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Abstract

Microprocessor design is undergoing a major paradigm
shift towards multi-core designs, in anticipation that fu-
ture performance gains will come from exploiting thread-
level parallelism in the software. To support this trend, we
present a novel processor architecture called the Multiple
Instruction Stream Processing (MISP) architecture. MISP
introduces the sequencer as a new category of architectural
resource, and defines a canonical set of instructions to sup-
port user-level inter-sequencer signaling and asynchronous
control transfer. MISP allows an application program to
directly manage user-level threads without OS intervention.
By supporting the classic cache-coherent shared-memory
programming model, MISP does not require a radical shift
in the multithreaded programming paradigm. This paper
describes the design and evaluation of the MISP architec-
ture for the IA-32 family of microprocessors. Using a re-
search prototype MISP processor built on an IA-32-based
multiprocessor system equipped with special firmware, we
demonstrate the feasibility of implementing the MISP archi-
tecture. We then examine the utility of MISP by (1) assess-
ing the key architectural tradeoffs of the MISP architecture
design and (2) showing how legacy multithreaded applica-
tions can be migrated to MISP with relative ease.

1. Introduction

Across the industry, the relentless pursuit of higher clock
frequency for achieving better single-thread (ILP) perfor-
mance has abruptly stalled due to the untenable power
scaling required to continue this approach. As a result,
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many microprocessor manufacturers are designing future
processors with multiple processor-cores per die to improve
thread-level (TLP) performance. As multi-core processors
become more widely available, there will be considerable
impetus towards developing multithreaded applications that
take advantage of these processors. However, two signifi-
cant challenges can potentially impede the progress of en-
abling multithreaded applications on multi-core processors.

First, tremendous effort is required to design or retool an
operating system (OS) to effectively support a large num-
ber of cores, as evidenced in [5]. Contemporary OSs play a
vital role in managing the execution of multithreaded appli-
cations on multi-core processors and multi-socket multipro-
cessing systems. Application programs use an OS-provided
application programming interface (API) for thread control
and thread synchronization, and threads are scheduled for
execution by the OS. Unfortunately, legacy OSs may not be
able to effectively deal with the increasing number of cores
in multi-core processors. It is highly desirable to seek alter-
natives to the OS-based threading interface that allow mul-
tithreaded applications to scale to a larger number of cores
independent of OS support.

Second, most multiprocessor OSs are designed to man-
age symmetric or homogeneous processing cores. Research
has shown that asymmetric or heterogeneous cores can de-
liver higher performance at a given power budget than a ho-
mogeneous multi-core design [9, 15, 17, 18]. However, as
Balakrishnan et al. observed [2], the asymmetry in the het-
erogeneous or asymmetric cores can lead to unpredictable
and adverse execution behaviors if thread executions on
these cores are managed by the OS.

To address these challenges, this paper presents the Mul-
tiple Instruction Stream Processing (MISP) architecture.
MISP defines a MIMD ISA extension that introduces a new
form of architectural resource, called sequencer, as the ab-
straction of a processor core. Each MISP processor con-
sists of two or more sequencers: one sequencer is managed
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by the OS while the rest are managed by the application
program. With respect to the OS managed sequencer, the
application managed sequencers behave as MIMD “func-
tional units.” Each application managed sequencer runs a
distinct instruction stream as a user-level thread in paral-
lel with other sequencers; such a user-level thread is called
a shred. To the OS, a MISP processor appears as a sin-
gle logical CPU on which OS threads can be scheduled.
Each OS thread can consist of multiple shreds that can run
concurrently on multiple sequencers in the MISP proces-
sor. Within a MISP processor, the sequencers may be het-
erogeneous or asymmetric in terms of performance, power
or functionality. Since the application manages these se-
quencers, there is no need for the OS to cope with the
asymmetry among sequencers. Furthermore since all se-
quencers in a MISP processor operate within the same OS
thread and share the same virtual address space, the MISP
architecture preserves the widely-accepted shared-memory
programming model. With this essential architectural sup-
port for shared virtual address space amongst sequencers,
MISP-enabled applications or runtime software are relieved
of the complexity of having to explicitly manage partitioned
code and data working sets between distributed memory
spaces [8].

Rather than defining new instructions that directly match
all the high level multithreading primitives (e.g. fork,
synchronization, etc.) [16], the MISP ISA extension takes
a minimalist approach by defining a canonical set of
sequencer-aware instructions that support inter-sequencer
signaling and asynchronous control transfer. The new in-
structions are sufficient for supporting the prevalent shared-
memory multithreaded programming model. In fact, one
can easily use the MISP ISA extension to construct a
POSIX-compliant user-level multithreading runtime soft-
ware infrastructure, which can hide the new instructions be-
hind a familiar, legacy threading API, such as the POSIX
Threading API (Pthreads). Consequently, the MISP multi-
core implementation is relieved of the complexity needed to
manage shred contexts and shred scheduling in hardware.

This paper makes the following contributions:

1. We introduce MISP, a novel MIMD extension to the
IA-32 ISA, as an alternative to the OS-based approach
by which a multithreaded application program can di-
rectly manage multiple architectural processor-core re-
sources. This MISP architecture and execution model
can coexist with the legacy OS-based approach to mul-
tiprocessing.

2. Through the use of special firmware, we prototyped an
implementation of the MISP architecture using a phys-
ical IA-32-based multiprocessor system. With this
prototype system and a set of representative large-scale
multithreaded applications, we examine the key archi-

tectural tradeoffs and demonstrate the feasibility to ef-
ficiently implement an IA-32 MISP processor. Beyond
the MISP uniprocessor, we further extended our proto-
type to emulate an MP system with multiple MISP pro-
cessors and report the initial evaluation of this MISP
MP prototype.

