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1. Introduction

In this paper, we present a theoretical treatment of software protection. In
particular, we distill and formulate the key problem of learning abou( a program
from its execulion, and reduce this problem to the problem of on-line simulation
of an arbitra~ program on an oblivious RAM. We then present our main result:
an efficient simulation of an arbitrary (RAM) program on a probabilistic oblivious
RAM. Assuming that one-way functions exist, we show how one can make our
software protection scheme robust against a polynomial-time adversary who is
allowed to alter memory contents during execution in a dynamic fashion. We
begin by discussing software protection.

1.1. Software Protection. Software is very expensive to create and very easy to
steal. “Software piracy” is a major concern (and a major loss of revenue) to all
software-related companies. Software pirates borrow/rent the software they need,
copy it to their computer and use it without paying anything for it. Thus, the
question of software protection is one of the most important issues concerning
computer practice. The problem is to sell programs that can be executed by the
buyer, yet cannot be redistributed by the buyer to other users. Much engineering
effort is put into trying to provide software protection, but this effort seems to
lack theoretical foundations. In particular, there is no crisp definition of what the
problems are and what should be considered as a satisfactory solution. In this
paper, we provide a theoretic treatment of software protection, by distilling a key
problem and solving it efficiently.

Before going any further, we distinguish between two “folklore” notions: the
problem of protection against illegitimate duplication and the problem of protec-
tion against redistribution (or fingerprinting software). Loosely speaking, the first
problem consists of ensuring that there is no efficient method for creating
executable copies of the software; while the second problem consists of ensuring
that only the software producer can prove in court that he has designed the
program. In this paper, we concentrate on the first problem.

1.1.1. THE ROLE OF HARDWARE. Let us examine various options that any

computer-related company has when considering how to protect its software. We
claim that a purely software-based solution is impossible. This is so, as any
software (no matter how encrypted) is just a binary sequence which a pirate can
copy (bit by bit) and run on his own machine. Hence, to protect against
duplication, some hardware measures must be used: mere software (which is not
physically protected) can always be duplicated. Carried to an extreme, the trivial
solution is to rely solely on hardware. That is, to sell physically protected
special-purpose computers for each task. This “solution” has to be rejected as
infeasible (in current technology) and contradictory to the paradigm of general
purpose machines. We conclude that a real solution to protecting software from
duplication should combine feasible software and hardware measures. Of course,
the more hardware we must physically protect, the more expensive our solution
is. Hence, we must also consider what is the minimal amount of physically
protected hardware that we really need.

It has been suggested [Best 1979; Kent 1980] that to protect software against
duplication a Software-Hardware-package (SH-package) consisting of a physically
shielded Central Processing Unit (CPU) and an enc~pted program could be sold.
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The CPU will contain a small ROM (Read-Only Memory unit) that stores the
corresponding decryption key. The SH-package will be installed in a conventional
computer system by connecting the shielded CPU to the address and data buses
of the system and loading the encrypted program into the memory devices. Once
installed and activated, the (shielded) CPU will run the (encrypted) program
using the memory, 1/0 devices and other components of the computer. An
instruction cycle of the (shielded) CPU will consist of fetching the next instruc-
tion, dec~~pting the instruction (using the decryption key stored in the CPU), and
execu(ing the instruction. In case the execution consists of reading from (respec-
tively, writing to) a memory location—the contents may be decrypted after
reading it (respectively, encrypted before writing). It should be stressed that the
CPU itself will contain only a small amount of storage space. In particular, the
CPU contains a constant number of registers, each capable of specifying memory
addresses (i.e., the size of each register is at least equal to the logarithm of the
number of storage cells), and a special register with a cryptographic key. Only the
CPU (with a fixed number of registers) is required to be physically shielded,
while all the other components of the computer, including the memory in which
the encrypted program and data are stored, need not be shielded. We note that
the technology to physically shield (at least to some degree) the CPU (which, in
practice. is a single computer chip) does already exist—indeed. every ATM bank
machine has such a protected chip. Thus, the SH-package employs feasible
software and hardware measures [Best 1979; Kent 1980].

Using encryption to keep the contents of the memory secret is certainly a step
in the right direction. However, as we will shortly see, this does not provide the
protection one may want. In particular, the addresses of the memory cells
accessed during the execution are not kept secret. This may reveal to an observer
essential properties of the program (e.g., its loop structure), and in some cases
may even allow him to easily reconstruct it. Thus, we view the above setting (i.e.,
the SH-package) as the starting point for the study of software protection, rather
than as a satisfactory solution. In fact, we will use this setting as the framework
for our investigations, which are concerned with the following key question: What
ca~t the user learn about the SH-package he bought?

1.1,2. LEARNING BY EXECUTING THE SH-PACKAGE. Our setting consists of an
encrypted program. a shielded CPU (containing a constant number of registers),
a memory module, and an “adversary” user trying to learn about the program.
The CPU and memory communicate through a channel in the traditional
manner. That is, in response to a FETCH(i) message the memory answers with
the contents of the ith cell: while in response to a STORE( v, j ) the memory
stores value Z1in cell j. We consider an adversary that can read and alter
the communication between CPU and memory, as well as inspect and modify the
contents of the memory. However, the adversary cannot inspect or modify the
contents of the CPU’s registers.

