
Certifying Program Execution with Secure Processors

Benjie Chen Robert Morris
MIT Laboratory for Computer Science

{benjie,rtm}@lcs.mit.edu

Abstract

Cerium is a trusted computing architecture that protects
a program’s execution from being tampered while the
program is running. Cerium uses a physically tamper-
resistant CPU and a µ-kernel to protect programs from
each other and from hardware attacks. The µ-kernel
partitions programs into separate address spaces, and
the CPU applies memory protection to ensure that pro-
grams can only use their own data; the CPU traps to
the µ-kernel when loading or evicting a cache line, and
the µ-kernel cryptographically authenticates and copy-
protects each program’s instructions and data when they
are stored in the untrusted off-chip DRAM. The Cerium
CPU signs certificates that securely identify the CPU and
its manufacturer, the BIOS and boot loader, the µ-kernel,
the running program, and any data the program wants
signed. These certificates tell a user what program ex-
ecuted and what hardware and software environment sur-
rounded the program, which are key facts in deciding
whether to trust a program’s output.

1 Introduction

Although research on the use of tamper-resistant hard-
ware has been in progress for nearly 15 years [10, 11, 12,
7, 5], public concerns for issues such as copy protection
and secure remote execution and the recent push in com-
modity secure hardware [2] suggest that the benefits of
using secure hardware is now exceeding its overhead in
complexity, performance, and cost. This paper describes
a trusted computing architecture, Cerium, that uses a se-
cure processor to protect a program’s execution, so that a
user can detect tampering of the program’s instructions,
data, and control-flow while the program is running.

This paper considers the following computation
model. A user runs a program on a computer outside
the user’s control. The computer runs the program and
presents the user with an output. The user wants to know
if the output is in fact produced by an un-tampered ex-
ecution of the user’s program. We call this computation
model tamper-evident execution. Tamper-evident execu-

tion enables many new useful applications. For example,
a project that depends on distributed computation, such
as SETI@home [1], can use tamper-evident execution to
check that results returned by participants are produced
by the appropriate SETI@home software.

The goal of Cerium is to support tamper-evident exe-
cution while facing strong adversaries. At the user level,
Cerium should expose malicious users forging results of
other users’ programs without running them. At the sys-
tem level, Cerium should expose buggy operating sys-
tems that allow malicious programs to modify the in-
structions and data of other programs. At the hardware
level, Cerium should detect hardware attacks that tamper
with a program’s data while they are stored in memory,
such as attacks on the DRAM or memory bus. Such
strong adversaries prevent us from using software only
techniques (e.g. Palladium [3] and TCPA [2]) to imple-
ment tamper-evident execution.

Cerium is designed to be open and flexible. Cerium
does not limit which operating system or programs can
run on a computer. Instead, Cerium tells a user what pro-
gram executed and what hardware and software envir-
onment surrounded the program, so the user can decide
whether to trust the program’s output. This is in con-
trast to a more controlled and restrictive approach taken
by some related systems [12, 7]. The IBM 4758 sys-
tem [7], for example, provides a secure computing plat-
form by allowing only operating systems and programs
from trusted entities to run inside a secure co-processor.
The co-processor establishes trust with a new entity (e.g.
a bank) if other entities the co-processor already trusts
(e.g. the manufacturer) vouch for the new entity. Thus,
if a user wants to use the co-processor to run a program,
the user must first establish trusts with several entities.

Nevertheless, this paper proposes an architecture that
borrows several ideas from these systems. At the hard-
ware level, Cerium relies on a 4758-like physically
tamper-resistant CPU with a built-in private key. Unlike
the 4758 co-processor, the Cerium CPU is the main pro-
cessor in a computer and does not contain internal non-
volatile storage. The Cerium CPU caches a portion of



a running program’s instructions and data in its internal,
trusted, cache. The remaining portions reside in untrus-
ted external memory. Like Dyad [12], Cerium runs a µ-
kernel in the secure CPU. The kernel’s instructions and
its crucial data are pinned inside the secure CPU’s cache,
so they cannot be tampered with. User-level processes
that implement traditional OS abstractions (e.g. Mach
servers) and virtualized operating systems (e.g. Win-
dows running in VMWare) complete the µ-kernel-like
operating system.