3. We provide empirical evidence that the migration of
legacy software from the traditional SMP targets to
the MISP architecture can be accomplished with rela-
tive ease due to MISP’s support for the shared-memory
programming model.

The remainder of the paper is organized as follows.
Section 2 introduces the MISP architecture and execution
model. Section 3 presents the MISP programming model
and software environment. Section 4 describes an ex-
perimental prototype system for an implementation of a
MISP processor and a runtime software layer that provides
POSIX-compliant threading API support to the application
developer. Section 5 assesses the key MISP architectural
tradeoffs through an analysis of multithreaded workloads
executing on the MISP prototype system. Section 6 dis-
cusses how our work differs from previous research. Sec-
tion 7 presents conclusions and indicates areas for future
work.

2. MISP Processor Architecture

The MISP architecture provides a canonical set of ISA
mechanisms that support execution of user-level threads on
the asymmetric sequencers. For convenience, we use shreds
to denote these MISP-enabled user-level threads, and de-
scribe an application that is parallelized with shreds as being
multi-shredded. Figure 1 depicts a multi-shredded applica-
tion running as a single OS thread on a MISP processor that
consists of one OS-managed sequencer (OMS) and three
application-managed sequencers (AMS). This MISP pro-
cessor is presented to the OS as a single logical processor
capable of running one OS thread at a time.

The remainder of this section provides further detail on
the key features in an IA-32-based MISP ISA design.

2.1 Sequencer as Architectural Resource

A sequencer corresponds to a hardware thread con-
text that is capable of fetching and executing one stream
of instructions. Multiple sequencers in a MISP proces-
sor can be physically implemented through a variety of
techniques, including simultaneous multithreading (SMT),
chip-multiprocessor (CMP), or even multi-socket multipro-
cessors. And much like how register and memory architec-
tural resources can be virtualized, the sequencer resource
can be virtualized as well; the mechanism to map virtual
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sequencers to physical sequencers is called sequencer vir-
tualization. For the rest of this paper, and without loss of
generality, we focus on sequencers that are of the same ISA
family but with potential differences in microarchitecture
organization, performance, power and degree of functional
completeness. We also assume a trivial one-to-one map-
ping between virtual sequencers and physical sequencers,
and leave a full analysis of sequencer virtualization to fu-
ture work.

2.2 OS-managed Sequencer and
Application-managed Sequencer

Contemporary OSs require processor support for multi-
ple privilege levels of instruction execution, so that the OS
kernel services and application software have different de-
grees of access privilege and protection for various proces-
sor resources. In IA-32, the privilege levels are also referred
to as Rings, and most OS kernel services execute at Ring 0
while the application (user-level) code executes at Ring 3.

In an IA-32 MISP processor, the OS-managed sequencer
(OMS) supports the full IA-32 ISA semantics at all privi-
lege levels, and thus is capable of executing both OS kernel
services and user-level code. In contrast, the application-
managed sequencers (AMS) are user-level resources that
execute only in Ring 3 and, therefore, need to support only
the Ring 3 subset of the IA-32 ISA semantics. Without loss
of generality, we assume that AMSs support the Ring 3 ISA
semantics for the discussion that follows.

From the OS’s perspective, one thread can be scheduled
to one MISP processor at a time, and the AMSs effectively
serve as MIMD “functional units” to the OMS. Upon a
thread context switch, the cumulative context states for all
sequencers are subject to being saved and restored in the OS
kernel. In fact, providing the aggregate save area for the cu-

mulative states of all AMSs is the primary, if not the only,
additional OS support required of a legacy OS.

Allowing asymmetry between the OMS and its AMSs
promises opportunities for much simpler and more efficient
microarchitectural implementations of AMSs by shedding a
portion of the ISA legacy. However, care should be taken to
avoid impairing the well established shared-memory multi-
threaded programming paradigm, and to ensure the appear-
ance of functional symmetry amongst the sequencers. To
this end, MISP provides direct architectural support to pre-
serve the shared-memory programming paradigm and gives
software the illusion of functional symmetry amongst se-
quencers.

2.3 Architectural Support for Sharing the
Virtual Address Space

In IA-32, a small set of Ring 0 control registers are used
to manage the virtual to physical memory address transla-
tion (e.g. the page table base is stored in control register
CR3). To support a shared virtual address space among se-
quencers in a MISP processor, all sequencers are required
to synchronize upon any update to this set of Ring 0 con-
trol registers. A variety of approaches can be used to effi-
ciently support this mechanism. For example, the simplest
implementation suspends all AMSs whenever the OMS per-
forms a transition from Ring 3 to Ring 0, and ensures any
OMS’s update to the related control registers be synchro-
nized across all AMSs before the subsequent OMS’s tran-
sition from Ring 0 back to Ring 3. Once the OMS has re-
turned back to Ring 3, the AMSs can resume execution. In
modern IA-32 implementations, any write to control regis-
ter CR3 automatically purges that sequencer’s TLB. As long
as there is no page fault (page fault handling is described in
Section 2.5), each sequencer can independently execute a
shred in Ring 3 in parallel with other sequencers, with any
TLB miss handled independently by the sequencer’s hard-
ware TLB page walker.

