
Montgomery Multiplication

Duncan A. Buell

October 11, 2005

Abstract

We describe Montgomery multiplication.

1 Montgomery Multiplication

Peter Montgomery has devised a way to speed up arithmetic in a context
in which a single modulus is used for a long-running computation [Mon85].
This method has also been explored as a hardware operation [BD97, EW93].

The basic idea goes back to a standard trick that has been used for
arithmetic modulo Mersenne numbers.

Let Mn = 2n−1 be the n-th Mersenne number. Assume that we are doing
arithmetic modulo Mn. The crucial operation is multiplication: if A and B
are integers modulo Mn, that is to say, n-bit numbers, then the product
C = A · B can be written as C = C1 · 2n + C0; C1 and C0 are the digits of
the product C written with radix 2n.

The trick is to observe the following.

C = C1 · 2n + C0

= C1 · 2n − C1 + C1 + C0

= C1 · (2n − 1) + C1 + C0

= C1 ·Mn + C1 + C0

≡ C1 + C0 (mod Mn)

So instead of having to divide by Mn in order to produce the remainder,
we only need to add the left half of a product to the right half of the product.



Montgomery Multiplication Page 2

For example, let’s do the arithmetic modulo basen − 1 for base = 10.
Specifically, let’s do arithmetic this way modulo 99 = 102−1. Take 53 · 77 =
4081, say. This is

4081 = 40 · 100 + 81

= 40 · 100− 40 + 40 + 81

= 40 · 99 + 40 + 81

≡ 121 (mod 99).

In this case, we happen to get a sum larger than the modulus, and we have
to subtract 99 from 121 to get the final result of 22. But one addition and
possibly one subtraction is a major advantage over a full multiprecise divide.

So now let’s see how to do this for an arbitrary integer and not just for
basen − 1.

Assume we’re going to do a lot of arithmetic modulo some fixed N .
Choose R = 2k > N for a suitable k. Assuming that R and N are relatively
prime (and if not, bump k by one and we should be able to get an R that is
relatively prime), then we can solve for R′ and N ′ such that RR′−NN ′ = 1.

What we will do is multiply everything by R. All the constants, all the
numbers, etc. So instead of doing arithmetic with integers a and b, say, we
will be doing arithmetic with integers aR and bR. At the very end of the
computation, we multiply any result by R′. Since RR′ ≡ 1 (mod N), we
recover the result we would have Addition and subtraction are fine, since

a + b = c⇔ aR + bR = cR.

The problem is with multiplication:

aR · bR = abR2

which means that we have an extra factor of R. What we want to do is
have a function to which we can pass the product abR2 and that will return
abR. We could do this by multiplying modulo N by R′, but that would be a
multiplication modulo N , and it’s exactly that that we are trying to avoid.

Here’s how we do it. Start with T = abR2.

m← (T (mod R)) ·N ′ (mod R)

t← (T + mN)/R

and we return either t or t−N , whichever lies in the range 0 to N − 1.



Montgomery Multiplication Page 3

Example: Let N = 79, and instead of using a power of 2 for R, we’ll use
R = 100 for readability. We find that 64 · 100 − 81 · 79 = 1, so we have
R = 100, R′ = 64, N = 79, N ′ = 81.

Now let’s say that we multiply a = 17 times b = 26 to get 442. The
number 17 is really a′ · 100 modulo 79 for some a′. Multiplying 17 · 64 ≡ 61
(mod 79), we find that a′ = 61. Similarly, 26 · 64 ≡ 5 (mod 79). So when
we multiply 17 and 26 in this representation, we’re really trying to multiply
61 · 5 = 305 ≡ 68 (mod 79).

Knowing that we can in fact work modulo 79, we know that what we have
is

17 · 26 = 442 ≡ (61 · 100) · (5 · 100)

≡ 305 · 100 · 100

≡ 68 · 100 · 100 (mod 79)

and if we multiply by 64 and reduce modulo 79 we should get the right
answer:

442 · 64 ≡ 28288 ≡ 6 ≡ 68 · 100 (mod 79).

The function we want is the function that will take as input the 442 and
return 6. And the function described above does exactly that:

m = (442 (mod 100)) · 81 (mod 100)

= 42 · 81 (mod 100)

= 3402 (mod 100)

≡ 2 (mod 100)

t = (442 + 2 · 79)/100

= (442 + 158)/100

= 600/100

= 6

and we return t = 6 as the result.
Proof that the algorithm works: We assume that value T is a product, and
hence is double length. Since we choose R > N but not too much bigger,
the products can be taken to be double length in R.

The first modular reduction simply converts T to a single length number
modulo R. Again modulo R, we have that m = TN ′. Thus

mN ≡ TN ′N ≡ −T (mod R).



Montgomery Multiplication Page 4

So when we take T + mN we get an integer that is zero modulo R and we
can legitimately divide out the R and get an integer quotient for t.

Now the fact that we get the right quotient comes from the fact that

tR = T + mN ≡ T (mod N)

so that modulo N we have t ≡ TR′.



Montgomery Multiplication Page 5

References

[BD97] Jean-Claude Bajard and Laurent-Stéphane Dider. An RNS Mont-
gomery modular multiplication algorithm. Proceedings, IEEE Sym-
posium on Computer Arithmetic, pages 234–239, 1997.

[EW93] Stephen E. Eldridge and Colin D. Walter. Hardware implemen-
tation of Montgomery’s modular multiplication algorithm. IEEE
Transactions on Computers, 42:693–699, 1993.

[Mon85] Peter L. Montgomery. Modular multiplication without trial divi-
sion. Mathematics of Computation, 44:519–521, 1985.