The Cerium CPU and the µ-kernel cooperate to pro-
tection programs from each other and hardware attacks.
The µ-kernel partitions programs into separate address
spaces, and the CPU applies conventional memory pro-
tection to prevent a program from issuing instructions
that access or affect another program’s data (cached or
not). The CPU traps to the kernel when loading or
evicting a cache line, and the kernel’s trap handler cryp-
tographically authenticates and copy-protects each pro-
gram’s instructions and data when they are stored in un-
trusted external memory. This technique allows the ker-
nel to detect tampering of data stored off-chip.

The Cerium CPU reports what program is running
and what hardware and software environment surrounds
a program through certificates signed with the CPU’s
private key. The µ-kernel keeps a signature of the run-
ning program and includes the signature in the certific-
ate. With a certificate, a user can detect if a different
program binary was executed or if the computer is using
a buggy kernel that cannot be trusted to protect the user’s
program.

Remaining sections of the paper describe system
goals, related work, design, and applications.

2 System Goals

The main goal of the Cerium architecture is to provide
tamper-evident execution of programs. Cerium protects
a program’s instructions, data, and control-flow during
the program’s execution so that they cannot be tampered
by hardware attacks or other programs undetected.
Another goal of Cerium is to allow trusted and untrusted
operating system and processes to co-exist, all on the
same CPU. Cerium reports the hardware and software
environment to users so they can decide if the output of
a program is in fact produced by that program. To help
understand the design requirements, we describe a few
examples.

Secure Remote Execution: Distributed execution of
CPU-intensive programs can increase performance.
Projects such as SETI@home [1] tap CPU cycles on idle

computers scattered throughout the Internet. A problem
with this computing model is that users cannot easily
verify results obtained from an untrusted computer. A
malicious user can, for example, return forged results
without running the program. Cerium solves this
problem by allowing a user to verify that an output is in
fact produced by the user’s program.

Copy Protection: Content distributors can use Cerium
to enforce certain copyright restrictions. For example,
an e-book’s author can require customers to use Cerium,
and distribute copies of the author’s book so that each
copy can only be viewed on a computer with a particular
software configuration (i.e. with a given BIOS, boot
loader, µ-kernel, and media player). A distributor can
discover a Cerium computer’s configuration from a
certificate signed by the computer’s secure CPU.

Secure Terminal: Users frequently check their e-mail
by connecting to remote servers using untrusted termin-
als (e.g. at an Internet cafe). Although using tools such as
ssh or SSL-based web login prevents passive adversar-
ies sniffing data on a network, it does not prevent a bogus
software on the untrusted terminal from stealing data.
Cerium enables more secure login from untrusted ter-
minals using the Cerium architecture. A user’s trusted
server authenticates the login software and the terminal’s
operating system, to make sure that the login software
and the operating system appear on a list of software
known not to steal data. As a result, the terminal ap-
proaches the safety of the user’s own laptop.

3 Related Work

Previous research in secure processors and co-processors
makes the use of a tamper-resistant CPU realistic.
µABYSS [10], Citadel [11], and the IBM 4758 secure
co-processor [7] place CPU, DRAM, battery-backed
RAM, and FLASH ROM in a physically tamper-resistant
package such that any tamper attempt causes secrets
stored in the DRAM or battery-backed RAM to be
erased. AEGIS [4] uses a processor that ties a secret to
the statistical variations in the delays of gates and wires
in the processor; an attack on the processor causes a
chance in the processor’s physical property, and therefore
the secret. While no provably tamper-proof system ex-
ists, we believe current practices in building secure pro-
cessors make physical attacks difficult and costly.

Dyad [12] and the IBM 4758 system [7] use tamper-
resistant co-processors to provide trusted computing en-
vironments. Both systems allow only software from
entities the co-processor trusts to run inside the co-



processor. The co-processor boots in stages, starting with
the BIOS stored in the ROM. The software at each stage
self checks its integrity against a signature stored in the
co-processor’s non-volatile memory. Each stage also au-
thenticates the software for the next stage. Trusted en-
tities install and maintain the software and their signa-
tures. The co-processor establishes trust with an entity
(e.g. a bank) if other entities the co-processor already
trusts (e.g. the manufacturer) vouch for it. A trusted
program running on the co-processor can also store en-
crypted data on external memory or disk. An advant-
age of the co-processor approach is that a user can con-
nect a trusted co-processor using PCMCIA or USB; the
user does not have to trust the microprocessor or the co-
processor inside the computer the user is using. On the
other hand, to write a program for a co-processor, the
programmer must first establish trusts with several en-
tities. Cerium provides a more open and flexible com-
puting base. The Cerium architecture allows anyone to
write operating systems and programs (buggy or not) for
the secure CPU.