Pausing the AMSs while the OMS executes in Ring 0
ensures correctness of execution, but this delay is unneces-
sary when the OMS does not modify the control registers
that manage the application’s virtual address space. Instead
of pausing the AMSs, a more aggressive microarchitecture
could allow the AMSs to continue executing speculatively
while monitoring for any control-register updates from the
OMS. If no related control registers are updated while the
OMS executes in Ring 0, the AMSs can retire the specula-
tively executed instructions once the OMS returns to Ring
3. However, such an approach could require much higher
hardware complexity. To further assess the performance im-
pact of synchrony induced by the OMS ring transition, we
will present findings from a prototype-based evaluation in
Section 5.
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2.4 Architectural Support for Inter-
Sequencer Signaling

In the classic SMP system, processors communicate via
the interprocessor interrupt (IPI) mechanism. To support
concurrent execution of multiple instruction streams on all
the sequencers in a MISP processor, the MISP ISA intro-
duces a user-level dual of the interprocessor interrupt (IPI).

MISP defines a SIGNAL instruction, which at mini-
mum includes a Sequencer ID (SID), a starting instruc-
tion pointer (EIP), and a stack pointer (ESP) as operands.
SIDs are logical identifiers that specify a particular se-
quencer within the current MISP processor, and the 〈EIP,
ESP〉 pair forms a shred continuation. SIGNAL generates
an inter-sequencer signal that delivers the shred continua-
tion 〈EIP, ESP〉 to the destination sequencer denoted by the
SID. To initiate a shred on an AMS, the application executes
the SIGNAL(sid, eip, esp) instruction to send an
egress signal to the AMS. The OMS then continues exe-
cuting at the instruction following the SIGNAL instruction.
Once the AMS receives the signal and commences the shred
at the continuation, the AMS and the OMS are executing
two shreds in parallel.

With the SIGNAL instruction, the MISP ISA has a gen-
eral mechanism to perform egress control and data trans-
fer between sequencers in a MISP processor. To re-
spond to an ingress inter-sequencer signal, the destina-
tion sequencer supports asynchronous control transfer via
a YIELD-CONDITIONAL mechanism, which is similar
to the one described in the Virtual-Multithreading (VMT)
work [26]. With YIELD-CONDITIONAL, a sequencer can
set up a trigger-response mapping between an ingress inter-
sequencer signal and a corresponding handler. When the
anticipated asynchronous event occurs, the shred effectively
performs an asynchronous function call to the handler: the
sequencer suspends execution of the current shred, saves
the next EIP, and then performs a fly-weight control trans-
fer into the handler. Later, upon return from the handler, the
original shred is resumed from the saved EIP.

2.5 Architectural Support for Proxy Exe-
cution

MISP introduces a novel architectural mechanism, called
proxy execution, which provides software the illusion of
functional symmetry amongst the sequencers, despite any
physical asymmetry or heterogeneity that may exist. The
main idea of proxy execution is to architecturally define a
set of triggering conditions that cause a user-level fault-type
exception to occur on an AMS. When one of the trigger-
ing conditions is encountered, the fault exception is relayed
from the AMS to the OMS. Upon notification, the OMS can
perform an asynchronous control transfer to suspend its cur-

Application-ManagedOS-Managed

OMS AMS AMS AMS

Application-ManagedOS-Managed

OMS AMS AMS AMS

2-way MISP Multiprocessor Configuration 

Mutiprocessor OS

OS

Figure 2. MISP Multiprocessor

rent code execution and jump to a proxy handler to perform
proxy operations on behalf of the AMS. During proxy exe-
cution, the OMS saves its original sequencer states and tem-
porarily assumes the sequencer states of the faulting AMS.
The OMS re-executes the faulting instruction, triggering the
fault again and causing OS services to be activated — the
very work that cannot be done on the AMS. After the fault
is handled by the OS, the proxy handler saves the current
OMS states and then restores them to the AMS’s context,
effectively resuming the original AMS shred execution on
the AMS. The handler then restores the original OMS states
back to the OMS context, effectively resuming execution of
the interrupted OMS. The OMS and AMS are once again
running in parallel.

The basic triggering conditions that can lead to proxy
execution are exceptions (e.g. page faults) and OS service
requests (e.g. system calls) encountered on an AMS. These
events require the OS’s attention, but the AMS cannot di-
rectly attain the OS services, so the proxy execution mech-
anism enlists the OMS as a temporary helper sequencer to
perform the OS services on behalf of the AMS. From an-
other perspective, the proxy mechanism provides architec-
tural support for dynamic shred migration, and therefore, to
the application, the AMS appears to be functionally equiv-
alent to the OMS. The proxy execution mechanism is es-
sentially an architectural guarantee for any shred to make
forward progress regardless of which sequencer it is run-
ning on. It is important to note that the above algorithmic
steps for proxy execution can be used to deal with any AMS
proxy request. In other words, at minimum, a single proxy
handler on the OMS is sufficient to deal with all proxy con-
ditions.

2.6 MISP MP Architecture

Like traditional processors, multiple MISP processors
can be combined to form a multiprocessor system. As illus-
trated in Figure 2, the OS sees only the OMSs and sched-
ules threads to run on each. Each thread, in turn, can use the
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SIGNAL instruction to utilize an AMS within the thread’s
MISP processor. If a thread is context-switched away by
the OS, its AMSs are suspended and their states are saved
to memory. If that thread is later re-scheduled to run on
a different OMS, the previously saved AMS states are re-
stored on the new AMSs. If one OMS transitions into Ring
0, it suspends its AMSs as before, but the second MISP pro-
cessor is unaffected and continues running.

