
Designing a Trust Chain for a Thin Client

on a Live Linux CD
Megumi Nakamura

Tokyo Research Laboratory, IBM Japan

nakamegu@jp.ibm.com

Seiji Munetoh
Tokyo Research Laboratory, IBM Japan

munetoh@jp.ibm.com

ABSTRACT

CD-boot Linuxi is a live Linux environment, which is easy to use
because it is not installed in the hard disk, but simply boots

directly from a CD. This helps protect the sensitive information

because a clean environment can be prepared at boot time. To
insure this environment protects sensitive information, we adapted

the trusted computing technology to define a trustworthy
environment.

Categories and Subject Descriptors
D.4.3[Operating Systems]: Security and Protection –Verification

General Terms
Security and Verification.

Keywords
Thin Client, Trusted Computing

1. INTRODUCTION

To use a live Linux environment as a thin client to protect sensitive
information, we have to deal with some dangers of information

leakage. Various methods have been proposed to check the

integrity of the platform, but it is difficult to test it efficiently. We
designed our CD-boot Linux by adapting trusted computing

technology[1] to construct a trustworthy environment.

Constructing the secure environment should not be a troublesome
process. We propose an efficient process that checks the entire file

system.

2. TRUST CHAIN

To make a system secure, we use various tools, such as a firewall, a

virus scanner, secure channels, an IDS (Intrusion Detection
System), and so on. These security tools are used according to the

user's security policy. However such tools are useless if their
behavior is manipulated by malicious software. Trusted computing

technology deals with this problem by linking between trusted

components. The falsification attack can be detected if the link is
disrupted between the hardware and falsified component.

The Trusted Computing Group (TCG)[1] has defined a set of

specifications for trusted computing technology. They use a

hardware-based “root of trust” to test and report on the platform’s
integrity. The central module of the TCG architecture is the Trusted

Platform Module (TPM). The TPM can be used to verify and

report on the platform’s integrity. The “trusted bootstrap” process
is defined by the TCG to check the basic components on the

platform during system initialization. When the system is turned on,

the immutable initial bootstrap code verifies the next component
and stores the verification in the TPM before transferring control

to the next component. In subsequent steps, each component

checks the next component and records the check in the TPM.
Each component is measured by SHA-1 algorithm, and results are

stored in Platform Configuration Registers (PCRs). These are

tamper resistant registers within the TPM. A PCR can hold a digest
for multiple components using a hash-chain mechanism. By

looking at these values, the verifier can confirm the BIOS version,

etc.

A secure thin client platform needs an architecture including the
trust chain originated from the TPM so it is important to connect

the trust chains for the security of the entire platform. It is

necessary to design the client platform according to the TCG
specification. It needs a TPM, a BIOS supporting the trusted

bootstrap process, and a boot loader that supports TCG. The

operating system includes a set of basic components such as a
TPM driver and a TCG Software Stack, to support applications

that need TPM functions. We targeted the creation of a live CD

thin client because it can load everything from the boot loader to
the OS while considering the trust chain, resulting in a trustworthy

thin client.

3. INTEGRITY MEASUREMENT

For a live Linux CD, there are four crucial files. They are the boot
loader, the kernel, initrd (which contains libraries and modules),

and the root file system that contains the user space. After the
trusted bootstrap process, Trusted GRUB[4] is started and checks

the kernel and the modules. This GRUB verifies each component

one by one. If we use the Integrity Measurement Architecture
(IMA) [3], which is a Linux Security Module, then each

executable file in the platform is checked when it is loaded into the

kernel to execute. This mechanism allows recording and verifying
all of the files loaded after the system bootstrap. A difficulty of

validating with IMA is that a PCR value can change dynamically,

so the value does not convey enough information.
A more efficient measurement approach is to check the entire file

system at the time of the initial boot. The boot loader, kernel, initrd,

and the entire file system as a loopback device are loaded from
CD-ROM. Therefore, checking the each file in the CD-ROM at

bootstrap time can reasonably assure the integrity of the entire

system, and the attestation can be very simple.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC’07, March 11-15, 2007, Seoul, Korea.

Copyright 2007 ACM 1-59593-480-4/07/0003…$5.00.

1605

We propose an efficient integrity check of the block file system

because it takes too long time to read a large file to calculate the
SHA-1 value. Such a one-shot-check takes about 7½ minutes

before the system starts. To avoid this overhead time during the

initial boot, the file system is measured dynamically as it is being
accessed.