XOM [5] and AEGIS [8] also use physically tamper-
resistant processors to support tamper and copy-evident
computing. XOM and AEGIS do not to trust the operat-
ing system to protect programs from each other. Instead,
the secure processor partitions cache entries and memory
pages of different programs and the operating system in
hardware/firmware. In contrast, Cerium depends on a µ-
kernel to partition programs into separate address spaces
and to authenticate and copy-protect each program’s in-
structions and data when they are stored in untrusted ex-
ternal memory. Cerium securely identifies the µ-kernel,
so a user can decide if the µ-kernel can be trusted to pro-
tect the user’s program.

TCPA [2] promises to provide a trusted computing
platform. TCPA uses a secure co-processor to store
secrets and to perform cryptographic operations, but
runs programs on a conventional microprocessor. Con-
sequently, attacks on the DRAM and memory bus can al-
ter the execution of a program undetected. Like Cerium,
TCPA computes signatures of the system software as
it boots up, and uses these signatures to enforce copy-
protection. Palladium [3] is a software architecture that
uses TCPA hardware. Palladium uses a small µ-kernel
to manage applications that require security, much like
Cerium.

4 Cerium

Cerium protects a program’s execution using several
techniques. Cerium relies on a physically tamper-
resistant CPU with a built-in private key. The CPU runs

all the software a computer uses. The CPU’s tamper-
resistant package protects a program’s instructions and
data from hardware attacks when they reside in the
CPU’s internal cache. A µ-kernel partitions programs
into separate address spaces, and the CPU applies con-
ventional memory protection to prevent a program from
issuing instructions that affect data in another address
space. The CPU traps to the kernel when loading or
evicting a cache line, so the kernel can use cryptographic
techniques to detect tampering of data stored off-chip.
Upon request, Cerium tells a user what program is run-
ning, and what hardware and software environment sur-
rounds the program, so the user can decide whether to
trust the output of a program.

4.1 Tamper-Resistant CPU

The main component of Cerium is a tamper-resistant
CPU, packaged in a way that physical attempts to read or
modify information inside the CPU cannot succeed eas-
ily [4, 7, 10]. The CPU’s tamper-resistant package pro-
tects its internal components, such as registers and cache,
from hardware attacks. The CPU’s internal cache is big
enough (e.g. tens of megabytes) to contain a µ-kernel
and the working set of data for most programs, but not
big enough to contain whole programs. Programs that re-
quire more memory use untrusted external memory. The
CPU traps to a kernel when evicting or loading a cache
line, so the kernel trap handler can protect data stored in
external memory (see Section 4.2).

Each CPU has a corresponding public-private key pair.
The private key is hidden in the CPU and never revealed
to anyone else (including software that runs on the CPU).
The CPU reveals the public key in a CPU certificate
signed by the manufacturer. A user trusts a CPU if the
CPU certificate is signed by a trusted manufacturer. A
CPU uses the private key to sign and decrypt data, and
users use the public key to verify signatures and encrypt
data for the CPU.

4.2 Operating System

At the software level, Cerium uses a µ-kernel to create
and schedule processes onto the CPU and to handle traps
and interrupts. The kernel runs in privileged mode; it
can read or write all physical memory locations. Using
page tables, the kernel partitions user-level processes into
separate address spaces. The CPU applies conventional
memory protection to prevent a program from issuing in-
structions that access or affect data in another address
space. The page table of each address space is protected
so only the kernel can change it. To prevent tampering of



Service C

U
P

Virtualized OS

App App

Cerium Kernel

App
OS OS

Service

Figure 1: The organization of a Cerium system.

the kernel, the kernel text and some of its data reside in
the secure CPU’s cache and cannot be evicted.