To the OS, the MISP MP system appears as a normal
SMP system, and is managed as such. Conveniently, the se-
mantics of instructions that may affect multiple processors,
such as IA-32’s WBINVD instruction [13], remain valid for
both OMSs and AMSs. As a result, legacy SMP OS mech-
anisms, such as the TLB shootdown protocol [14], are sup-
ported without change to the OS. Recall that a MISP pro-
cessor synchronizes its AMSs with the OMS to maintain a
shared virtual address space. Similarly, the OS maintains
shared virtual address spaces across active OS threads by
synchronizing the threads upon any changes. To illustrate
this concept, an application can have two threads, each run-
ning on a separate MISP processor, as shown in Figure 2.
If the OS changes the virtual address space for the running
process, the OS must notify all active threads in that pro-
cess. The OS sends an IPI to each currently active thread,
causing each to trap into the OS (a Ring 3 to Ring 0 tran-
sition). The OS can then safely manage the virtual address
space for the entire application process. Since the AMSs
will necessarily be updated when the OMS returns from
Ring 3, the virtual address space remains consistent across
all sequencers in the MISP processor.

3. MISP Programming Model

Like an OS thread, a shred represents a stream of in-
structions that can execute concurrently with other instruc-
tion streams. However, since shreds belong to an OS thread,
when the OS thread is context switched, the shreds are ef-
fectively suspended. So a shred bears more resemblance to
the fiber abstraction provided by Microsoft Windows [21].
Fibers and shreds are each created and managed by the ap-
plication. Shreds, however, differ from fibers in a significant
way. Within an OS thread, only one fiber can be scheduled
for execution at any time, which prevents a thread’s fibers
from executing concurrently. In contrast, an OS thread’s
shreds can execute concurrently on multiple sequencers. In
other words, shreds are like concurrently executing fibers.

Because an application can not rely on the OS for shred
scheduling, such services must be provided at application
level. Since the MISP architecture supports the shared-
memory multithreaded programming paradigm, a POSIX-
compliant user-level runtime for shred control and syn-
chronization can be built to provide commonly used shred
scheduling mechanisms. The runtime provides seamless in-
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AMS
SIGNAL

OMS

Exit?

Shred_create()

No

Yes

Run_shred()

Exit?
No

Yes
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Figure 3. MISP-based Shred Gang Schedul-
ing via Shared Work Queue

tegration between the MISP programming model and the
threading model commonly provided by the OS.

To illustrate the MISP programming model, the follow-
ing example demonstrates how to create an M : N (shreds
to sequencers, M >= N ) gang scheduler based on a sim-
ple work queue. The example in Figure 3 shows a simple
algorithm for scheduling shreds in FIFO order to execute
concurrently on the OMS and one AMS. The work queue is
a mutex-protected shared memory data structure, and holds
the shred continuations (i.e. 〈EIP, ESP〉 pairs) that are ready
to execute. The algorithm works as follows: The OS thread
executing on the OMS first uses the trigger-response mecha-
nism to register a proxy-handler routine for servicing proxy
requests from the AMSs. Next, the thread creates a new
shred by calling the Shred create routine, which inserts a
new shred continuation into the work queue. The thread
then initiates a gang scheduler shred on the AMS through
the SIGNAL instruction, and starts the gang scheduler rou-
tine on the OMS through a function call. At this point, gang
scheduler routines are running concurrently on the two se-
quencers and contending for access to the work queue. In-
side each gang scheduler, the Run shred routine interrogates
the mutex to the work queue, attempts to grab an avail-
able shred and, if available, performs a light-weight con-
text switch to execute the shred. One gang scheduler will
eventually obtain the mutex to the work queue, retrieve the
first shred and perform the context switch to run the shred.
Once the shred is executing, it can create additional shreds
via Shred create. Once a shred completes or yields, execu-
tion returns to the gang scheduler, which will again contend
for the next shred from the work queue. This process con-
tinues until all shreds have completed execution.

A shred running on a sequencer can choose to voluntar-
ily yield and place itself back into the work queue, causing
a different shred to be chosen from the queue and scheduled
on the sequencer. By supporting yield semantics, a variety
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of shred synchronization primitives can be introduced, in-
cluding various queue-based locking algorithms.

4. MISP Prototype System

We have built a prototype MISP processor using special
firmware and developed a user-level multi-shredding run-
time, called ShredLib. Together, the prototype and runtime
provide an effective software development vehicle facilitat-
ing the development of multi-shredded applications, the mi-
gration of existing multithreaded applications from an SMP
platform target to the MISP processor, the analysis of MISP
performance, and the assessment of key architectural trade-
offs of the MISP architecture.

4.1 Emulator of the MISP Architecture

Our MISP processor prototype is built on a 4-socket
SMP platform with 3.0 GHz Intel IA-32 dual-core proces-
sors. HyperThreading is disabled to simplify the perfor-
mance analysis. The operating system is Windows Server
2003. By setting the /NUMPROC parameter to 1 in the
boot.ini configuration file, Windows recognizes and
boots on only one processor, giving our system the ap-
pearance of a MISP uniprocessor, with one processor OS-
visible, and the other seven sequestered. We use the OS-
visible processor to emulate an OMS and the sequestered
processors to emulate seven AMSs.

With a custom firmware, all key aspects of the MISP
ISA extensions are emulated, including the SIGNAL in-
struction, the sequencer-specific state machines for inter-
sequencer signaling, the YIELD-CONDITIONAL mecha-
nism to register a proxy handler (which catches an AMS ex-
ception condition via the trigger-response mechanism) and
to handle the asynchronous control transfer, and the detec-
tion of the proxy execution triggering conditions on AMSs.
The firmware also detects ring level transitions on all se-
quencers. The firmware suspends all AMSs when the OMS
transitions from Ring 3 to Ring 0, and resumes the AMSs
once the OMS returns from Ring 0 to Ring 3. In the case
of proxy execution, the firmware provides a Ring 3 inter-
sequencer signal requesting that the AMS save its state con-
text to memory, which provides the OMS the state needed
to impersonate the AMS.