When a file is accessed, the kernel reads each block of data from
the file system. In our proposal, we calculate the hash value of

each block beforehand, and record them in a list in a file. The

kernel can verify the integrity of each block using this list file. This
list file must be protected from unauthorized modification.

Therefore, Trusted GRUB checks the list file and records the hash

value in a PCR. In this approach, the size of the files to be checked
by the boot loader is reduced to 20 bytes per one block. When the

block is read from the device, the hash value for the read block is

calculated with the SHA-1 function of the kernel, and compared
with the value recorded in the list file. If these two values are not

the same, the kernel knows the read block has been tampered with,

and it can take actions to stop reading the file and to block network
access.

In this approach, the trust chain recorded in the TPM is end at the
list file. The checking function and the list file dynamically verify

the blocks as they loaded, and the trust chain is extended into the

whole platform as a result.

4. PROTOTYPE

4.1 Implementation

We implemented the CD-boot client system in Knoppix Linux[2].

Knoppix is a bootable Linux based on Debian Linux. Knoppix

uses a compressed loop-back block device (CLOOP) to read the
file system on the CD-ROM, which is compressed using zlib. The

CLOOP file is a read-only file system.

To access the TPM, the kernel needs to support the TPM device

driver. We used kernel 2.6.17 that includes the TPM driver, and the
TPM Software Stack that provides basic TPM management

services. When the client boots, Trusted GRUB checks the kernel

and initrd, and records the results into PCRs. The initrd contains
the initial environment necessary for bootstrapping. Then a script

file in initrd mounts the compressed CLOOP file as a loop-back

file system.
When the CLOOP file is accessed, the CLOOP module reads and

uncompresses it. Therefore, this module can check the proper

blocks. We make a list of the hash values of all of the blocks in
advance. We added a function to check the hash value and a

function to compare the value with the value in the list.

Trusted GRUBCRTM kernelBIOS

Cloop (User Space Components)

TPM

hash list

1

1

2

record

new

mini root system

cloop module new

mini root system

cloop module new7.5mins

Figure 1: Integrity Measurement of CLOOP file

Figure 1 shows the verification chain. Formerly it took 7.5 minutes

to check the CLOOP file. With the proposed approach, the boot
loader only has to measure the list file of 300 KB. Detailed checks

are done after the system starts. In those checks, the module uses

the list which has already been checked by the boot loader.

4.2 Evaluation of Overhead Time

We evaluated this prototype with a server platform with a 1.6 GHz
CPU and 2.0 GB memory, and with a client platform with a 2.0

GHz CPU and 512 MB memory. We evaluated three types, A)

standard Knoppix, B) Knoppix with Trusted GRUB and C) Type B
with the proposed verification process. Table 1 shows the times for

each boot process: checking the CLOOP file, kernel, and initrd by

Trusted GRUB, and then the start up of the OS. Type B shows that
it takes 7.5 minutes to calculate the hash value of CLOOP file. In

our approach, the list of hash values is checked instead of the

entire CLOOP file. It takes two seconds to measure the list file
while booting, as shown in Type C.

In our proposal, the hash value is calculated for each read block,
and is compared with the value recorded in the list. Therefore,

“starting up” of Type C takes longer in starting up than Type A and

B. This extra time seems to come from the functions added to the
CLOOP module.

Table 1: Overhead Time

 A: Original B: T-GRUB C: Proposed

CLOOP - +7m 28s +0m 02s

kernel 0m 03s +0m 07s +0m 01s

initrd 0m 01s +0m 01s +0m 01s

starting up 1m 34s +0m 04s +0m 06s

Total 1m 38s +7m 40s +0m 10s
The time of type B and C is the overhead time compared with type A.

5. CONCLUSION

We have presented an occasional-use thin client system that

assures users have a trusted operating environment. Our next step

will be to develop the management mechanism of the integrity
information to verify whether the file system meets specific

security requirements.

6. ACKNOWLEDGMENTS

This study was sponsored by the Ministry of Economy, Trade and
Industry, Japan (METI) under contract for the New-Generation

Information Security R&D Program.

7. REFERENCES

[1] Trusted Computing Group (TCG),

http://www.trustedcomputinggroup.org/

[2] Knoppix, http://www.knopper.net/knoppix/index-en.html

[3] R. Sailer, et.al. Design and Implementation of a TCG-based

Integrity Measurement Architecture. USENIX Security

Symposium 2004, pp.223-238.

[4] H. Maruyama, et.al. Trusted Platform on Demand, IBM

Research Report RT0564, February 1, 2004.

i Linux is a trademark of Linus Torvalds in the United States and

other countries.

1606

