from Bob’s. 

1)  A Necessaly Connection Between Transfer and 
Backup: There is a hole in the transfer method outlined 
above, which permits Rights-To-Execute to be duplica- 
ted. The same hole exists in any system which supports 
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both transfer and backup. Rights-To-Execute could be du- 
plicated as follows. 

a) A backup of C = { RTEAI, RTEA,, * , RTEA,} is 
made from Alice’s protected processor. 

b) The Rights-To-Execute in C are transferred to Bob’s 
processor. Naturally, they are erased from Alice’s pro- 
cessor in the process. 

c) The backed-up Rights-To-Execute are installed in 
Carol’s processor. This is unaffected by the fact that Al- 
ice’s processor (the one backed up) no longer contains 
these Rights-To-Execute, as a result of transferring them 
to Bob. 

d) Alice’s processor is broken, and returned to the 
manufacturer as failed. 

e) The manufacturer verifies the failure, and permits C 
to be permanently installed in Carol’s processor. 

At this point, both Bob’s and Carol’s processors have 
C installed permanently, and the Rights-To-Execute have 
been successfully duplicated. While Alice’s processor 
must be sacrificed in the process, this may be a small price 
to pay if the collection of Rights-To-Execute was very 
valuable. 

2) Transfer with Backup: This hole is plugged by cou- 
pling the services of transfer and backup. Each time a 
transfer is made, all previous backup sets must be inval- 
idated, and a new one created. A revised transfer service, 
which transfers RTEAk from Alice’s processor to Bob’s, is 
as follows. 

a) Alice’s protected processor and its associated smart 
card use their unique supervisor key S,, to establish a se- 
cure session with each other, mediated by the session key 
B’ . 

RTEA,}, the revised backup set, is encrypted under B ‘ ,  
and stored as described previously. The associated backup 
key B‘ replaces the previous backup key B on Alice’s 
smart card. Alice’s smart card is now capable of installing 
only C ’ ,  the most recent backup set. It is not capable of 
installing C ,  or any other previous backup set. 

c) Alice’s and Bob’s protected processors use a com- 
mon supervisor key S, to establish a secure session with 
each other, mediated by the session key T .  

d) RTEAk is encrypted under T by Alice’s processor, 
transmitted to Bob’s, and erased from Alice’s. Bob’s pro- 
cessor decrypts RTEAk and installs it. 

The method of changing the encryption key for data 
sets, to ensure that they are up to date, is described in a 
somewhat different context in [2]. In general, this method 
permits information, such as Rights-To-Execute, to be 
encrypted, stored on secondary media, and still be guar- 
anteed to be up to date. 

b) C’ = { RTEA,, , RTEAk - 1 ,  RTEAk+ 1 ,  * * , 

V. SECURE SOFTWARE PARTITIONING 
Software partitioning is necessary if part of the appli- 

cation must execute from unprotected memory. Cost con- 
straints may require that the protected processor be lim- 
ited in available processing power and memory. Software 
partitioning is a means of creating a dependence df the 

unprotected part of the system on the protected part. This 
can extend the protection of the protected part to the entire 
application. 

It is difficult to construct a partitioning method that is 
both demonstrably secure, and convenient enough to use 
in practical application development efforts. In this sec- 
tion, we outline some ideas that may lead to a better un- 
derstanding of this problem. 

If it were possible to reconstruct the full application 
without seeing the protected part, the protection of the 
application would be compromised. It is sufficient if re- 
constructing the protected part of the software is more dif- 
ficult than rewriting it from scratch. We define two kinds 
of complexity in partitioned software: semantic and com- 
binatorial. 

A .  Semantic Complexity 
Semantic complexity reflects the difficulty of recon- 

structing the protected part by examining the environment 
of its interaction with the unprotected part. At one end of 
a spectrum of partitioning methods, selected obscure parts 
of the application are protected. For instance, an appli- 
cation may contain a proprietary algorithm, all of which 
could be protected. If that part of the program was diffi- 
cult to write initially, it may be difficult for an attacker to 
reconstruct it. At the other end of this spectrum, random 
parts of the application could execute in the protected pro- 
cessor. For instance, every tenth line of program could be 
executed by the protected processor. This is semantically 
complex to the extent that it is difficult to understand a 
program that has a large number of lines missing. 

