Montgomery Multiplication

Duncan A. Buell

October 11, 2005

Abstract

We describe Montgomery multiplication.

1 Montgomery Multiplication

Peter Montgomery has devised a way to speed up arithmetic in a context in which a single modulus is used for a long-running computation [Mon85]. This method has also been explored as a hardware operation [BD97, EW93].

The basic idea goes back to a standard trick that has been used for arithmetic modulo Merseenne numbers.

Let $M_n = 2^n - 1$ be the n-th Merseenne number. Assume that we are doing arithmetic modulo M_n. The crucial operation is multiplication: if A and B are integers modulo M_n, that is to say, n-bit numbers, then the product $C = A \cdot B$ can be written as $C = C_1 \cdot 2^n + C_0$; C_1 and C_0 are the digits of the product C written with radix 2^n.

The trick is to observe the following.

\[
C = C_1 \cdot 2^n + C_0 \\
= C_1 \cdot 2^n - C_1 + C_1 + C_0 \\
= C_1 \cdot (2^n - 1) + C_1 + C_0 \\
= C_1 \cdot M_n + C_1 + C_0 \\
\equiv C_1 + C_0 \pmod{M_n}
\]

So instead of having to divide by M_n in order to produce the remainder, we only need to add the left half of a product to the right half of the product.
For example, let’s do the arithmetic modulo base^n − 1 for base = 10. Specifically, let’s do arithmetic this way modulo 99 = 10^2 − 1. Take 53 · 77 = 4081, say. This is
\[
4081 = 40 \cdot 100 + 81 \\
= 40 \cdot 100 - 40 + 40 + 81 \\
≡ 121 \pmod{99}.
\]
In this case, we happen to get a sum larger than the modulus, and we have to subtract 99 from 121 to get the final result of 22. But one addition and possibly one subtraction is a major advantage over a full multiprecise divide.

So now let’s see how to do this for an arbitrary integer and not just for base^n − 1.

Assume we’re going to do a lot of arithmetic modulo some fixed N. Choose \(R = 2^k > N \) for a suitable k. Assuming that R and N are relatively prime (and if not, bump k by one and we should be able to get an R that is relatively prime), then we can solve for \(R' \) and \(N' \) such that \(RR' - NN' = 1 \).

What we will do is multiply everything by \(R \). All the constants, all the numbers, etc. So instead of doing arithmetic with integers \(a \) and \(b \), say, we will be doing arithmetic with integers \(aR \) and \(bR \). At the very end of the computation, we multiply any result by \(R' \). Since \(RR' \equiv 1 \pmod{N} \), we recover the result we would have Addition and subtraction are fine, since
\[
a + b = c \iff aR + bR = cR.
\]

The problem is with multiplication:
\[
aR \cdot bR = abR^2
\]
which means that we have an extra factor of \(R \). What we want to do is have a function to which we can pass the product \(abR^2 \) and that will return \(abR \). We could do this by multiplying modulo \(N \) by \(R' \), but that would be a multiplication modulo \(N \), and it’s exactly that that we are trying to avoid.

Here’s how we do it. Start with \(T = abR^2 \).
\[
m \leftarrow (T \pmod{R}) \cdot N' \pmod{R} \\
t \leftarrow (T + mN)/R
\]
and we return either \(t \) or \(t - N \), whichever lies in the range 0 to \(N - 1 \).
Example: Let $N = 79$, and instead of using a power of 2 for R, we’ll use $R = 100$ for readability. We find that $64 \cdot 100 - 81 \cdot 79 = 1$, so we have $R = 100$, $R' = 64$, $N = 79$, $N' = 81$.

Now let’s say that we multiply $a = 17$ times $b = 26$ to get 442. The number 17 is really $a' \cdot 100$ modulo 79 for some a'. Multiplying $17 \cdot 64 \equiv 61 \pmod{79}$, we find that $a' = 61$. Similarly, $26 \cdot 64 \equiv 5 \pmod{79}$. So when we multiply 17 and 26 in this representation, we’re really trying to multiply $61 \cdot 5 = 305 \equiv 68 \pmod{79}$.

Knowing that we can in fact work modulo 79, we know that what we have is

\[
17 \cdot 26 = 442 \equiv (61 \cdot 100) \cdot (5 \cdot 100) \\
\equiv 305 \cdot 100 \cdot 100 \\
\equiv 68 \cdot 100 \cdot 100 \pmod{79}
\]

and if we multiply by 64 and reduce modulo 79 we should get the right answer:

\[
442 \cdot 64 \equiv 28288 \equiv 6 \equiv 68 \cdot 100 \pmod{79}.
\]

The function we want is the function that will take as input the 442 and return 6. And the function described above does exactly that:

\[
m = (442 \pmod{100}) \cdot 81 \pmod{100} \\
= 42 \cdot 81 \pmod{100} \\
= 3402 \pmod{100} \\
\equiv 2 \pmod{100}
\]

\[
t = (442 + 2 \cdot 79)/100 \\
= (442 + 158)/100 \\
= 600/100 \\
= 6
\]

and we return $t = 6$ as the result.

Proof that the algorithm works: We assume that value T is a product, and hence is double length. Since we choose $R > N$ but not too much bigger, the products can be taken to be double length in R.

The first modular reduction simply converts T to a single length number modulo R. Again modulo R, we have that $m = TN'$. Thus

\[
mN \equiv TN'N \equiv -T \pmod{R}.
\]
So when we take $T + mN$ we get an integer that is zero modulo R and we can legitimately divide out the R and get an integer quotient for t.

Now the fact that we get the right quotient comes from the fact that

$$tR = T + mN \equiv T \pmod{N}$$

so that modulo N we have $t \equiv TR'$.
References