The adversary tries to learn by conducting experiments with the hardware-
sotlware configuration. An experiment consists of initiating an execution of the
(shielded) CPU on the encrypted program and a selected (by the adversary)
input. and watching (and possibly modifying) both the memory contents and the
communication between CPU and memory.
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Given the above setting the question is what information should the adversary
be prevented from learning, when conducting such experiments? To motivate the
answer to this question, let us consider the following hypothetical scenario.
Suppose you are a software producer selling a protected program that took you
an enormous effort to write. Your competitor purchases your program, experi-
ments with it widely and learns some partial information about your implemen-
tation. Intuitively, if the information he gains, through experimentation with your
protected program, simplifies his task of writing a competing software package
then the protection scheme has to be considered insecure. Thus, informally,
software protection should mean that the task of reconstructing functionally
equivalent copies of the SH-package is not easier when given the SH-package
than when only given the specification for the package. That is, software
protection is secure if, whatever any polynomial-time adversary can do when
having access to an (encrypted) program running on a shielded CPU, he can also
do when having access to a “specification oracle” (such an oracle, on any input,
answers with the “corresponding” output and running-time). Essentially, the
protected program must behave like a black box which, on any input, “hums” for
a while and returns an output such that no information except its 1/0 behavior
and running time can be extracted. Jumping ahead, we note that in order to meet
such security standards, not only the values stored in the general-purpose
memory must be hidden (e.g., by using encryption), but also the sequence in
which memory locations are accessed during program execution. In fact, if the
“memory access pattern” is not hidden then program characteristics such as its
“loop structure” may be revealed to the adversary, and such information may be
very useful in some cases for simplifying the task of writing a competing program.
To prevent this, the memory access pattern should be independent of the program
that is being executed.

Informally, we say that a CPU defeats experiments with corresponding enc~pted
programs if no probabilistic polynomial-time adversary can distinguish the
following two cases when given an encrypted program as input:

—The adversaq is experimenting with the genuine shielded CPU, which is trying to
execute the encrypted program through the memory.

—The adversary is experimenting with a fake CPU. The interactions of the fake
CPU with the memory are almost identical to those that the genuine CPU
would have had with the memory when executing a (freed) dummy program
(e.g., while true do skip.) The execution of the dummy program is
timed-out by the number of steps of the real program. When timed-out, the
fake CPU (magically) writes to the memory the same output that the genuine
CPU would have written on the “real” program (and the same input).

We stress that, in the general case, the adversary may modify the communication
between CPU and memory (as well as modify the contents of memory cells) in
any way he wants. When we wish to stress that the SH-package defeats
experiments by such adversaries, we say that the SH-package defeats tampering
experiments. A special case of interest consists of adversaries restricted to only
inspect the message exchange between CPU and memory, but not to modify it. A

1 In this paper, we shall use standard notion of computational indistinguishability, as defined in

Goldwasser and Micali [1984] and Yao [1982].
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SH-package defeating experiments by such adversaries is said to defeat non-
tamperitzg experiments.

1.1.3. AN EFFICIENT CPU THAT DEFEATS EXPERIMENTS. The problem of
constructing a CPU that defeats experiments is not an easy one. There are two
issues: The first issue is to hide from the adversary the values stored and retrieved
from memory, and to prevent the adversary’s attempts to change these values.
This is done by usc of traditional cryptographic techniques (e.g., probabilistic
encryption [Goldwasser and Micali 1984] and message authentication [Goldreich
et al. 1986].). The second issue is to hide (from the adversary) the sequence of
addresses accessed during the execution (hereafter referred to as hiding the
access pattern ).

Hiding the (original) memory access pattern is a completely new problem and
traditional cryptographic techniques are not applicable to it. The goal is to make
it infeasible for the adversary to learn anything useful about the program from its
access pattern. To this end, the CPU will not execute the program in the ordinary
manner, but instead will replace each original fetch/store cycle by many fetch/
store cycles. This will hopefully “confuse” the adversary and prevent him from
“learning” the original sequence of memory-accesses (from the actual sequence
of memory accesses). Consequently, the adversary can not improve his ability of
reconstructing the program.

Nothing comes without a price. What is the price one has to pay for protecting
the software? The answer is “speed”. The protected program will run slower than
the unprotected one. What is the minimal slowdown we can achieve without
sacrificing the security of the protection? Informally, software protection oterhead
is defined as the number of steps the protected program makes per each step of
the source-code program. In this paper, we show that this overhead is polynomi-
ally related to the security parameter of a one-way function. Namely,

THEOREM 1.1.3.1 (INFORMAL STATEMENT): Suppose that one-wa} funclions
exist. and let k be a security parameter. Then, there exists an efficient way of
transforming progrums into pairs consisting of a physically protected CPU, with k
bits of internaf-( “.sl~ieided’’)-n~emo~, and a corresponding “enc~p[ed” program. so
that t)le CPU defeats poly(k )-time experiments with the “enctypfed” program.
Furthermore. t instructions of the original program are executed using less than
t . k{)(1) instructions (of the “enc~pted” program), and the blowwp in the size of the
utcrna{ memoty is also bounded by a factor of k, (We stress that this scheme defeats
tumpering experiments.)