The secure CPU traps to the µ-kernel when evicting
data from its cache to external memory, or loading data
from external memory into its cache. The kernel’s trap
handler decides, on a per-program basis, if and how the
data should be protected. A program may ask the ker-
nel to only authenticate or to both authenticate and copy-
protect its instructions and data whenever they leave the
secure CPU’s internal cache. This technique is similar to
the cryptographic paging technique used in Dyad [12].

The overhead of taking a trap on every cache event de-
pends on a program’s memory access pattern and miss
rate, the cost of cryptographic operations, and the level
of security a program demands. We believe that an in-
crease in the size of a CPU’s cache and using hardware-
assisted cryptographic operations decrease the overhead.
Furthermore, only programs that require integrity and/or
privay protection take on these costs. We are currently
investigating this issue.

Figure 1 shows what a Cerium system would look
like. The µ-kernel and some user-level servers that im-
plement OS abstractions form a complete operating sys-
tem. Users can also run virtualized operating systems
(e.g. Windows running in VMWare) in user space.

4.3 Booting

Cerium reports the hardware and software configuration
of a computer, so a user can decide if the hardware and
software can be trusted to protect the user’s program.
The CPU identifies each µ-kernel by the content hash of
the kernel’s text and initialized data segment. If the ker-
nel is modified before the system boots, its content hash
would change. Because a kernel’s text and data reside
inside the tamper-resistant CPU, they cannot be changed
(e.g. by a DMA device) after the system boots. We refer
to the kernel’s content hash as the kernel signature.

A Cerium computer boots in several stages. On a hard-
ware reset, the CPU computes the content hash of the
BIOS and jumps to the BIOS code. Next, the BIOS

computes the content hash of the boot loader, stored in
the first sector of the computer’s master hard drive, and
jumps to the boot loader code. Finally, the boot loader
code computes the µ-kernel signature, and jumps into the
µ-kernel. Each stage uses a privileged CPU instruction
to compute the content hash. The instruction stores the
content hash in a register inside the CPU. The registers
are protected so malicious programs cannot modify their
content. This booting technique is similar to that of
TCPA [2].

4.4 Running a Program

A program specifies its protection policy in its program
header, so the µ-kernel knows how to protect the pro-
gram’s instructions and data when they are stored in ex-
ternal memory. There are three protection policies: no
protection, authentication only, and copy-protection. A
program asks the kernel to only authenticate its instruc-
tions and data if they do not need to be hidden from other
programs. A program can also ask the kernel to copy-
protect its instructions and data, so other programs can-
not read their content.

When a program starts, the kernel first computes the
content hash of the program’s text and initialized data
segment. The kernel uses this content hash as the pro-
gram signature. A program signature uniquely identifies
the program; if the program text or initialized data val-
ues change, the content hash would change as well. This
technique only correctly protects programs using static-
ally linked libraries.

4.5 Memory Authentication

This section describes how a µ-kernel handles authentic-
ation of data stored in untrusted DRAM. The kernel di-
vides the entire physical address space into two regions.
The off-chip region contains program data, such as text,
data, and execution states, and some kernel data, such
as page tables. The on-chip region contains the kernel’s
text, initialized data segment, and some data the kernel
uses to authenticate data from the off-chip region. The
on-chip region is pinned inside the secure CPU’s cache
so they cannot be evicted to external memory. Data from
the off-chip region may be stored in external memory.

The µ-kernel efficiently authenticates data stored in
external memory using a Merkle tree [6, 9]. A Merkle
tree is a tree of hashes. Each intermediate node in the
tree contains an array of PA, hash pairs, where PA spe-
cifies the physical address of one of the node’s children,
and hash is the cryptographic content hash of that child.
Each leaf node stores hashes of data in external memory,



one hash for every 4K block (the size of a cache line on
the CPU; this is acceptable because the CPU contains a
large cache (e.g. tens of megabytes)). The root of the tree
is stored in the on-chip region of the memory, so it cannot
be modified by other programs or hardware attacks.

