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ABSTRACT
This paper presents a novel architectural technique to hide
fetch latency overhead of hardware encrypted and authen-
ticated memory. A number of recent secure processor de-
signs have used memory block encryption and authentica-
tion to protect un-trusted external memory. However, the
latency overhead of certain encryption modes or authentica-
tion schemes can be intolerably high. This paper proposes
novel techniques called frequent value ciphertext speculation
and frequent value MAC speculation that synergistically com-
bine value prediction and the inherently pipelined cryptogra-
phy hardware to address the issue of latency for memory
decryption and authentication. Without sacrificing security,
frequent value ciphertext speculation can speed up memory
decryption or MAC integrity verification by speculatively en-
crypting predictable memory values and comparing the result
ciphertext with the fetched ciphertext. In MAC speculation,
a secure processor pre-computes MAC for speculated frequent
values and compares the MAC result with the fetched MAC
from memory. Using SPEC2000 benchmark suite and de-
tailed architecture simulator, our results show that ciphertext
speculation and MAC speculation can significantly improve
performance for direct memory encryption modes based on
only 8 most frequent 64-bit values. For eight benchmark pro-
grams, the speedup is over 10% and some benchmark pro-
grams achieve more than 20% speedup. For counter mode
encrypted memory, MAC speculation can also significantly
reduce the authentication overhead.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—Reliability, Availability, and Serviceability

General Terms
Design, Experimentation, Performance.
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1. INTRODUCTION
There is a growing interest in creating a secure and tam-

per resistant software execution environment that combines
the strength of hardware cryptography and secure systems
to battle against attacks [13, 30, 29, 35, 36, 14]. Such
tamper resistant systems [27, 28, 25] have a great future
for solving various problems in the security domain such as
tamper-proof digital rights protection, tamper-proof digital
privacy, secure distributed computing, secure mobile agents,
anti-reverse engineering, tamper-proof sensor devices, etc.
One critical security measure provided by these systems is
hardware-assisted cryptography that protects confidential-
ity and integrity of programs and data from both software
and physical attacks. The strong tamper-proof protection
provided by such secure processors appeals greatly to many
applications such as military embedded systems, tamper-
proof sensor devices, specialized computing platforms, to
name a few. The research has inspired recent multiple com-
mercial thrusts to design and build such tamper-proof pro-
cessors.

An essential component shared by all the hardware-based
tamper resistant systems is hardware protection of software
secrecy and integrity. When a memory block containing
data or instruction (e.g. a cache line) is brought into the
secure processor, it is decrypted and verified. When a cache
line is evicted from a secure processor, it is encrypted prior
to being stored to any external memory. As addressed in [27],
hardware cryptography is not only necessary for making sys-
tems difficult to reverse engineer but is also a critical com-
ponent for content-based digital rights protection.

For protecting randomly accessed memory, several stan-
dard encryption modes are viable and some of them have
been studied for secure processor design. Throughout this
paper, any encryption mode that directly feeds plaintext
memory blocks or derived bit string from plaintext to a
block cipher in order to create encrypted memory blocks, are
called direct memory block encryption modes. Well known
encryption modes such as Electronic Code Block (ECB mode),
Cipher Block Chaining (CBC mode), and Offset Code Block
(OCB) belong to this category. CBC mode based secure pro-
cessor design can be found in systems such as AEGIS [30].
In contrast with direct memory encryption, another well
known encryption mode that uses a transaction number for
encrypting memory blocks is counter mode. Counter mode
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based systems have been discussed in recent publications
[35, 29, 26, 33]. Applying these modes involves splitting
memory space into equally-sized blocks (often the same size
as one L2 cache line) and encrypting each memory block
separately to support random access of encrypted memory
space.

One major overhead of hardware protection on software
confidentiality and integrity is increased memory latency
since memory blocks, once fetched from memory, need to
be decrypted and authenticated before they can be used 1.
A number of techniques have been proposed such as em-
ploying a counter cache [35, 29], using prediction and pre-
computation [26], or combined encryption/authentication
scheme [33] to hide latency of counter mode encrypted mem-
ory. In this paper, we propose a novel ciphertext and mes-
sage authentication code (MAC) speculation technique based
on frequent value prediction to effectively hide the decryp-
tion and message authentication latency of encrypted static
and dynamic data in memory. The technique is a syner-
gistic approach combining value prediction and speculative
encryption of predicted data values and speculative MAC
computation to hide the decryption and authentication la-
tency. The major contributions of this work are:

• Proposed an architectural framework to enable cipher-
text speculation, a latency-hiding mechanism that com-
bines value prediction and hardware cryptography for
directly encrypted memory.