The firmware also facilitates detailed performance anal-
ysis by providing coarse- and fine-grain event logging. The
coarse-grained event logging provides total counts for the
number and cause of ring transitions on each sequencer.
The fine-grained event log provides time-stamped events in-
dicating the start and end time of a particular event; as an
example, if a page fault occurs on the OMS, the fine-grained
event log provides the time spent in the firmware managing
the AMSs and the time spent in the OS servicing the page

fault. The firmware also provides feedback to the applica-
tion developer on the number of proxy execution events and
their causes. Developers can use this information to tune
their applications by identifying where significant time is
spent handling proxy execution.

4.2 Prototype Runtime Environment

The ShredLib runtime is a dynamically linked library
(DLL) that implements the shared-memory multi-shredded
programming model for the MISP architecture. By default,
ShredLib implements a POSIX-compliant suite of shred
control and shred synchronization primitives, including
support for critical sections, mutexes, condition variables,
semaphores, and events. ShredLib also provides a generic
routine to handle proxy execution for all proxy triggering
conditions. To facilitate migration of legacy multithreaded
applications to a MISP processor, ShredLib provides legacy
API translations for the Pthreads [6] and Win32 Threads [4]
APIs. ShredLib also seamlessly supports both Thread Lo-
cal Storage [21] and Structured Exception Handling [21] —
two common Windows OS services supported by Intel and
Microsoft compilers (e.g. declspec(thread)) — for
shreds, without requiring recompilation or changes to the
compiler.

Internally, ShredLib implements several different shred
scheduling algorithms and can be customized for an ap-
plication’s special requirements. ShredLib also provides
a detailed event logging system that can profile relevant
scheduling activities, such as inter-shred dependencies and
contention on common synchronization objects. This event
logging system is complementary to that provided by the
prototype MISP processor’s custom firmware.

5. Experimental Results

To study the MISP architecture, we selected existing
multithreaded applications, converted the applications to
use shreds, and then executed these applications on several
different configurations of the MISP prototype (described
in Section 4). In the analysis that follows, we first focus on
quantifying the performance overhead of synchronizing the
AMSs during ring transitions, as this operation can poten-
tially degrade performance. We then investigate how legacy
single- and multi-threaded applications will co-exist with
multi-shredded applications. Finally, we measure empiri-
cally how easily MISP can be used by application programs.
Our initial analysis of the MISP architecture shows that:

• Application performance is relatively insensitive to
the overhead of synchronizing AMSs during privilege
level transitions (Section 5.3).
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• A MISP-based multiprocessor system can improve
throughput over a single MISP when used in a multi-
programming environment (Section 5.4).

• Porting multithreaded application software from SMP
to the MISP architecture requires little effort and few,
if any, structural changes to the original source code
(Section 5.5).

Throughout this evaluation, we compare and contrast
MISP performance with that of an equivalently configured
SMP system. MISP is not designed to replace SMP and the
comparison with SMP should not be confused as such; in
fact, as we show in Section 5.4, MISP and SMP are comple-
mentary architectures. SMP performance simply provides a
convenient baseline from which the performance impact of
MISP architectural tradeoffs can be better understood.

5.1 MISP Overhead Modeling

MISP introduces an overhead of synchrony not found
in SMP architectures. All AMSs must suspend execution
when the OMS transitions from Ring 3 to Ring 0, and be-
fore resuming, each AMS must synchronize with the OMS
on a small set of Ring 0 control registers once the OMS
transitions back to Ring 3. This synchrony overhead can be
separated into three categories: the serialization time across
OMS ring transitions, the overhead associated with each
shred to perform proxy execution, and the overhead for the
OMS to handle proxy execution. Each category of perfor-
mance overhead is modeled below. In each of the models,
signal represents the time needed for inter-sequencer com-
munication.

Serialization Overhead Across Ring Transitions

serialize = 2 × signal + priv (1)

Recall that the prototype suspends all AMSs when the
OMS transitions from Ring 3 to Ring 0, as it implements
a simple mechanism to synchronize the privileged state.
Equation 1 indicates the performance overhead as the cost
to simultaneously SIGNAL all AMSs to suspend them-
selves (signal), plus the time spent executing in the OS
(priv) and the cost to SIGNAL all AMSs to resume them-
selves (signal). Note that priv includes the time needed for
the AMSs to save and restore their state upon an OS thread
context switch; we expect this operation to be performed
concurrently for all AMSs.

AMS Proxy Execution Overhead

proxyegress = 3 × signal (2)

Equation 2 indicates the performance overhead incurred
by a shred that requires proxy execution. This overhead
includes the cost to notify the OMS of the proxy request
(signal), the time for the OMS to suspend all active AMSs
(signal), and the time for the OMS to resume all AMSs
after proxy execution (signal).

OMS Proxy Execution Overhead

proxyingress = signal + serialize (3)

Equation 3 indicates the overhead incurred by the OMS
to handle the proxy execution request. This overhead
equals the time to process the proxy request from the
AMS (signal) plus the cost of a serialization operation
(serialize, from Equation 1).

5.2 Workloads and Methodology

To analyze the performance of the MISP architecture, we
choose a number of compute-bound, multithreaded kernels
and applications from the SPEComp benchmark suite [1]
and the Recognition-Mining-Synthesis (RMS) benchmark
suite [7]. Each application is converted to use shreds in
place of threads and then executed on the MISP prototype
system. The SPEComp benchmark suite represents real
multithreaded scientific applications; from this suite we se-
lect the applications swim, applu, galgel, equake and art,
and use the reference input set (ref) as input. The RMS suite
includes kernels of code extracted from emerging applica-
tions; for example, the suite includes kernels of code for
matrix multiplication (both dense and sparse), partial differ-
ential equations solver (Gauss-Seidel iterative solver), and
K-Means clustering. It also includes larger applications,
such as a highly scalable multithreaded graphics applica-
tion, RayTracer [10]. All applications are compute-bound
and exhibit varying degrees of scalability, and each is com-
piled with the Intel R© C++ or Intel R© Fortran compilers. The
RMS benchmark applications require a recompilation from
source code to use the ShredLib API for shred management.
The SPEComp applications use a MISP-enabled version of
OpenMP runtime from the Intel R©Threading Tools [11] and,
thus, none require source code modifications.