B. Combinatorial Complexity 
Combinatorial complexity reflects the difficulty of ex- 

haustively characterizing the behavior of the protected part 
by watching what it does. Consider an application in 
which there are n access points in the unprotected part, at 
which accesses are made to the protected part. At each 
access point, a k bit argument is passed to the protected 
part, and the protected part performs some calculation. If 
this results in Q ( 2 k )  independent states of the system,2 
essentially all possible values of the argument must be tried 
by an attacker to completely characterize the effects of 
that calculation. This is the case, for instance, in a one- 
to-one function of the argument, whose value is returned 
by the calculation. The characterization can be made even 
more difficult if some or all of the results are stored in the 
protected part instead. 

If no state is stored in the protected part, each access 
made to it by the unprotected part is independent of every 
other access. In this case, the combinatorial complexity, 
as measured by the number of times the attacker must ex- 
ecute the protected part, is Q ( n )  in n .  

If state can be stored, each access point can write its 
argument into some location in protected storage, and re- 

’The expression O ( x )  arises in complexity theory, and represents a 
quantity which (asymptotically) is at least as large as x [27]. 
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turn a value read from another location. If the identity of 
these locations are obscured in the unprotected part, by 
hashing for instance, it is straightforward to show that 
Q ( n 2 )  executions of the protected part are required for 
characterization. Ideally, a partitioning method should 
have a combinatorial complexity which is Q(2“) ,  as well 
as ~ ( 2 ~ ) .  

VI. ATTACKS ON THE SYSTEM 

Attempts at forging a token process were discussed ear- 
lier. In this section, we discuss a number of other possible 
attacks on the system, and their consequences. 

A. Plaintext Software: The Asset Being Protected 
Software protection is an unusual application of cryp- 

tography. Often, messages being encrypted have value for 
only a small amount of time. The contents of a telephone 
call made a year ago may have little value, for instance. 
Furthermore, many cryptographic systems can be con- 
structed so that compromise of a single key, or the com- 
promise of a single cryptographic facility, are of limited 
value. 

These things are not true of practical software protec- 
tion systems. The asset being protected is the plaintext 
application itself. If an attacker can obtain the plaintext 
application, the attacker is in the same position as the 
original software vendor. The application can be copied, 
altered, and redistributed at will. It may even be repro- 
tected with the protection system before distribution. 

The essential point, which is so often overlooked in 
software protection discussions, is that, once an attacker 
obtains the plaintext of the application, the technical pro- 
tection of that application has been rendered useless. 

B. Cryptanalytic Attacks 
The cryptographic protection of keys and applications 

is at least as strong as the protection of the cryptosystem 
against a nonchosen plaintext attack. Modem cryptosys- 
tems, such as DES, are sufficiently resistant to these at- 
tacks to permit their use in most software protection sit- 
uations. If an attacker had a general method of breaking 
a cryptosystem like DES, there are much more attractive 
targets to attack than mass-market software! 

A cryptanalytic attack on an application key could be 
attempted, using the response from a token query and the 
encrypted token data. This attack is more difficult than a 
nonchosen plaintext attack, since not all of the corre- 
sponding plaintext is available in the token response. 

C. Physical Attacks 
A physical attack on the protected processor itself, if 

successful, could reveal both supervisor and application 
keys. But, just as important, it could reveal the plaintext 
for any application that can be executed on the compro- 
mised processor. If the processor is compromised, the at- 
tacker can simply purchase every application which is to 
be compromised. They can each be installed, loaded onto 

the compromised processor, and their plaintext can be read 
out in turn. 

Since it is necessary for virtually every application to 
be installable on every processor, the physical security of 
the protected processor is extremely important. Reference 
[ 181 describes a low-cost tamper-resistant package which 
is useful for protecting information in multichip systems. 
The physical security of smart cards and tokens is also 
critical, though losses due to a compromised token can be 
limited to the ability to install a single application. Chip- 
level security, which is applicable to smart cards and to- 
kens, is discussed in [20]. 

D. On Trusting the Hardware Manufacturer 
All software protection methods place a great deal of 

trust in the party that manufactures the protection method. 
Cryptographic keys must be kept secret, for instance, and 
must not be used illicitly to reveal information which is 
encrypted with them. 

In [ 141, the authors maintain that public key cryptosys- 
tems are superior to symmetric cryptosystems for soft- 
ware protection, since public key cryptosystems can pre- 
vent the hardware manufacturer from knowing the private 
keys of each protected system. While this is true, it is of 
limited utility if the hardware manufacturer is dishonest. 

The hardware manufacturer could build a “protected” 
system which is identical to those distributed commer- 
cially, but which is not physically secure. Applications 
could be purchased for that processor as usual, and their 
plaintext exposed. Although the hardware manufacturer 
cannot compromise another user’s processor per se, the 
applications themselves can be compromised. If the hard- 
ware manufacturer cannot be trusted, significant assets are 
at risk, regardless of what cryptosystem is used. 