• Presented a scheme to speed up memory integrity verifi-
cation by pre-computing of memory block’s MAC value
based on frequent value prediction.

• Provided further architecture enhancements to show how
the proposed techniques can be efficiently applied to some
popular encryption modes

The rest of the paper is organized as follows. Section 2
briefly discusses different modes of memory encryption and
their applications in memory protection. Section 3 present
ciphertext speculation. Performance evaluation and results
are analyzed in Section 5 and Section 6, followed by Section 7
of related work. Finally, Section 8 concludes the paper.

2. BACKGROUND OF HARDWARE BASED
MEMORY ENCRYPTION

This section discusses the role of memory encryption and
integrity verification for secure processor design. It enumer-
ates the desirable security features of memory encryption
and authentication. It is important to point out that mem-
ory encryption is only one component of a secure processor.
A hardware security model often requires other security ar-
chitecture features to qualify as a tamper-resistant security
system [13, 30, 29, 35, 36, 14]. There are also other as-
sumptions on designing a secure system based on a secure
processor and conditions on how to use a tamper-resistant
system to protect static and dynamic information of a piece
of software. The objective of this paper is not to propose
another new security model, rather, we focus on architec-
ture optimization and latency reduction. Our techniques
are general and can be incorporated into any secure proces-
sor design that uses hardware crypto engine for encrypting
and authenticating memory.

1Throughout this paper, we consider decryption and au-
thentication latency part of the memory fetch latency.
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Figure 1: OCB Based Protection

2.1 Encryption Modes
Encryption modes define the mechanism to encrypt in-

formation using a particular encryption algorithm (or ci-
pher). A cipher typically encrypts 64-bit or 128-bit data.
Encryption modes specify how to encrypt much longer in-
formation such as a cache line (e.g., 32 bytes or 64 bytes)
using a standard cipher. Electronic code block (ECB), Ci-
pher block chaining (CBC), Offset code block (OCB), and
counter mode are all encryption modes. Different encryption
modes not only have different security characteristics but
also demonstrate dramatic differences in performance under
different hardware implementations. Table 1 compares sev-
eral encryption modes from the perspective of performance.
A parallelizable mode supports decryption of all words of
a memory block in parallel. In addition to parallelizability,
some modes such as counter mode also allows latency to be
hidden by overlapping the memory decryption process with
its own fetch.

In this paper, we mainly focus on the OCB mode although
our technique is also easily applicable to other direct mem-
ory block encryption modes. The OCB mode was intro-
duced in [22, 21]. Its strong achieved security level is proved
in [23]. From security perspective, OCB provides higher pro-
tection than other standard modes such as ECB and CBC.
Unlike CBC, OCB is non-malleable under chosen-ciphertext
attack. OCB also belongs to the set of authenticated encryp-
tion mode that supports computing of a MAC with proven
security. Figure 1 illustrates how OCB encrypts and de-
crypts a cache line with 4 data chunks and how the MAC is
computed. For memory block encryption, we use a nonce
consisting of the cache line virtual address concatenated
with a 64-bit random initial value, and a 32-bit padding. As
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Table 1: Comparison of Encryption Modes For Memory Encryption
Mode ECB/OCB Mode CBC Mode Counter Mode

Parallelizability fully parallelizable sequential decryption fully parallelizable
(decrypt memory block in parallel) of memory blocks

Critical word first yes no yes
Decryption latency hiding no no yes

(overlap memory decryption with memory fetch)

such, the weakness of having detectable ciphertext patterns
can be avoided. This prevents an adversary from guessing
encrypted data value based on encrypted values, in other
words, frequently used values will not be encrypted into the
same ciphertext. Similar to [30], the nonce associated with
dynamic data blocks is incremented each time the corre-
sponding dirty data block is evicted from the on-chip cache.2

Also note that the L in Figure 1 is a secret pseudo-random
bit string computed by encrypting a constant while R is a se-
cret computed by encrypting the nonce [21, 22]. The aL+R
inputs for different chunks are then computed using L and
R to satisfy certain properties in number theory.

From the performance side, OCB achieves high level par-
allelism for decrypting/encrypting data chunks. Because the
decryption/encryption of each data chunk is fully indepen-
dent of other data chunks, OCB is fully parallelizable and
suitable for high performance hardware implementation. In
the rest of the paper, our direct memory block encryption
mode is based on OCB. The block ciphers used in the OCB
will be described in Section 3.2.1 and Section 3.2.2.