When the CPU traps to kernel to load data from ex-
ternal memory, the trap handler takes as its argument the
physical address of the data. The trap handler uses the
physical address to index the Merkle tree and find the
corresponding leaf node. The trap handler computes the
content hash of the data loaded into cache, making sure
that the hash matches the one stored in the leaf node.
When the leaf node is loaded into the cache, the trap
handler verifies its integrity using the hash stored in the
node’s parent. This recursive process stops at the root of
the tree. When the CPU evicts data from its cache, the
kernel trap handler updates the Merkle tree accordingly.

4.6 Copy Protection

The CPU and µ-kernel can copy-protect a program’s
instructions and data while they are stored in external
memory or on disk. We now describe how Cerium copy-
protects a file, which could be a program’s text or data.

Each copy-protected file has a corresponding protec-
tion profile. The protection profile contains a symmetric
encryption key and signatures of trusted BIOS programs,
boot loaders, kernels, and programs. A user encrypts the
plaintext file using the symmetric key in the protection
profile, then encrypts the profile using the Cerium CPU’s
public key. To open a copy-protected file, a program is-
sues an instruction to ask the CPU to retrieve the sym-
metric key from the file’s encrypted protection profile.
The CPU returns the symmetric key only if the protec-
tion profile contains the current software configuration
(i.e. signatures of the BIOS, boot loader, kernel and pro-
gram). For example, the CPU refuses to return the de-
cryption key if a malicious kernel, whose signature does
not appear in the profile, is running. This technique is
also used by TCPA and Palladium [2, 3].

A shell program that loads a copy-protected program
stores the symmetric key of the new program in the on-
chip memory region. When the CPU traps to kernel to
load or evict a cache line for the new program, the trap
handler uses this key to decrypt or encrypt the cache line.

4.7 Certifying Execution

Cerium is designed to be open and flexible. Cerium al-
lows any µ-kernel or program to run on a computer, but
reports what program is running and what hardware and
software environment surrounds the program. A user can

then decide if the identified hardware and software can be
trusted to protect the user’s program.

Cerium reports a computer hardware and software
configuration in an execution certificate. Each execu-
tion certificate contains the CPU certificate, the content
hashes of the BIOS and the boot loader code, the kernel
signature, the program signature, and any data the pro-
gram wants signed. For example, a program may also ask
the kernel for content hashes of user-level OS services
the program depends on. On a system call, the Cerium
kernel creates a certificate and fills in the program signa-
ture and program data. The CPU fills in the rest of the
certificate and signs the certificate with its private key.

Upon receiving a certificate, a user first extracts the
CPU’s public key and verifies that the CPU is made by
a trusted manufacturer. The user also checks the certi-
ficate’s signature. Next, the user checks if the signatures
of the BIOS, boot loader, and µ-kernel in the certific-
ate appear on a list of software the user trusts. Finally,
the user checks if the program signature in the certificate
matches the user’s program. If the user trusts the CPU
to correctly compute the hash of the BIOS, the BIOS to
correctly load the boot loader and compute its hash, the
boot loader to correctly load the µ-kernel and compute its
signature, and the µ-kernel to correctly protect the user’s
program, then the user can trust the output of the program
identified in the certificate.

5 Application Solutions

Secure Remote Execution: A user sends a program, the
program’s input, and a nonce to a remote computer. The
program performs computation on the remote computer
and obtains a signed execution certificate. The program
includes in the certificate the hash of the nonce and the
program’s input and output. The program output and the
certificate are then sent back to the user.

The fidelity of a program’s output is determined
in three steps. First, the user checks if the certificate
identifies a trusted CPU manufacturer and a software
configuration that the user trusts to protect the user’s
program. Second, the user checks if the certificate
identifies a program signature that matches the signature
of the user’s program. Finally, the user checks if the
hash of the nonce, the program input, and the received
output matches the hash shown in the certificate. If all
three conditions hold, then the output is in fact produced
by the user’s program.

Copy Protection: A content distributor takes three steps
to copy-protect a file. First, the distributor sends a chal-
lenge to the customer’s media player, and asks the media



player for an execution certificate that includes the hash
of the challenge. The distributor uses the certificate to
verify that the customer’s hardware and software config-
urations can be trusted to not leave the copy-protected
file unencrypted on disk or in external memory. Second,
the distributor creates a protection profile and encrypts
the file using the symmetric key in the profile. The dis-
tributor encrypts the profile using the public key of the
customer’s Cerium CPU. Finally, the distributor sends
the encrypted file and the encrypted protection profile to
the media player.