The above result is proved by reducing the problem of constructing a CPU that
defeats (tampering) experiments to the problem of hiding the access pattern, and
solving the later problem efficiently. As a matter of fact, we formulate the latter
problem as an on-line simulation of arbitrary RAMs by an oblivious RAM (see
below).

1.2. SIMULATIONSBY OBLIVIOUSRAMs. A machine is oblivious if the se-
quence in which it accesses memory locations is equivalent for any two inputs
with the same running time. For example, an oblivious Turing Machine is one for
which the movement of the heads on the tapes is identical for each computation
(i.e., is independent of the actual input). We are interested in transformations of
arbitrary machines into equivalent oblivious machines (i.e., oblivious machines
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computing the same function). For every reasonable model of computation such
a transformation does exist. The question is its cost: namely, the slowdown in the
running time of the oblivious machine (when compared to the original machine).
Pippenger and Fischer [1979] showed how a one-tape Turing Machine can be
simulated, on-line, by a two-tape oblivious Turing Machine, with a logarithmic
slowdown in the running time. We study an analogue question for random-access
machine (RAM) model of computation.

To see that it is possible to completely hide the access pattern consider the
following solution: when a variable needs to be accessed, we read and rewrite the
contents of eve~ memory cell (in some fixed order). If the program terminates
after t steps, and the size of memory is m, the above solution runs for t “m steps,
thus, having a factor m overhead.2 Can the same level of “security” be achieved
at a more moderate cost?

The answer is no if the scheme is deterministic. That is, the simulation is
optimal if the CPU is not allowed random moves (or if obliviousness is interpreted
in a deterministic manner). Fortunately, much more efficient simulation exists
when allowing CPU to be probabilistic. 3 Thus, in defining an oblivious RAM, we
interpret obliviousness in a probabilistic manner. Namely, we require that the
probability distribution of certain actions (defined over the RAM’s input and
coin tosses) is independent of the input. Specifically, we define an oblivious RAM
to be a probabilistic RAM for which the probability distribution of the sequence
of (memory) addresses accessed during an execution depends only on the input
length (i.e., is independent of the particular input.) In other words, suppose the
inputs are chosen with some arbitrary fixed distribution D. Then, for any D, the
conditional probability for a particular input given a sequence of memory
accesses which occurs during an execution on that input, equals the a-priori
probability for that particular input according to D.

The solution of Pippenger and Fischer [1979] for making a single-tape Turing
Machine oblivious, heavily relies on the fact that the movement of the (single-
tape Turing Machine) head is very “local” (i.e., immediately after accessing
location i, a single-tape Turing-Machine is only able to access either location
i – 1 or i + 1). On the other hand, the main strength of a random-access
machine (RAM) model is its ability to instantaneously access arbitrary locations
of its memory. Nevertheless, we show an analogue result for the random-access
machine model of computation:

2 If the running time of the original program is smaller than the total memory size then we can do
better. Instead of storing data in memory “directly”, we build an address-value look-up table of size
n + r, where n is the length of the input, and scan only this table. After i steps the table stores the

original n input values as well as the (upto) i memory modifications that took place in these steps.

Thus, the scheme which we described above does not need to scan the entire memory for each

original access—it suffices to scan the look-up table which has size f + n. (Moreover, the above

algorithm need not know what f is. It may simply build a look-up table by adding a new entry for each

original step, so that at any time i the table contains n + i entries.) Assuming r > n, the modified

algorithm runs for 0(t2) steps, and yields an O(t) overhead.

3 Byprobabikrtic CPU we mean a CPU that has access to a random oracle. Jumping ahead, we note
that assuming the existence of one-way functions enables us to implement such a random oracle by

using only a short random seed, and hence our strong probabilistic machine model can be
implemented by the ordinary model of a probabilistic machine.
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THEOREM 1.2.1 (MAIN RESULT—INFORMALSTATEMENT). Let RAM(m) denote
a RAM witil m memory locations and access to a random oracle. Then t steps of an
arbitrary RAM(m) program can be simulated (on-line) by less than Q(I “(logz t)s)
steps of an oblivious RAM(m “(logJ m )2).

That is, we show how to do an on-lirrc simulation of an arbitrary RAM program
by an Oblivious RAM incurring only a polylogarithmic slowdown. We stress that
the slowdown is a (polylogarithmic) function of the program’s running time,
rather than being a (polylogarithmic) function of the memory size (which is
typically much bigger than the program’s running time).