2.2 Integrity Verification
Integrity verification is a critical component of secure pro-

cessor design. Integrity verification, achieved by employing
message authentication codes (MAC) [17], guarantees detec-
tion of any unauthorized data modification. The MACs are
stored along with each encrypted memory block such as a
cache line. Similar to the case of encryption, there are many
approaches and standards for generating a MAC, for exam-
ple, HMAC [12], CBC-MAC [2], etc. For each dirty write-
back, plaintext of the dirty cache line must be re-encrypted
and stored with its updated MAC value. It is possible to
conduct decryption and integrity verification concurrently.
Some encryption mode called authenticated encryption went
even further to combine decryption and integrity verifica-
tion into one pass process. Examples include LAPM [11]
and XCBC [7]. Authenticated decryption has less imple-
mentation and design complexity but makes decryption la-
tency roughly the same as authentication latency and vise
versa. In general, in secure processors, authentication takes
a longer time than the decryption because in theory au-
thentication can only be initiated after data is fetched from
the memory. Due to the concerns of side-channel exploits
on software confidentiality, close-coupling between integrity
verification and memory decryption is required. In other
words, to issue decrypted instructions or data to a proces-
sor pipeline without integrity verification may put code and
data confidentiality at risk.

One misconception about integrity verification is that some
designers consider it is secure by decoupling decryption and
authentication so long as the secure processor does not re-
tire the unauthenticated instructions. Such design prevents

2Note that hundreds of years are needed for 64-bit RV to
wrap around with a 1GHz clock rate.

processor and memory states from being modified by unau-
thenticated instructions. It appears to be secure but in
fact it does not prevent side-channel exploits of disclosing
sensitive information through memory fetches because such
fetches will be speculatively issued by a processor regard-
less of their authenticity. If program and data integrity is
not verified promptly before those fetches are issued, an ad-
versary may alter the program or data in such a way that
sensitive data might be disclosed as fetch address [25, 28].
A secure processor can prevent such exploit by only issuing
authenticated instructions and data.

3. CIPHERTEXT AND MAC SPECULATION
In this section we explain how to apply value prediction

to optimize the design of a secure processor.

3.1 Value Prediction
Previous studies have shown the predictability of (fre-

quent) values among data fetched from external memory [15,
34]. For SPEC2000 benchmark suite, up to 80-90% fetched
dynamic data are from a small set of application dependent
data values (8 to 64 most frequent values). Memory profil-
ing results in [34] also show that on average, about 40% of
the data stored in the entire memory space of an applica-
tion are frequent values. The high predictability of frequent
data enables value prediction mechanisms for reducing la-
tency overhead associated with direct encrypted memory.
Here we propose ciphertext speculation and MAC specula-
tion that effectively hide decryption and integrity verifica-
tion latency by speculatively encrypting predictable values or
pre-computing MACs for predictable values and match the
results against fetched encrypted data block or MACs. In
this study, we used a similar dynamic frequent value track-
ing mechanism proposed in [34]. In which, the most frequent
values are dynamically determined. It can capture most of
the frequently encountered values in-between working set
changes or software context switches.

3.2 Ciphertext Speculation
The rationale of ciphertext speculation includes the follow-

ing.

• The decryption latency of block cipher can be significant.
It ranges from 50ns to a few hundreds of nsec depend-
ing on the cipher, design method, area constraint, and
fabrication process [16, 9, 6, 5].

• The decryption of a direct encrypted memory block con-
tains serialized operations composed of two parts: the
demand fetch from memory and the decryption of en-
crypted memory block.

• A large portion of data stored in memory and fetched
from memory are predictable [34].

• It is easier to increase and maximize the block cipher
throughput than to reduce its latency [9].
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• For some block cipher such as AES, the encryption pro-
cess is faster than decryption process.

Figure 2 illustrates the principle of ciphertext specula-
tion. To enable prediction, a few new microarchitectural
blocks are introduced — they are a Frequent Value Table
(FVT), Pipelined Encryption Engines, and an Encrypted
Value Content-Addressable Memory (CAM). The FVT keeps
the top N most frequently used data values managed with
an LRU policy. In our experiments, N is 8, 16 or 32. The
ciphertext speculation mechanism is illustrated in the time-
line given in Figure 3. When a cache line misses the on-die
L2 cache and needs to be brought in from the memory, a
fetch request is issued to the memory controller. At the
same time, a request is also posted to the ciphertext specu-
lation engine ( 1© in Figure 2). The engine will read all the
frequent values from the FVT, and send the data together
with the fetch address to the encryption engine ( 2©), which
will encrypt them and store the resulting ciphertexts in the
CAM ( 3©). Note that the encryption engine is pipelined
and replicated, thus multiple encryptions can be performed
concurrently to accelerate the value speculation. When the
missed encrypted cache line arrives, it is compared against
the ciphertext waiting in the CAM ( 4©). If a match is found,
the original frequent value that corresponds to the matched
ciphertext is returned and no decryption is needed ( 5© and

6©). However, if there is no match (i.e., a misprediction),
the secure processor will fill the missed cache line with its
decrypted value from the fetched ciphertext. A secure pro-
cessor can perform the ordinary decryption process and ci-
phertext matching concurrently. If there is a speculation hit,
data value from FVT will take precedence over the decryp-
tion process. Note that one of the reasons to re-encrypt the
frequent values for each missed cache line instead of using
a simple encrypted frequent value table is that the cipher-
text for each cache line size memory block is unique. Our
encrypted ciphertext takes its memory address and a nonce
into account, rather than simply encrypts the frequent val-
ues themselves.