While applications execute much faster on the MISP pro-
cessor prototype than in a software-based simulator, the
prototype still incurs an emulation overhead far greater than
the performance overhead expected on an actual MISP pro-
cessor. To account for emulation overhead, we measure
the time spent executing firmware and subtract this time
from the total execution time, as this firmware would not
be present in a real implementation. For the cost of signal,
we assume 5000 clock cycles, representing what we believe
to be a conservative estimate of a microcode-based imple-
mentation of the inter-sequencer signaling mechanism.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06) 
0-7695-2608-X/06 $20.00 © 2006 IEEE 



0

1

2

3

4

5

6

7

8

9

ADAt

de
ns

e_
m

m
m

de
ns

e_
m

vm

de
ns

e_
m

vm
_s

ym
ga

us
s

km
ea

ns

sp
ar

se
_m

vm

sp
ar

se
_m

vm
_s

ym

sp
ar

se
_m

vm
_t

ra
ns

sv
m

_c

Ray
tra

ce
r

sw
im

ap
plu

ga
lge

l

eq
ua

ke ar
t

S
p

ee
d

u
p

 (
vs

. 1
P

 p
er

fo
rm

an
ce

) MISP SMP

Figure 4. MISP Performance: 1 OMS + 7 AMS

5.3 MISP Performance Analysis

We first examine the performance tradeoffs of a MISP
uniprocessor. The prototype system contains eight se-
quencers: one sequencer is configured as the OMS and
the remaining seven as the AMSs. Our primary focus is
to assess the performance impact of synchrony due to the
ring transitions of the OMS. The overhead of each serial-
izing event potentially increases as the number of AMSs
increases, as parallelism is lost while servicing the event.

Figure 4 shows, for each application, MISP performance
as speedup over single sequencer performance. For com-
parison, we also show the performance for those same ap-
plications when executing on a similarly configured SMP
machine with eight cores. The RMS applications perform,
on average, 1.5% slower on MISP than their performance
on the SMP system, while the SPEComp applications per-
form, on average, 1.9% faster on MISP. The performance
data indicate that suspending all AMSs during privileged
code execution has little practical effect on the performance
of these benchmarks.

We further analyze the origins of these serialization
events to help understand the impact of synchrony on per-
formance. Table 1 summarizes statistics for all salient ar-
chitectural events that cause the MISP processor to serialize
execution to synchronize privileged state across all AMSs.
The table shows the average number of serializing events
(events that cause privilege level transitions) that occur dur-
ing program execution. The events are separated into those
occurring on the OMS and those occurring on the AMSs.

From Table 1, we see that there is an opportunity to op-
timize away many of the proxy execution events, further
reducing the serialization time. For all of the RMS applica-
tions and all but one of the SPEComp applications (galgel),
compulsory page faults cause the majority of proxy execu-
tion events. Once the working set of memory pages are res-
ident in physical memory, the AMSs make no further proxy
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Figure 5. Sensitivity to Signal Cost

execution requests. If the OMS probes each page (e.g. by
accessing a single byte within the page) while executing in
the serial region of code that precedes parallel execution,
the number of proxy execution events for page faults can
be significantly reduced. Future MISP runtime software or
compilers potentially can perform such optimization.

A conservative estimate for the overhead in a microcode-
based implementation of inter-sequencer communication is
5000 cycles. We now assess how much additional perfor-
mance can be realized if a more aggressive hardware op-
timization is used to reduce the inter-sequencer signaling
cost. To this end, we assume an ideal hardware implemen-
tation with zero-cost for signal as baseline and consider
two other configurations with overheads of 500-cycle and
1000-cycle, respectively. We calculate the additional OMS
overhead by first separating the events into those that orig-
inate on the OMS and those that originate on an AMS. For
those events that originate on the OMS, Equation 1 indicates
the overhead. For those events that originate on an AMS,
Equation 2 indicates the total overhead. Figure 5 shows the
performance delta normalized to the baseline. The 5000-
cycle implementation performs only 0.15% slower, on av-
erage, and 0.65% slower in the worst case (Kmeans), than
the ideal hardware implementation. Clearly, the throughput
performance of the applications is insensitive to the over-
head of the inter-sequencer signaling.

5.4 MISP Multiprocessor Performance

The MISP multiprocessor system is designed to improve
throughput performance for workloads that include single-
and multi-threaded applications. As an initial exploration of
the MISP MP design space, we evaluate performance while
varying the ratio of AMSs to OMSs in the system, but main-
taining the total number of sequencers at eight. Figure 6
shows the multiprocessor MISP configurations that we ex-
amined. In the figure, the 4×2 configuration consists of four
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Table 1. Serializing Events
Application OMS Events Total AMS Events

SysCall PF Timer Interrupt SysCall PF

RMS
ADAt 0 1 168 20 0 9
dense mmm 0 29 141 15 0 133
dense mvm 0 1 64 5 0 5
dense mvm sym 0 2 1178 104 0 9
gauss 8 7170 1736 158 0 1
kmeans 8 7170 260 25 0 2
sparse mvm 0 27 114 13 0 205
sparse mvm sym 0 11 343 31 0 669
sparse mvm trans 0 26 826 75 0 200
svm c 8 7204 1006 101 0 1307
RayTracer 0 210 591 66 0 979