The media player asks the Cerium CPU to retrieve the
decryption key from the protection profile. The Cerium
CPU first decrypts the profile using its private key, then
checks the current software configuration to make sure
that it appears in the protection profile. If this check suc-
ceeds, the CPU returns the decryption key to the media
player.

When the media player decrypts the encrypted file
from the content distributor, the resulting plaintext
initially resides in the secure CPU’s cache. If the CPU
evicts a block of the plaintext to external memory, the
kernel’s trap handler uses a session key that the media
player generated to encrypt the evicted data.

Secure remote login: A user’s trusted server must au-
thenticate the hardware and software configuration of the
untrusted terminal on behalf of the user. Before a login
session, the login software (e.g. a ssh client) obtains
a nonce from the trusted server and obtains an execu-
tion certificate from the untrusted terminal that includes
the nonce. The login software forwards the certificate
to the user’s server. To verify the certificate, the server
checks that the certificate is signed by a trusted manufac-
turer’s CPU, that the untrusted terminal has a software
configuration that can be trusted, and that the nonce in
the certificate matches the one the server sent to the lo-
gin software. If these conditions hold, the server returns
a one-time response to the login software that the user
can recognize as coming from the server. The user can
then use the login software knowing that it will not steal
any sensitive data. This solution does not guard against
attacks on the computer’s input interface, such as using a
camera to monitor keyboard strokes.

6 Conclusion

This paper describes Cerium, a trusted computing archi-
tecture that provides tamper-evident program execution.
Cerium uses a physically tamper-resistant CPU and a
µ-kernel to protect programs from each other and from
hardware attacks. Cerium reports what program is run-

ning and what hardware and software environment sur-
rounds the program, so the a user can decide whether to
trust a program’s output.

Acknowledgments

We thank PDOS members and Satya for their comments.

References
[1] SETI@home. http://setiathome.ssl.berkeley.edu/.

[2] TCPA. http://www.trustedcomputing.org/.

[3] A. Carroll, M. Juarez, J. Polk, and T. Leininger. Microsoft
Palladium: A business overview, August 2002. Microsoft
Press Release.

[4] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas.
Controlled physical random functions. In Proceedings of
the 18th Annual Computer Security Applications Confer-
ence, December 2002.

[5] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln,
D. Boneh, J. C. Mitchell, and M. Horowitz. Architectural
support for copy and tamper resistant software. In Pro-
ceedings of Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS),
pages 168–177, 2000.

[6] U. Maheshwari, R. Vingralek, and W. Shapiro. How to
build a trusted database system on untrusted storage. In
Proceedings of the 4th USENIX Symposium on Operat-
ing Systems Design and Implementation, pages 135–150,
October 2000.

[7] S. W. Smith and S.H. Weingart. Building a high-
performance, programmable secure coprocessor. In Com-
puter Networks (Special Issue on Computer Network Se-
curity), volume 31, pages 831–860, April 1999.

[8] E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Deva-
das. The AEGIS processor architecture for tamper-
evident and tamper resistant processing. Technical Re-
port LCS-TM-461, Massachusetts Institute of Techno-
logy, February 2003.

[9] E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Deva-
das. Hardware mechanisms for memory authentication.
Technical Report LCS-TM-460, Massachusetts Institute
of Technology, February 2003.

[10] S. Weingart. Physical security for the µABYSS system.
In Proceedings of the IEEE Computer Society Conference
on Security and Privacy, pages 38–51, 1987.

[11] S. White, S. Weingart, W. Arnold, and E. Palmer. Intro-
duction to the Citadel architecture: security in physically
exposed environments. Technical Report RC16672, IBM
Thomas J. Watson Research Center, March 1991.

[12] B. Yee. Using secure coprocessors. PhD thesis, Carnegie
Mellon University, May 1994.


	Introduction
	System Goals
	Related Work
	Cerium
	Tamper-Resistant CPU
	Operating System
	Booting
	Running a Program
	Memory Authentication
	Copy Protection
	Certifying Execution

	Application Solutions
	Conclusion