Observing the timeline we should note that increasing the
size of the FVT does not necessarily lead to a better per-
formance. Even though more hits in the CAM will occur
when more frequent values are kept inside the FVT, how-
ever, it needs more time to encrypt these values, thus delay-
ing the value speculation of subsequent misses when there
is a burst of back-to-back L2 misses. Ciphertext prediction
applies to memory encrypted using parallelizable encryption
modes such as the one proposed by XOM [13], in which the
decryption of any word in a memory block is independent
of the decryption of its neighbor words.

In the following sections, we consider two popular block
cipher algorithms and discuss how to apply our ciphertext
speculation to them.

3.2.1 Triple-DES/DES
The Data Encryption Standard (DES) is a symmetric en-

cryption standard [20]. It encrypts a block of 64-bit message
using a 56-bit secret key. In practice, a multiple encryption
scheme based on DES, called Triple-DES is widely used [19]
for its improved security. Triple-DES applies DES three
times to achieve a better effective key length. The security
of multiple encryptions is proved in [18] and Triple-DES is
the NIST approved replacement for DES in 1999. Apply-
ing ciphertext speculation to Triple-DES/DES is straightfor-
ward because the prediction can be made on each 64-bit data
block, the same size of Triple-DES/DES’ blocks. For each
64-byte cache line, the line is divided into 8 64-bit chunks
and each chunk is encrypted using parallelizable encryption
modes with Triple-DES as the block cipher. The granularity
of value prediction is made for every fetched 64-bit data. So,
the size of each predicted ciphertext is also 64-bit. With a
pipelined design, all the 8 chunks of the same cache line can
be encrypted or decrypted simultaneously.

3.2.2 AES
Advanced Encryption Standard (AES) encrypts a 128-bit

block with variable key lengths of 128-bit, 196-bit, or 256-
bit. Since value prediction is performed for every 64-bit
data3, to predict each 128-bit ciphertext, combination of
frequent values has to be used. For example, if the number
of 64-bit frequent/predictable values used is 8, then there are
64 possible combinations of the eight frequent values, which
gives 64 128-bit ciphertext speculations. Although such a
prediction scheme may work, the prediction rate will drop

3Frequent value can also be dynamically tracked for 16 or
32-bit or even 128-bit values. But 64-bit is close to the block
size of AES encryption (128-bit). Profiling results show that
using 128-bit as units of frequent values generate poor fre-
quent value profile.
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because it requires both 64-bit values of each 128-bit chunk
to be predictable frequent values. To solve this problem, we
propose a data chunk re-ordering mechanism that re-orders
the eight data chunks so that chunks of predictable values
are grouped and encrypted together. Figure 4 illustrates
how the data chunk re-ordering is performed for each cache
line. In this example, there are eight 64-bit data chunks
and four of them are frequent values (shaded boxes). If a
prediction is made for every two chunks, none of the four
128-bit ciphertext can be predicted correctly. Nevertheless,
if the chunks are re-ordered as shown below the original data
block, two of the four 128-bit ciphertext will be predictable.

To restore decrypted chunks back to the original order,
a secure processor has to maintain additional information.
One choice is to store a bitmap of frequent values. For a 64-
byte cache line, the bitmap requires 8 bits to encode whether
any of the eight 64-bit chunks is a frequent value.

The bitmap associated with each memory block is en-
crypted also when stored in the external memory. Since
the bitmap contains only 8 bits per cache line, so bitmaps
of several memory blocks can be encrypted and stored to-
gether. Decrypted data chunks or correctly predicted data
chunks cannot be used if the secure processor cannot deter-
mine their original order before the corresponding bitmap is
decrypted. This performance problem can be tackled in two
ways. First, a small cache can be applied to cache bitmaps
in the secure processor. The overhead to cache bitmaps is
very small. Considering a data TLB of 128 entries and 4KB
page size, to cache the frequent value bitmaps for all the
128 pages requires an 8KB cache. In fact, instead of requir-
ing more power or space, such frequent value bitmap cache
may save power or space. Since frequent values have less en-
tropy, a significant portion of a cache line may be turned off
or put into a lower power drowsy state knowing that many
of the chunks are frequent values. For example, given eight
frequent values, if the frequent value bitmap indicates that
all the chunks of a cache line are frequent values, it requires
only 24 bits (3 bits x 8) instead of 512 bits (64 bits x 8) for
storing the cache line. Second, bitmaps can be prefetched
using simple hardware prefetch technique.