On the negative side, a simple combinatorial argument shows that any
oblivious simulation of arbitrary RAMs should have an average fl(log t)

overhead:

llfFOREM 1.2.Z (lNFORMAI,STATEMENT). Let RAM(nl ) he as in Theorem 1.2.1.
Et’eI~ [ddi~’ioussimlllation of RAM(nl ) must make at least max{ m, (t – 1) “log m }
occessc,v in order to .simuhte t steps.

S() far, we have discussed the issue of oblivious computation in a setting in
which the observer is passive. A more challenging setting, motivated by some
applications (e.g., software protection as treated in this paper), is one in which
the observer (or advemary) is actively trying to get information by tampering with
(i.e., modifying) the memory locations during computation. Clearly. such an
active adversary can drastically alter the computation (e.g., by erasing the entire
contents of the memory). Yet, the question is whether even in such a case we cm
guarantee that the effect of the adversary is oblivious of the input. Informally, we
say that the simulation of a RAM on an oblivious RAM is tamper-proof if the
simulation remains oblivious (i. e., does not reveal anything shout the input
except its length) even in the case when an arbitrary powerful adversary examines
and alters memory contents.

T}I~okFM 1.2.3 (INFORMALSTATEMENT). Let RAM(m) be as in Theorem 1.2.1.
Thej] I .sfeps of an arbitrary RAM(m) program can be tamper-pro#f_ simulated
(on-line) by less than O(t . (Iogz t);) steps of an oblivious RAM(m “(logz m )2).

Wc stress that there are no complexity-theoretic assumptions in Theorems
1.2.I and 1.2.3. However, these theorems refer to a RAM with access to a
random or:icle. T(J derive results for the more realistic model of a probabilistic
RAM. we replace the random oracle used in the above theorems, by a pscudo-
random function. The latter can be implemented, assuming the existence of
(~nc-way functions.~ by using a short randomly chosen seed and the results
remain valid with respect t{) adversaries running in time polynomial in the length
of this seed.

Our construction yields a technique of efficiently hiding the access pattern into
anv dala-structure. In addition to software protection, our technique can be
applied to the problem of hiding the traffic pattern of a distri
to the problem of data-structure eilecking.

+Scc Blum ond Mica]i I IW’Ml. Yao 119821, Impagliuzo c! al. [ 1989]. llw(:i~

d. [ 19861,

Iuted database and

1990],and (;oldrcich ct
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1.3. NOTES CONCERNINGTHE EXPOSITION. For simplicity of exposition, we
present all the definitions and results in the rest of the paper in terms of
machines having access to a random oracle. In practice, such machines can be
implemented using pseudorandom functions, and the results will remain valid
provided that the corresponding adversary is restricted to efficient computations.
Detailed comments concerning such implementations will be given in the corre-
sponding sections. Here, we merely recall that pseudorandom functions can be
constructed using pseudorandom generators (cf. Goldreich et al. [1986]), and
that the later can be constructed provided that one-way functions exist.5 Specifi-
cally, assuming the existence of one-way functions, one can construct a collection
of pseudorandom functions with the following properties:

—For every n, the collection contains 2“ functions, each mapping n -bit strings to
n-bit strings, and furthermore each function is represented by a unique n-bit
long string.

—There exists a polynomial-time and linear-space algorithm that on input a
representation of a function ~ and an admissible argument x, returns ~(x).

—No probabilistic polynomial-time machine can, on input 1n and access to a
function ~ : {O, 1}“ _ {O, 1}“, distinguish the following two cases:

(1) The function ~ is uniformly chosen in the pseudo-random collection (i.e.,
among the 2“ functions mapping n-bit strings to n-bit strings).

(2) The function ~ is uniformly chosen among all (2”2”) functions mapping
n-bit strings to n-bit strings.

Another simplifying convention, used in this paper, is the association of the
size of the physically protected work space (internal to the CPU) with the
structure of the main memory. Specifically, we commonly consider a CPU with
O(k) bits of physically protected work space together with a main memory
consisting of 2k words, each holding O(k) bits. In practice, the gap, between the
size of protected work space and the number of (unprotected) memory words,
may be smaller (especially since the protected space is used to store “crypto-
graphic keys”). Specifically, we may consider a protected work space of size n
and a physically unprotected memory consisting of 2k words, provided n a k
(which guarantees that the CPU can hold pointers into the memory). It is easy to
extend our treatment to this setting. In particular, all the transformations
presented in the sequel do not depend on the size of the CPU (but rather on the
size of the memory and on the running time).

2. Model and Definitions

In this chapter, we define the notions discussed in the introduction. To this end,
we first present a definition that regards the RAM model as a pair of (appropri-
ately resource bounded) interactive machines. This definition is presented in
Subsection 2.1. Using the new way of looking at the RAM model, we define the
two notions that are central to this paper: the notion of software protection (see
Subsection 2.2), and simulation by an oblivious RAM (see Subsection 2.3).
Subsections 2.2 and 2.3 can be read independently of each other.

