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Modular Multiplication Without Trial Division 

By Peter L. Montgomery 

Abstract. Let N > 1. We present a method for multiplying two integers (called N-residues) 
modulo N while avoiding division by N. N-residues are represented in a nonstandard way, so 
this method is useful only if several computations are done modulo one N. The addition and 
subtraction algorithms are unchanged. 

1. Description. Some algorithms [1], [2], [4], [5] require extensive modular arith- 
metic. We propose a representation of residue classes so as to speed modular 
multiplication without affecting the modular addition and subtraction algorithms. 

Other recent algorithms for modular arithmetic appear in [3], [6]. 
Fix N > 1. Define an N-residue to be a residue class modulo N. Select a radix R 

coprime to N (possibly the machine word size or a power thereof) such that R > N 
and such that computations modulo R are inexpensive to process. Let R' and N' be 
integers satisfying 0 < R-1 < N and 0 < N' < R and RR-' - NN' = 1. 

For 0 < i < N, let i represent the residue class containing iR'- mod N. This is a 
complete residue system. The rationale behind this selection is our ability to quickly 
compute TR-1 mod N from T if 0 < T < RN, as shown in Algorithm REDC: 

function REDC(T) 
m *- (Tmod R)N'mod R [so O < m < R] 
t --(T + mN)/R 
if t > N then return t - N else return t U 

To validate REDC, observe mN TN'N -Tmod R, so t is an integer. Also, 
tR Tmod N so t TR-' mod N. Thirdly, 0 < T + mN < RN + RN, so O < t < 

,2N. 
If R and N are large, then T + mN may exceed the largest double-precision value. 

One can circumvent this by adjusting m so -R < m < 0. 
Given two numbers x and y between 0 and N - 1 inclusive, let z = REDC(xy). 

Then z (xy)R-1 mod N, so (xR-1)(yR-1) zR-1 mod N. Also, 0 < z < N, so z is 
the product of x and y in this representation. 

Other algorithms for operating on N-residues in this representation can be derived 
from the algorithms normally used. The addition algorithm is unchanged, since 
xR' + yR' zR'- mod N if and only if x + y z mod N. Also unchanged are 
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the algorithms for subtraction, negation, equality/inequality test, multiplication by 
an integer, and greatest common divisor with N. 

To convert an integer x to an N-residue, compute xR mod N. Equivalently, 
compute REDC((x mod N)(R2mod N)). Constants and inputs should be converted 
once, at the start of an algorithm. To convert an N-residue to an integer, pad it with 
leading zeros and apply Algorithm REDC (thereby multiplying it by R-1 mod N). 

To invert an N-residue, observe (xR)1 zR1 mod N if and only if z 
R2x1 mod N. For modular division, observe (xR 1)(yR'l1 zR1 mod N if and 
only if z x(REDC(y))1mod N. 

The Jacobi symbol algorithm needs an extra negation if (R/N) = -1, since 

(xR-1/N) = (x/N)(R/N). 
Let MI N. A change of modulus from N (using R = R (N)) to M (using R = R (M)) 

proceeds normally if R(M) = R(N). If R(M) = R(N), multiply each N-residue by 
(R (N )/R( M )) -1 mod M during the conversion. 

2. Multiprecision Case. If N and R are multiprecision, then the computations of 
m and mN within REDC involve multiprecision arithmetic. Let b be the base 
used for multiprecision arithmetic, and assume R = b', where n > 0. Let T = 

(T2n-1T2n-2 *.* To)b satisfy 0 < T < RN. We can compute TR-1 mod N with n 
single-precision multiplications modulo R, n multiplications of single-precision 
integers by N, and some additions: 

c<- 0 
for i:= 0 step 1 to n - 1 do 

(dT, + ,-l I*. T.)b <_ (OT,+n-_1 ... T,)b+ N *(T, N'mod R) 
(CT,+n)b<- c + d + T?+n 
[Tis a multiple of b'+1] 
[T + cb' +n+1 is congruent mod N to the original T] 

[0 < T < (R + b')N] 
end for 

if (CT2n?-1 
... 

Tn)b >'N then 
return (cT2,,_ 1.* Tn )b-N 

else 
return (T72 1 . T)b 

end if 

Here variable c represents a delayed carry-it will always be 0 or 1. 

3. Hardware Implementation. This algorithm is suitable for hardware or software. 
A hardware implementation can use a variation of these ideas to overlap the 
multiplication and reduction phases. Suppose R = 2n and N is odd. Let x = 

(x_lxt-2 
... x0) 2, where each x, is 0 or 1. Let 0 < y < N. To compute 

xyR 1mod N, set SO = 0 and S,+I to (S, + x,y)/2 or (S, + x,y + N)/2, whichever 
is an integer, for i = 0,1,2,.. .,n - 1. By induction, 2'S, (xi- ... x0)ymod N 

and 0 < S, < N + y < 2N. Therefore xyR-1 mod N is either Sn or Sn - N. 
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