In summary, ciphertext speculation is practical under both
AES based and Triple-DES based direct memory block en-
cryption. For the AES based design, frequent value bitmap
cache is more desirable for its better performance. Consid-
ering that frequent value bitmap is also a compression tech-
nique, introducing such bitmap cache may actually make
the secure processor more power efficient.

3.3 MAC Speculation
Similar to ciphertext speculation, a secure processor can

also speculatively compute MACs for frequent value chunks.
This requires each cipher size chunk to have its own MAC.
One performance advantage of assigning a MAC to each
chunk is that it supports parallel authentication of each in-
dividual memory chunk. When combined with paralleliz-
able encryption mode, a secure processor can decrypt and
authenticate critical fetched chunk of a cache line first be-
fore its trailing chunks. As aforementioned, a simple and
secure design is to have a secure processor to issue instruc-
tions and data only after they are authenticated. Such de-
sign will not have the risk of disclosing sensitive information
due to maliciously altered instructions or data. To imple-
ment MAC speculation, a secure processor will along with
each speculated ciphertext speculate its corresponding MAC
value. The speculated MAC will be matched against the
MAC fetched from the memory. If both the speculated ci-
phertext and the speculated MAC match with the fetched
ciphertext and MAC, the secure processor knows that the
fetched value is a frequent value and there is no additional
decryption and MAC verification required. Given that a
large percentage of fetched memory blocks contain frequent
values, such technique can significantly reduce the decryp-
tion and authentication overhead.

3.4 Security Analysis
It is important to point out that the proposed predic-

tion technique is completely an architectural optimization.
It does not change the security strength of the underlying
encryption modes and the MAC integrity check schemes,
nor does it modify the original encryption modes and MAC
schemes.

Some audience may have concerns that since there are so
many frequent values in the applications, memory encryp-
tion may not be able to provide sufficient protection against
statistical analysis of ciphertext. Proper application of en-
cryption modes will even out the frequency distribution. In
theory, once encrypted, the encrypted data will be evenly
distributed, in other words, without any frequent value bias
4. Thus frequent values in plaintext will not manifest itself
in ciphertext. To further clarify the confusion, even though
our technique is named ciphertext speculation, by no means
it implies that the ciphertext or the plaintext is predictable
by adversaries. Predictions are made only by a secure pro-
cessor within the secure boundary because the secure pro-
cessor has the complete knowledge of necessary information
such as a secret key used for encryption to create cipher-
text. Also note that we are not proposing any new security
model or new secure processor design paradigm but simply
provide architectural enhancement on top of the existing se-
cure architectures to address the latency issues associated
with memory decryption and authentication.

4. IMPLEMENTATION AND OVERHEAD
Implementation of crypto engines is relatively straightfor-

ward. Most commercial crypto engines support standard ci-
phers such as Triple-DES (TDES), AES and standard MAC
schemes. The trade-offs between performance, area, and
energy consumption have been studied. In general, when

4Memory address or offset unique to each cache line is used
as part of the nonce when applying OCB.
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comparing against a fully fledged processor implementation,
the overhead of a crypto engine in terms of area and power
consumption has been shown to be rather insignificant.

A pipelined implementation of TDES can achieve about
20Gbits/sec throughput using roughly 55K gates. Consid-
ering that the critical path of a single stage of TDES im-
plemented as a customized design using dynamic logic [6],
and a 0.18 µ process, is about 2nsec, the total latency would
be about 96nsec. The throughput can be further increased
significantly when multiple pipelines are deployed to exploit
the concurrency.

The AES cipher can process data blocks of 128 bits by us-
ing key lengths of 128, 192 or 256 bits. It is based on a round
function, which is iterated 10 times for a 128-bit length key,
12 times for a 192-bit key, and 14 times for a 256-bit key.
Each round consists of four stages. For high throughput and
high speed hardware implementation, Rijndael is often un-
rolled and with each round pipelined into multiple pipeline
stages (4-7) to achieve high decryption/encryption through-
put [16, 10, 9]. As shown in [10], the total area of unrolled
and pipelined AES is about 100K - 150K gates to achieve a
throughout of 15-20Gbit/sec. Based on our own synthesized
Verilog implementation, each decryption round of pipelined
AES-Rijndael takes less than 5nsec using 0.18µ standard
cell library and each encryption round takes even less time.
The area overhead of encryption process is also small as it
requires less number of gates. In this study, unless specified,
the default latency is 65ns for the 256-bit AES.