5 See Blum and Micali [1984], Yao [1982], Impagliazzo et al. [1989], and Hustad [1990].
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2.1. RAMs AS INTERACTN’EMACH]NES

2.1.1. The Basic Mo<iel. Our concept of a RAM is the standard one (e.g., as
presented in Aht~ et al. [1974]). However, we decouple the RAM into two
interactive machines, the CPU and the memory module, and explicitly discuss the
interaction between the two. We begin with a definition of an Interactive
Turing-Machine (ITM). The basic formulation is due to Manuel Blum (private
communication in Goldwasser et al. [1985]). We augment this basic formulation
by adding explicit bounds on the length of “messages” and on the size of work
tape.

[lfinition 2.1. 1.1 (Interactive A4achirws with Bounded Messages and Bounded
Work .Ypace). An lnteractite Tut-itlg Machine is a multi-tape Turing Machine
having the following tapes:

—a read-only input tape;

—a write-only outp14t tape;

—a read-and-write work tape:

—a read-only c(jt~tttllitlic[ltic~t~tape; and

—a write-only cc~t?l~?ll{tlicati~ltltape.

By ITM(c. w) we denote a machine as specified above with a work tape of length
Iv, and communication tapes each partitioned into c-bit long blocks, which
operates as follows: The execution of lTM(c, w) on input y starts with the IT~
copying JI into the first Iy[ cells of its work tape. (In case Iy( > w, execution is
suspended immediately. ) Afterwards. the machine works in rounds. At the
beginning of each round, the machine reads the next c-bit block from its
read-only communication tape. The block is called the message received in the
current round. After some internal computation (utilizing its work tape), the
round is completed with the machine writing c bits (called the message setrr in
the current round) onto its write-only communication tape. The execution of the
machine may terminate at some point with the machine copying a prefix of its
work tape tt~ its t)utput tape.

Ntmv. we can define both the CPU and the memory as Interactive Turing
Machines which “interact” with each other. To this end, we define both the CPU
and the MEMORYas ITMS,and associate the read-only communication tape of the
CPU with the write-only communication tape of the MEMORY,and vice versa (cf.
Goldwasser et al. [ 1985]). In addition, both CPU and MEMORYwill have the same
message length (i. e., the p:irameter c above), however they will have drastically
different work-tape size and different finite control. The MEMORYwill have
a work-tape of size exponential in the message length, whereas the CPUwill have
:i work-tape of size linear in the message length. Intuitively. the MEMORY’S
work-tape corresponds to a “memory” module in the ordinary sense; whereas
the work-tape of the CPLIcorresponds to a constant number of “registers”, each
capable of holding a pointer into the MEMORY’Swork-tape. Each message may
contain an “address” in the MEMORY’Swork-tape andlor the contents of a CPU
“register”. The finite control of the MEMORYis unique, representing the tradi-
tional responses to the CPU “requests”, whereas the finite control of the CPU
varies from one CPLI to another. Intuitively, different CPUS correspond to
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different universal machines. Finally, weusek asaparameter determining both
the message length and work-tape size of both MEMORY and CPU.Specifically, the
message length is k + 2 + k‘ and the size of the work-tape is 2k “ k‘, where k‘
= O(k). (This allows a message to contain both an address in memory and a
contents for this address.)

Definition 2.1.1.2 (MemoW). For every k E N, let MEMk be an lTM(k +
2 + O(k), 2k “ O(k)) operating as hereby specified. It partitions its work tape
into 2k words, each of size O(k). After copying its input to its work tape,
machine MEMk is message-driven. Upon receiving a message (i, a, u), where i E
{O, 1}2 - {“store”, ‘~etch”, “halt”} (an instruction), a E {O, 1}k (an address)
and u ~ {O, 1}‘)(k) (a value), machine kfEh’fk acts as follows:

—if i = “store”, then machine /k.fEMk copies the value v from the current
message into word number a of its work tape. (For sake of uniformity, we
postulate that MEMk sends an acknowledgment message in return,)

—if i = “fetch”, then machine MEM~ sends a message consisting of the current
contents of word number a (of its work tape).

—if i = “halt”, then machine MEMk copies a prefm of its work tape (until a
special symbol) to its output tape, and halts.

The 2k words of MEMORY correspond to a “virtual memory” consisting of all
possible 2k addresses that can be specified by a /c-bit long “register”. We remark
that the “actual memory” available in hardware may be much smaller (say, have
size polynomial in k). Clearly, “actual memory” of size S suffice in applications
which do not require the concurrent storage of more than S items.

Definition 2.1.1.3 (CPU). For every k c N, let CPUk be an lTM(k + 2 +
O(k), O(k) ) operating as hereby specified. After copying its input to its work
tape, machine cpuk conducts a poly(k)-time computation on its work tape, and
sends a message determined by this computation. In subsequent rounds, CPUk is
message driven. Upon receiving a new message, machine cpuk copies the
message to its work tape, and based on its computation on the work tape, sends
a message. In case the cpuk sends a “halt” message, the CPUk halts immediately
(with no output). The number of steps in each computation on the work tape is
bounded by a fwed polynomial in k.