SPEComp
swim 77,009 59,570 96,687 10,281 0 346,201
applu 1,394 59,540 57,282 5,115 0 327,313
galgel 881 152,806 64,880 6,242 0 140,180
equake 45,937 47,896 29,727 3,093 0 85,654
art 19,978 133,672 31,647 2,923 436 138,464
SysCall: the number of traps to the OS PF: the number of page faults incurred
Timer: the number of timer-clock interrupts Interrupt: the remaining uncategorized interrupts

OMS AMS AMS AMS AMS AMS AMS AMS

OMS AMS AMS AMS OMS AMS AMS AMS

OMS AMS

OMS AMS AMS AMS OMS OMS OMS OMS

4x2

Configurations

2x4

1x8

1x4 + 4

OMS AMS OMS AMS OMS AMS

Figure 6. MISP MP Configurations

MISP processors, where each MISP processor contains one
OMS and one AMS. Likewise, the 2× 4 configuration con-
sists of two MISP processors, where each MISP processor
contains one OMS and three AMSs. The 1× 4+4 configu-
ration illustrates an uneven partitioning of AMSs to OMSs.
It consists of one MISP processor that contains one OMS
and three AMSs, plus four single sequencer processors (1
OMS and no AMS).

Figure 7 shows the performance of RayTracer as non-
shredded applications are gradually added to the system.
For the 1 × 8 configuration, the performance of RayTracer
decreases nearly linearly as the number of competing pro-
cesses increases. This is because the single-threaded ap-
plication must share the OMS with the shredded applica-
tion and, as a result, the AMSs are utilized only 50% of
the time. As we increase the number of MISP processors
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Figure 7. MISP MP Performance

and decrease the number of AMSs assigned to each OMS,
scaling performance improves. This is because more se-
quencers are being utilized at a given time. Still, AMSs will
remain underutilized as long as the thread running on the
OMS does not create shreds.

The optimal configuration depends on the characteristics
of the workload. For the most efficient use of available re-
sources, the non-shredded applications should execute on
OMSs that have no AMSs. This optimal configuration is
shown as the “ideal” trend. Note that the ideal configura-
tions are uneven in the number of AMSs associated with
each OMS. This imbalance may complicate shred schedul-
ing, since a thread (and its shreds) should not migrate to
a MISP processor that does not have the proper number
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Table 2. Applications Ported to the MISP Architecture
Application Description Effort (days)

Intel R©Thread Checker [11] Identifies errors in multithreaded applications 5
Intel R©Thread Profiler [11] Provides performance analysis for multithreaded applications 5
Intel R©OpenMP Library [24] Intel’s implementation of the OpenMP specification, included with Intel R©compilers 5
RayTracer [10] Research prototype for studying Ray Tracing algorithms 1
Open Dynamics Engine [22] Physics modeling engine, multithreaded in-house 3
Media Encoder Commercial multithreaded MPEG video encoder 13
Lame-MT [20] Multithreaded MPEG-1 Layer 3 (MP3) encoder 0.5
BEA JRockit R© [3] High-performance, commercial Java Virtual Machine 15
RMS Benchmark Suite [7] Multithreaded kernels from emerging Recognition-Mining-Synthesis workloads 0.5 each

of AMSs. Also, a dynamic workload consisting of many
single-threaded, multi-threaded and multi-shredded appli-
cations may not perform well on a static uneven configu-
ration. This effect motivates future investigation into tech-
niques for dynamically binding AMSs to OMSs, even to
the extent of crossing socket boundaries, within a multipro-
cessor MISP system. Such techniques are enabled through
sequencer virtualization, a subject beyond the scope of this
paper.

5.5 MISP Programmability Assessment

During the process of developing and validating the
MISP prototype, we converted a number of multithreaded
applications to be multi-shredded. The effort expended pro-
vides a good indicator of the difficulty in programming for
this architecture. Each application is ported by recompil-
ing it to use ShredLib’s API support for Win32 Threads or
Pthreads. Table 2 summarizes the estimated porting time
for each application.

Most applications required very few code changes to re-
place threads with shreds, since ShredLib provides a thread-
to-shred API mapping. With most applications, we sim-
ply changed the application’s source code to include a sin-
gle header file that contains ShredLib’s thread-to-shred API
mapping, and then recompiled. Only one application, the
Open Dynamics Engine, required a structural modification
to the code. Simply converting all threads to shreds re-
sulted in an inefficient use of the AMSs, as the main pro-
gram thread sleeps inside of the OS while waiting on the
user to provide input. By using a native OS thread to handle
user I/O and a separate native OS thread consisting of mul-
tiple shreds to perform the compute-intensive parallelized
computation, the AMSs were more efficiently utilized.

6. Related Work

Historically, all ISAs have assumed the sequential exe-
cution model, or SISD (single-instruction single-data) ex-
ecution. Over time, ISAs have incrementally evolved to

expose new computation resources to application software
so that programmers can directly manage the architec-
tural resources to enhance performance. In recent years,
SIMD (single-instruction multiple-data) extensions have
been added to most ISAs to exploit fine-grained data paral-
lelism present in many multi-media applications, but these
SIMD extensions are still restricted to a single instruction
stream and cannot directly exploit thread level parallelism.
Examples include the three Streaming SIMD Extensions to
IA-32: SSE, SSE2 and SSE3 [12]. This paper proposes
a MIMD (multiple-instruction multiple-data) extension to
the IA-32 ISA to take advantage of the abundant execution
capability of multi-core systems. This new extension is a
natural progression of the ISA extensions, as depicted in
Figure 8, for exploiting parallelism.