Since implementation of a crypto engine occupies a very
small area, the extra power consumption is also very low.
According to both industry standard and our implementa-
tion, it is estimated that a crypto engine consumes about
tens of mW when active.

5. SIMULATION FRAMEWORK
Our simulation framework is based on SimpleScalar [3]

running SPEC2000 INT and FP Alpha binaries compiled
with -O3 option. We implemented architectural support for
dynamic frequent value tracking [34] and our ciphertext spec-
ulation scheme. We also integrated a more accurate DRAM
model [8] to improve the system memory modeling, in which
bank conflicts, page miss, row miss are modeled based on
the PC SDRAM specification. The architectural parame-
ters used for performance evaluation are listed in Table 2.
Each benchmark program is fast-forwarded and simulated at
representative places according to SimPoint [24] for 400M in-
structions in performance mode. During fast-forwarding, L1
cache, L2 cache, and frequent value tracking are simulated.
We subset the simulations for those with high L2 misses and
memory throughput requirements.

6. PERFORMANCE ANALYSIS
In this section we summarize and analyze performance re-

sults of our ciphertext speculation technique. The results are
collected for two L2 cache settings, 256KB and 1MB. The
choice of a smaller L2 cache is critical for our analysis, be-
cause protection on data confidentiality is not only deemed
for high-end systems but commodity platforms as well. Note
that a very large L2 size for SPEC2000 may be inappropriate
in evaluating our technique since the entire working set of
most SPEC2000 benchmarks can easily fit into a very large
L2.

Parameters Values

Frequency 1GHz
Fetch/Decode width 8
Issue/Commit width 8

L1 I-Cache DM, 8KB, 32B line
L1 D-Cache DM, 8KB, 32B line
L2 Cache 4way, Unified, 64B line,

WB cache, 256KB and 1MB
L1 Latency 1 cycle
L2 Latencies 4 cycles (256KB), 8 cycles (1MB)

I-TLB/D-TLB both 4-way, 256 entries
Memory Bus 200MHz, 8B wide

Memory Latency X-5-5-5 (core clocks)
X depends on page status

CAS latency 20 mem bus clocks
Precharge latency (RP) 7 mem bus clocks

RAS-to-CAS (RCD) latency 7 mem bus clocks
Triple-DES latency 96ns, 48 stages

AES latency 65ns

Table 2: Processor model parameters

6.1 Frequent Values
Figure 5 shows the value predictability of each 64-bit

memory chunks fetched due to L2 misses using 8, 16, and
32 frequent values. For several benchmark programs, the
prediction rates are over 40% or higher. Some benchmark
programs such as 164.gzip show poor prediction rates. Note
that the relationship between ciphertext predictability and
IPC is rather complicated and by no means proportional
to ciphertext predictability. It is not guaranteed that every
64-bit data chunk fetched to L2 will be accessed because
memory fetch is based on cache line size. For example, a
piece of predictable data might be fetched into the processor
because data adjacent to it mapped to the same cache line
is accessed by the processor. Despite being predictable, the
predictability of this un-used data may contribute little to
the performance.

Figure 6 shows the advantages of using data chunk re-
ordering for frequent value prediction. When a hardware
uses a block cipher whose encryption size is 128-bit and one
64-bit frequent value is encrypted together with a 64-bit non-
frequent value, the predictability is lost. Since a memory
line often contains several frequent value data chunks, the
hardware can re-arrange the data chunks so that frequent
value data chunks are adjacent to each other. If a block
cipher encrypts two 64-bit frequent value data chunks, both
of them can be predicted. Figure 6 compares the ratios
of predictable data chunks out of the total number of fre-
quent value data chunks with and without the data chunk
re-arrangement under 128-bit encryption unit size. Accord-
ing to the figures, without any re-arrangement, few 64-bit
frequent value data chunks can be predicted under 128-bit
block cipher. But when the re-arrangement is applied, over
95% 64-bit frequent value data chunks are predictable.