ABYSS allows each software vendor to distribute only 
to protected processors made by manufacturers that they 
trust. This is done by creating Rights-To-Execute which 
can be loaded only onto processors which have the trusted 
manufacturer’s supervisor key. 

VII. NEW CAPABILITIES 
ABYSS opens up a wide variety of new capabilities in 

computing systems, which were either too expensive, or 
too inconvenient previously. Two important capabilities 
are the technical enforcement of the terms and conditions 
of software sales, and the protection of software distri- 
bution channels. 

A. Technical Enforcement of Terms and Conditions 
A software vendor can specify the conditions under 

which the Right-To-Execute can be used for an applica- 
tion, or even for a particular copy of an application. This 
enables each software vendor to enforce a very wide range 
of conditions on the use of software, and to do so tech- 
nically. In many cases, only legal enforccment was avail- 
able previously. 

The software vendor may choose not to allow a Right- 
To-Execute to be transferred to another system, once it is 



62 8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL 16. NO. 6. JUNE 1990 

installed. This enforces the condition that execution only 
occur on a given system. 

Any terms and conditions that can be embodied in data 
in the protected processor, as a part of the Right-To-Ex- 
ecute, can be enforced by the application itself. By storing 
an expiration time and date, or a maximum number of 
allowed uses of the application, it is possible to enforce 
the concept of limited lifetime software. 

A single copy of an application can be kept on a file 
server. The protected processor associated with this server 
can store a Right-To-Execute which enables up to some 
fixed number of copies to execute, for instance. When a 
user requests the application, a single Right-To-Execute 
is also transferred to the workstation, and the server’s 
count is decremented. The transferred Right-To-Execute 
may require renewal every minute or so to continue to be 
valid. The workstation can request renewal of the Right- 
To-Execute from the server at any time, and thus continue 
to possess a valid Right-To-Execute as long as is neces- 
sary. If the workstation does not check back with the 
server, the server knows that the workstation’s Right-To- 
Execute has expired, so the server can increment its count 
of Rights-To-Execute for that application. This software 
lending library is much like a lending library for books, 
in which the books automatically reappear in the library 
when they are due. 

B. Protection of Distribution Channels 
Separating the software from its Right-To-Execute per- 

mits a large variety of distribution channels to be used for 
either. Many electronic distribution methods are not em- 
ployed today because of the difficulty of preventing illicit 
interception of the applications. ABYSS can protect all of 
these distribution channels. 

When there can be secure two-way communication be- 
tween the software vendor and the user, Rights-To-Exe- 
cute may be distributed on demand to individual worksta- 
tions. Both software, and Rights-To-Execute can then be 
distributed on local or wide area networks, or by down- 
load from host systems to workstations. By using super- 
visor keys that are unique to each processor, installation 
of Rights-To-Execute on only that processor can be en- 
sured. 

Compact disks have been suggested as possible distri- 
bution media for software. Ironically, one of their disad- 
vantages is that they are capable of storing so many ap- 
plications on a single disk, that it is difficult to market the 
entire set of applications together. With ABYSS, it is pos- 
sible to sell a disk containing hundreds of protected ap- 
plications at a very low price, and sell individual Rights- 
To-Execute separately. Similarly, distribution by FM or 
cable TV broadcast can be protected. 

VIII. CONCLUSION 
ABYSS is an architecture that enables the protected ex- 

ecution of applications on protected processors, through 
its use of logical, physical, and procedural security. Soft- 
ware is separated from its Right-To-Execute, and strong 

cryptographic methods are used to manage both. Secure 
cryptographic channels can be used to move both software 
and Rights-To-Execute between protected processors. 
Tokens are introduced as a new use-once authorization 
mechanism. They are useful when authorizations are dis- 
tributed physically, rather than electronically. 

ABYSS does not require changes to current or planned 
software distribution methods. It is nearly transparent to 
the legitimate user. Software installation is automated, and 
there is no change in how software is executed. Rights- 
To-Execute for software can be transferred between sys- 
tems easily. Files containing the software may be stored 
on the user’s hard disk, on network file servers, or on a 
mainframe, and may be backed up at will. Furthermore, 
Rights-To-Execute can themselves be backed up, to pre- 
clude loss in the event of a failure of the protected pro- 
cessor. 

At the same time, all current and planned software dis- 
tribution system are supported, and protected. Software 
authors and vendors may use the system to enforce the 
terms and conditions of their software sales technically. 
This opens up many new opportunities for marketing soft- 
ware. 
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