In the classic SMP system, the interprocessor interrupt
(IPI) mechanism is the fundamental architectural support
needed by the multiprocessor OS kernel to manage all pro-
cessors and threads. IPI is a privileged architectural mecha-
nism for interprocessor signaling and asynchronous control
transfer, so it can only be used by the privileged software
layer (e.g. the OS kernel and device drivers), and is inac-
cessible to user-level application. The MISP ISA introduces
application-managed sequencers as architecturally distinct
resources and provides a user-level dual to the IPI for inter-
sequencer signaling and asynchronous control transfer be-
tween sequencer resources. With this user-level IPI-like
mechanism, true user-level threads can be created.

While few details are publicly known, the MIPS mul-
tithreading application-specific extension (MT ASE) [16],
appears to combine classic multithreading concepts with
ISA semantics. In particular, the MT ASE defines a vir-
tual processing element (VPE) to appear as a processor,
so that a system with multiple VPEs would appear to the
OS as multiple CPUs. MT ASE provides explicit instruc-
tions for thread control, including thread creation, yield
and termination. MISP differs from the MT ASE in sev-
eral salient ways. First, while the VPE is an abstrac-
tion of a processor and resembles the sequencer abstrac-
tion in MISP, the VPE is made visible to the OS as a fully
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OS-managed resource. In MISP, a sequencer can be OS-
managed or application-managed. Second, the MT ASE
requires dedicated hardware resources to maintain thread
context and manage thread scheduling. In contrast, MISP
defines only an inter-sequencer signaling and asynchronous
control transfer mechanism. Our canonical approach allows
for a much simpler hardware implementation, and leaves
thread control and synchronization to application software.

There have been many research proposals for ISA ex-
tensions to support various forms of hardware multithread-
ing. MISC [25] described a message-passing based hard-
ware mechanism where parallel execution of multiple in-
struction streams can be orchestrated. Compared to MISP,
MISC seems to require significantly more hardware com-
plexity in providing sophisticated support to point-to-point
interconnect between processing elements and between pro-
cessing elements and the memory subsystem. In addition,
MISC provides various special hardware supports to sen-
tinel and vector instructions to harvest more data parallelism
from single application. Another active area of extensive re-
search is speculative multithreading, which is a special form
of MIMD parallelism used to accelerate single thread appli-
cation performance [19,23,27]. MISP is largely orthogonal
to these proposals: While MISP’s inter-sequencer signaling
and asynchronous control transfer mechanism can be used
by speculative threads, MISP itself does not provide any ad-
ditional architectural support to manage speculative states.

Recently, the CELL architecture has garnered an ex-
tensive amount of attention, in particular, with respect to
its unique heterogeneous MIMD architecture and its diver-
gence from the shared-memory programming model [8].
CELL directly exposes the physical sequencer hardware of
different ISAs (one PowerPC PPE and multiple streaming
processors, called SPEs) to the programmer, and its inter-
sequencer signaling mechanism resembles an interproces-
sor interrupt (IPI). Instead of providing direct architectural
support for the shared-memory programming model, each
SPE in CELL has its own local memory and interacts with
the other processors via a globally coherent DMA engine.
As discussed in [8], CELL’s programming model imposes a
significant burden on the programmer since it requires code
and data to be partitioned into PPE and SPE portions, and it
also requires explicit transfer of code and data between sys-
tem memory and the local store. To give the appearance of a
shared-memory multithreaded programming model, sophis-
ticated compiler and runtime support are needed to emu-
late cache coherence in software and orchestrate DMA data
transfers. In contrast to CELL, the MISP architecture sup-
ports the shared-memory programming model across all se-
quencers, which greatly simplifies application development.
Also, MISP provides architectural support for proxy execu-
tion, which allows one sequencer to execute code on be-
half of another. Through the proxy execution mechanism,

SISD 
Execution

Traditional, single 
control flow 

execution

SIMD extension adds data-
level parallelism, retains single 

control flow

MIMD extension adds 
control-flow 
parallelism

SIMD 
Extension

MIMD
Extension

Figure 8. Progression to MIMD ISA Extension

MISP ensures that asymmetric sequencers appear as func-
tionally symmetric resources to the application. In contrast,
the CELL SPE does not support such a mechanism; there-
fore, the asymmetry is exposed to the programmer and the
SPEs can not execute general purpose code. For general
purpose ISAs, like the IA-32 family, proxy execution is ab-
solutely necessary to support legacy software.

7. Conclusions and Future Work

This paper presents a novel ISA-based approach by
which multithreaded application programs directly man-
age multi-core processor resources, including asymmetric
or heterogeneous cores, using the well established multi-
threaded programming model. Through an extensive pro-
totyping effort using a physical IA-32-based SMP system
with custom firmware, we quantify some key architecture
tradeoffs for MISP and demonstrate the feasibility to re-
alize a simple and efficient implementation of the MISP
architectural extension to the IA-32 family of processors.
The minimal effort required to port a production quality
threading toolset and a set of key multithreaded workloads
to the MISP prototype indicates that maintaining the multi-
threaded programming model greatly eases software devel-
opment for the MISP platform.

Clearly there are many interesting directions for future
research. This paper is the first step in developing the con-
cept of MISP and demonstrating its feasibility. For future
work, we will investigate opportunities to exploit functional
and performance asymmetry for efficient MISP design, and
more judicious shred scheduling algorithms in the ShredLib
user-level runtime. In addition, as indicated in Section 5.4,
it is potentially beneficial to harvest both compute-bound
TLP via multi-shredding and I/O-bound TLP via multi-
threading. To this end, we plan to investigate architecture
support to MISP multiprocessors such as sequencer virtu-
alization techniques that can judiciously map physical se-
quencers to multiple logical OMSs or AMSs.
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