6.2 Ciphertext and MAC Speculation
Under parallelizable encryption modes, ciphertext and MAC

speculation can be performed independently for each chunk
of a cache line. In this section, we investigate the per-
formance impact of ciphertext and MAC speculation. For
TDES, a prediction is made on per 64-bit memory chunk of
a cache line; for AES, each prediction is made on per 128-bit
memory chunk using memory chunk re-ordering. We use a
set of 8 64-bit frequent memory chunks dynamically tracked
using an approach similar to that in [34].
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Figure 5: Percentage of frequent value memory chunks by keeping top 8, 16, 32 64-bit frequent values
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Figure 6: Percentage of Predictable Data Chunks Over All Frequent Value Data Chunks Under 128-bit Block
Cipher

The performance improvement of ciphertext and MAC
speculation is shown in Figure 7 for TDES and AES, both di-
rectly encrypted memory. Apparently, frequent value based
speculation improves performance for most benchmarks for
both ciphers. For some memory-bound applications such as
181.mcf, 175.vpr, 172.mgrid, the improvement is more sig-
nificant. For eight benchmark programs, the IPC speedup’s
are over 10% for both TDES and AES. In general, using
64-bit speculation chunks achieves more performance im-
provement than the 128-bit ones. This is because 128-bit
based speculation generates more speculations and is more
likely to saturate the crypto engine with speculative encryp-
tion requests. When the L2 is increased to 1MB, the IPC
improvement, as expected, decreases. But still for six bench-
mark programs, the speedup’s are at least 10% and some of
them attain almost 30%. Note that when the cache size
is increased to 1MB, most of the memory bound SPEC2000
benchmark programs such as 181.mcf are less memory band-

width limited, reducing memory traffic between the secure
and insecure boundaries substantially

Figure 8 studies the performance impact of MAC spec-
ulation on memory encryption using counter mode encryp-
tion. Unlike direct encryption modes, counter mode receives
less benefit from ciphertext speculation. That is because in
counter mode, pre-computation of decryption pads is the
dominating factor of decryption performance. But counter
mode can still take advantage of frequent value based MAC
speculation by significantly reducing authentication latency.
The results indicate that many benchmark programs achieve
performance increase of more than 5% and several of them
have IPC speedup over 10%. With a 1MB L2, some bench-
mark programs such as 181.mcf, 172.mgrid, 197.parser also
attain significant IPC speedup from 15% to 20%.
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(a) TDES, 256KB L2
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(b) AES, 256KB L2
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(c) TDES, 1MB L2
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(d) AES, 1MB L2

Figure 7: IPC Speedup Using Ciphertext and MAC Speculation For Direct Memory Encryption

6.3 Sensitivity of Memory Latency
Essentially, frequent value based ciphertext and MAC spec-

ulation is a latency hiding technique. We now evaluate its
effectiveness under different settings of memory speed. Since
our simulation is based on a detailed SDRAM model, there
is no single fixed number for memory fetch latency. The
relative speed between CPU and memory is captured by the
CPU-to-memory clock ratio. We experimented three differ-
ent CPU memory clock ratio settings. They are 1:4, 1:5, and
1:6. Higher ratios infer longer memory fetch latencies. There
are many factors that need to be considered when interpret-
ing results obtained under different CPU memory clock ra-
tios. Sometimes, it may not be meaningful to directly com-
pare the speedup data under different CPU-memory ratios
because they are computed using different baselines. The
baseline IPC under 1:4 ratio is different from that under 1:6
ratio.

Figure 7 shows the result under 1:5 ratio. Figure 9 shows
the impact of memory latency on the effectiveness of ci-
phertext and MAC speculation under 1:4 and 1:6 CPU-to-
memory clock ratios using AES. First, the results indicate
that ciphertext and MAC speculation is quite effective under

all the three settings. For each benchmark, the differences
of IPC improvement rates under the three settings are rela-
tively insignificant. This shows robustness of the proposed
frequent value based prediction technique. Second, the re-
sults show that on average ciphertext speculation improves
IPC slightly more under larger CPU memory clock ratios.
The average IPC speedup of all the benchmarks under 1:4
ratio is about 7.5% and the average IPC speedup of all the
benchmarks under 1:6 ratio is close to 9%. In general, larger
CPU-memory ratio leaves relative more time space for pre-
diction and speculation. This may contribute to the slight
improvement of speed-up under 1:6 ratio.

6.4 FVT Size
To evaluate performance sensitivity with respect to the

size of the Frequent Value Table (FVT), we increase the
number of frequent values kept, i.e., the number of entries
inside the FVT, from 8 to 16 and 32. Ideally, more entries
should produce more predictions of the missed ciphertext.
As explained earlier, however, they can also throttle the per-
formance due to much more encryption work that needs to
be done for each L2 miss when a series of bursty L2 misses
occurs. Figure 10 shows the IPC results for TDES encrypted
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Figure 8: IPC Speedup Using Ciphertext and MAC Speculation For Counter Mode
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(a) CPU-to-Memory Ratio 1:4