The only role of the input to CPU is to trigger its execution with CPU registers
initialized, and this input may be ignored in the subsequent treatment.b The
(“internal”) computation of the CPU, in each round, corresponds to elementary
register operations. Hence, the number of steps taken in each such computation
is a fixed polynomial in the register length (which in turn is O(k)). We can now
define the RAM model of computation. We define RAM as a family of RAMk
machines for every k:

Definition 2.1.1.4 (R4@. For every k E N, let RAMk be a pair of (Cpuk,
MEMk), where Cpuk’s read-only message tape coincides with MEIkfk’s write-only
message tape, and cpuk’s write-only message tape coincides with MEMk’s

6Thus, without loss of generality, we may assume that the input is any fixed string, say ‘00’.We stress
that the input is not used to feed cryptographic keys to the CPU.All the cryptographic machinery will
be implemented through the random oracle introduced below.
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read-only message tape. The input to RAM~ is a pair (s, v), where s is an
(initialization) input for CPUk, and y is input to MEM~. (Without loss of
generality, s may be a fixed “start symbol ”.) The oi~tput of RAMk on input (s, y ),
denoted R,4Mk(s, y), is defined as the output of MEM~(y) when interacting with
cPu~(s ) .

To view RAMas a universal machine, we separate the input, y, to MEM~ into
“program” and “data”. That is, the input ~’ to the memory is partitioned (by a
special symbol) into two parts, called the program (denoted by H) and the dutu

(denoted x).

Definition 2.1.1.5 (Running Programs on RAM). Let RAMk and T be fixed,
and y = (11, .x). We define the oL4@4f of program II on data x, denoted II(x). as
RAMk(s, y). We define (he running tinw of ~ on x, denoted ?][(x). as the sum of
Iyl + lll(x)l and the number of rounds in the computation RAMA(s, y). We
define the ,~toragc’-req~(irc~l~~’~ltof program ~ on data x, denote s,, (x), as the sum
of Iyl and the number of different addresses appearing in messages sent by C’PUh
to MEMA during the computation RAM~(s, y).

It is easy to see that the above formalization directly corresponds to Random-
Acccss M:ichine model of computation. Hence, the “execution of 11 on x“
corresponds to the message exchange rounds in the computation of RAML(., ( 11,
.~)). The additive term Iyl + III(x) I in t,,(x) accounts for the time spent in
reading the input :ind writing the output, whereas each message exchange round
represents a single cycle in the traditional RAM model. The term Iyl in SII(X)
accounts for the initial space taken by the input, whereas the other term accounts
for “memory cells accessed by CPU during the actual computation”.

Remark 2.1.1.6. Without loss of generality, we can assume that the running
time, r(y). is always greater than the length of the input (i. e.. Iy/). Under this
assumption, we may ignore the “loading time” (represented by Iyl + Iil(x)l ).

and count only the number of machine cycles in the execution of [1 on x (i.e., the
number of rounds of message exchange between CPLJk and MEMk ).

Remark 2.1.1.7. The memory consumption of II at a particular point during
the execution on data x, is defined in the natural manner. Initially the memory
consumption equals 1(11, x)(, and the memory consumption may grow as
computation progresses. However, after executing ! machine cycles, the memory
consumption is bounded by t + I(TI, x)].

2.1.2.1. PROBABILISTICRAMs. Probabilistic computations play a central role

in this work. In particular. our results are stated for RAMS which are probabilistic
in a very strong sense. Namely, the CPUin these machines has access to a random
oracle. We stress that providing RAM with access to a random oracle is more
powerful than providing it with ability to toss coins. Intuitively. access to a
random oracle allt~ws the CPU to “record” the outcome of its coin tosses “for
free”! However, as stated in the introduction, assuming the existence of one-way
functions, random oracles (functions) can be efficiently implemented by pseudo-
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random functions (and these can be constructed at the cost of tossing and storing
in CPU registers only a small number of coins).’

Definition 2.1.2.1.1 (OraclelProbabilistic CPU), For every k E N, we define
an oracle-CPU~ as a CPUk with two additional tapes, called the oracle tapes. One
of these tapes is read-only, whereas the other is write-only. Each time the
machine enters a special oracle invocation state, the contents of the read-only
oracle tape is changed instantaneously (i.e., in a single step), and the machine
passes to another special state, The string written on the write-only oracle tape
between two oracle invocations is called the que~ corresponding to the latter
invocation. We say that this CPU~ has access to the function ~ if when invoked
with query q, the oracle replies by changing the contents of the read-only oracle
tape to ~(q ). A probabilistic-CPU~ is an oracle CPUK with access to a uniformly
selected function f {O, 1}C)(k) ~ {O, 1}.