 1

 1.1

 1.2

 1.3

 1.4

 1.5

applu
apsi

art bzip2
crafty

facerec

galgel
gap

gcc
gzip

mcf
mesa

mgrid
parser

sixtrack

swim
twolf

vortex
vpr

wupwise

average

IP
C 

Sp
ee

du
p

(b) CPU-to-Memory Ratio 1:6

Figure 9: Effect of Memory Speed Relative to CPU Clock Speed, 256KB L2 (AES)

memory. As indicated, there is little improvement with more
entries in the FVT. In some cases, the performance was even
reduced a little bit because the number of predictions is too
large. The reason is that even though adding more predic-
tions improves prediction rate, but at the cost of increasing
workload on the speculative encryption engine, which po-
tentially increases the latency of generating encrypted fre-
quent values for the succeeding misses. For the AES-based
scheme, the cost and workload to use more frequent values
is higher than the TDES-based scheme because it uses com-
bination of frequent values. Since increasing the number of
frequent values and predictions does not have a significant
performance advantage, we did not evaluate its effect on the
AES-based scheme.

7. RELATED WORK
In this section, we address the difference of ciphertext spec-

ulation with other approaches on reducing fetch latency of
encrypted memory.

Decryption pad prediction and precomputation was first
proposed in [26]. It is a prediction technique in contrast with
sequence number caching [29, 35] to facilitate pre-computing
of decryption pads allowed by counter mode decryption. One
advantage of prediction over sequence number caching is its
efficiency in area. To address the latency issues for differ-
ent security architecture, ciphertext speculation is designed
when directly encrypted memory is employed. It predicts
encrypted memory block (ciphertext) by virtue of frequent
values. Unlike counter mode, modes of direct memory block
encryption themselves do not support any pre-computation.
One commonality of both techniques is that, both of them
use idle cycles of pipelined crypto engines to speculatively
compute either decryption pads or ciphertexts in order to
hide decryption latency of encrypted memory. Table 3 sum-
marizes their differences.

Prefetch was intensively studied for hiding memory la-
tency [1, 4, 31, 32]. When memory is encrypted, a prefetched
memory block can be pre-decrypted. There are some unique
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Table 3: Compare counter prediction with ciphertext speculation
Technique Supported Mode What is predicted Source of predictability

Counter prediction & counter-mode sequence numbers/pads predictability of memory
Decryption pad precomputing update frequency

Ciphertext prediction direct memory block encryption ciphtertext itself frequent data chunk
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Figure 10: Effect of number of guesses/per chunk on
performance with TDES encrypted memory, 256K
L2

properties of ciphertext speculation when compared with pre-
decryption. First, ciphertext speculation does not have the
concern of potential cache pollution. Second, ciphertext
speculation does not require significant additional bus through-
put. Predictions are made inside the secure processor for
memory blocks that must be fetched. A third difference
is that ciphtertext speculation uses encryption process for
prediction and prefetch/pre-decryption uses decryption pro-
cess. Ciphertext prediction can take benefit of some encryp-
tion standard such as AES where encryption takes less time
than decryption. Despite of the differences, pre-decryption
and ciphertext speculation can be complementary techniques
for latency hiding. It is possible to design a combined scheme
that benefits from both approaches.

More recently, Yan et al. [33] described an enhanced counter
mode based approach that provides smaller counter storage
overhead using split counters and faster authentication op-
eration using Galois/Counter Mode authentication (GCM).
Different from their work, our frequent value prediction tech-
nique is mainly aimed at enhancing performance for direct
memory encryption modes that by themselves cannot over-
lap the process of decryption key generation and authenti-
cation with memory fetch operation.

8. CONCLUSION
Minimizing the latency overhead of memory decryption

and authentication is a crucial issue for designing a high
performance secure processor. This paper proposes novel
latency-hiding techniques — frequent value ciphertext spec-
ulation and frequent value MAC speculation to hide decryp-
tion and MAC authentication latency. Ciphertext specula-
tion reduces or eliminates the decryption latency by specula-
tively encrypting frequent values and matching their cipher-
text results with the fetched one. Our simulation profile in-
dicates that on average over 40% fetched data values are fre-

quent values. By exploiting these properties, the decryption
latency for secure processors using direct memory encryp-
tion modes can be substantially reduced. We also propose
MAC speculation which pre-computes MAC for frequent val-
ues and can accelerate authentication process by comparing
the speculated MAC with the corresponding MAC fetched
from memory. MAC speculation improves performance for
all memory encryption schemes including counter mode se-
curity architecture that supports parallel MAC verification.
As shown in our experiments, memory bound benchmark
programs show significant IPC improvements using cipher-
text speculation and MAC speculation with speedup ranging
from 10% to 30%.
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