Definition 2.1.2,1.2 (Oracle/Probabilistic RAM). For every k E N, we define
an oracie-RAMk as a RAMk in which CPUk is replaced by an oracle-CPUk. We say
that this RAMk has access to the function f if its CPUk has access to the function
f and we write RAI@. A probabilistic-RAM~ is a R’4kfk in which CPUk is replaced
by a probabilistic-CPUk. (In other words, a probabilistic-RAM~ is an oracle-RAMk
with access to a uniformly selected function. )

Remark 2,1.2.1.3. In the sequel, we take the liberty of utilizing random
functions mapping strings of various lengths (bounded by O(k)) into strings of
possibly different lengths. Clearly, all these functions can be simultaneously
implemented by a single uniformly selected function j {O, 1}o(k) w {O, l}.

2.1.2.2. REPEATED EXECUTIONSOF RAMs. For our treatment of software
protection, we use repeated execution of the “same” RAMon several inputs. Our
intention is that the RAM starts its next execution with the work tapes of both CPU
and MEMORY having contents identical to their contents at termination of the
previous execution. This is indeed what happens in practice, yet the standard
abstract formulation usually ignores this point, which requires cumbersome
treatment.

Definition 2.1.2.2.1 (Repeated Executions of RAM). For every k G N, by
repeated executions of RAMk, on the inputs sequence y,, yz, . . . , we mean a
sequence of computations of R-04k so that the first computation starts with input
y, when the work tapes of both cpuk and MEMk are empty, and the ith
computation starts with input yi when the work tape of each machine (i.e., cpuk
and MEMk) contains the same string it has contained at the termination of the
i – 1st computation.

2.2. DEFINITION OF SOFTWARE PROTECTION. In this section, we define soft-

ware protection. Loosely speaking, a scheme for software protection is a
transformation of RAM programs into functionally equivalent programs for a
corresponding RAM so that the resulting program-RAM pair “foils adversarial
attempts to learn something substantial about the original program (beyond its

7 In such a case, one may use the input to CPU in order to feed the CPU with the seed to such a

pseudo-random function. When introducing multiple executions (as below), one has to postulate that

this seed initialization only takes place in the first execution.
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specifications)”. Our formulation of software protection should answer the
following questions:

(1) What can the adversaty do (in the course of its attempts to learn)?

(2) What is substantial knowledge about a program?

(3) What is a specification of a program?

Our approach in answering the above questions is the most pessimistic (and
hence conservative) one: among all possible malicious behavior, we consider the
most difficult, and most malicious, wor.w.case scenario. That is, we assume that
the adversary can run the transformed program on the RAMon arbitrary data of
its choice, and can modify the messages between the CPU and MEMORYin an
arbitrary and adaptive manners Moreover, since we consider the wor.rr-case
scenario. we interpret the release of any information about the original program,
which is not implied by its input/output relation and time/space complexity as
substantial learning. The input/output relation and time/space complexity of the
program are not considered secret (as the software is purchased based on an
announcement of this information).

2.2.1. Experimenting with u RAM. We consider two types of adversaries. Both
can repeatedly initiate the RAM on inputs of their choice. The difference between
the two types of adversaries is in their ability to modify the CPU-MEMORY

communication tapes during these computation (which correspond to interac-
tions of CPU with MEMORY). A tampering adversary is allowed both to read and
write to these tapes (i. e., inspect and alter the messages sent in an adaptive
fashion), whereas a nontarnpering adversary is only allowed to read these tapes
(i.e.. inspect the messages).

Remark. In both cases it is not necessary to allow the adversary to have the
same access rights to the MEMORY’S work tape, since the contents of this tape are
totally determined by the initial input and the messages sent by the CPU.

We stress that in both cases the adversary has no access to the internal tapes of
the CPU (i.e., the work tape and the oracle tape of the CPU). Furthermore, the
adversary has no oracle access to the CPU’Soracle.

For the sake of simplicity, we concentrate on adversaries with exponentially
bounded running-time. Specifically, the running-time of the adversary is bounded
above by 2“, where 17 is the size of the CPU’Swork tape. We note that the time
bound on the adversary is used only in order to bound the number of steps taken
by the RAM with which the adversary experiments. In practice, the adversary will
be even more restricted (specifically to working in time polynomial in the length
of the CPU’Swork tape),

Definition 2.2.1.1 (Nontampering Adversary). A nontampering adversaty, de-
noted ADV, is a probabilistic machine that, on input k (a parameter) and a (an
“encrypted program”), is given the following access to an oracle-RAM&. Machine
ADV can initiate repeated executions of &l&lk on inputs of its choice, as long as
its total running time is bounded by 2A. During each of these executions,

x Recall that in our model, even the worst-case adversary is not allowed to read the internal work tape

of the CPL) since the CPU models a “physically shielded” CPU (see intrrsductkm).
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machine ADVhas read-only access to the communication tapes between CPUk and
MEMk

Definition 2.2.1.2 (Tampering Adversa~). A tampering adversary, is defined
analogously to a non-tampering adversary except that during the repeated
executions it has read and write access to the communication tapes between CPUk
and MEMk

2.2.2. Software Protecting Transformations. We define transformations on
programs (i.e., compilers) which given a program, II, produce a pair (f, IIf) so
that ~ is a randomly chosen function and IIf is an “encrypted program” which
corresponds to II and f. Here, we have in mind an Oracle-RAM that on input (~f,

x) and access to oracle f, simulates the execution of II on data x, so that this
simulation “protects” the original program II. At this point, the reader may be
annoyed by the fact that the transformation produces a random function f that
may have an unbounded (or “huge”) description. However, in practice, the
function ~ will be pseudo-random [Goldreich et al. 1986], and will have a succinct
description as discussed in the introduction.

We start by defining compilers as transformations of programs into (program,
oracle )-pairs, which when executed by an oracle-ww are functionally equivalent
to executions of the original programs.

Definition 2.2.2.1 (Compiler). A compiler, denoted C, is a probabilistic map-
ping that on input an integer parameter k and a program II for Z?A4k, returns a

pair (~, Hf), so that

–f {o, 1}~(’) * {O, 1} is a randomly selected function;

–lrIf/ = o(lrIl).

—For k‘ = k + O(log k), there exists an oracle-RAMk, so that, for every II,
every f and every x ~ {O, 1}*, initiating RAMk, on input (llf, x) and access to
the oracle ~ yields output H(x).

The oracle-~~k, differs from R4h.fk in several aspects. Most noticeably,
RAlfk has access to an oracle whereas l?zlikfkdoes not. It is also clear that RAfkfk?
has a larger memory: RAMk’s memory consists of 2k’ = poly(k) . 2k words,
whereas RAMk’s memory consists of 2k words. In addition, the length of the
memory words in the two RAMS may differ (and in fact will differ in the
transformations we present), and so may the intemuf computations of the CPU
conducted in each round. Still, both RAMShave memory words of length linear in
the parameter (i.e., k‘ and k, respectively), and conduct internal CPU computa-
tions that are polynomial in this parameter.

Compilers as defined above transform deterministic programs into “encrypted
programs” which run on a probabilistic-R,4M (i.e., into “probabilistic programs”).
It is worthwhile to note that we can extend the above definition so that compilers
can be applied also to programs that make calls to oracles, and in particular to
programs that make calls to random oracles. The results in this paper will remain
valid for such probabilistic programs as well. However, for simplicity of exposi-
tion, we restrict ourselves to compilers that are applied to deterministic pro-
grams.

We now turn to defining software-protecting compilers. Intuitively, a compiler
protects software if whatever can be computed after experimenting with the



Software Protectioft and Simulation on Obli~’ious R4Ms 445

“encrypted program” can be computed, in about the same time, by a machine
which merely has access to a specification of the original program. We first
define what is meant by access to a specification of a program.

Definition 2.2.2.2 (Specification of Programs). A specification oracle for a
program 11 is an oracle that on query x returns the triple ( Ii(x). [[l(x). ,Sll(X)).

Recall that [,,(x) and S1l(X) denote the running-time and space requirements
of program ~ on data x. We are now ready for the main definition concerning
software protection. In this definition ADV may be either a tampering or a

non-tampering adversary.

Definition 2.2.2.3 (Software-Protecting against a Specific Adversary). Given a
compiler (denoted C) and an adversary (denoted ADV), we say that C protects
.wfhiare against the adtersa~ ADV if there exists a probabilistic oracle machine (in

the standard sense). M, satisfying the following:

—(M operates in about the same time as ADV): There exists a polynomial p(”) so
that. for every string a, the running-time of M on input (k’, Ial) (and access to
an arbitrary oracle) is bounded by p(k’ ) “ T, where T denotes the running
time of ADV when experimenting with RAML. on input a.

—(M with access to a specification oracle produces output almost identical to the
output of ADV after experimenting with the result of the compiler): For every
program, II, the statistical distance between the following two probability

distributi(ms is bounded by 2 ‘k’.

( 1) The output distribution of ADVwhen experimenting with R#fk on input

11,. where (f, fl,) +- C(n). Recall that RAM denotes an interactive
pair. (CPUA, MEML), where CPU~ has access to oracle f. The distribu-
tion is over the probability space consisting of all possible choices of the
function f, and all possible outcomes of the coin tosses of ADV, with

uniform probability distribution.

(2) The output distribution of the oracle machine M on input (k’, 0(1 II\))
and access to a specification oracle for n. The distribution is over the
probability space consisting all possible outcomes of the coin tosses of
machine M. with uniform probability distribution.

Definition 2.2.2.4 (Software-Protecting Compilers). A compiler, C, provides
(weak ) sqftware protectiotl if C’ protects software against any nontampering
adversary. The compiler, C, prot’ides tamper-proof software protection if C
protects software against any tampering adversary.

Next, we define the cost of software protection. We remind the reader that for
the sake of’ simplicity, we are confining ourselves to programs ~ with running
time. rll, satisfying r,,(x) > lnl + lx), for all x.

Definition 2.2.2.5 (Ch’erlleud of Compilers). Let C be a compiler, and g: av w
,t’ be a function. We say that the overhead of C is at rnos[ g if for every 11, every

x E {(), 1 } *, and randomly selected f, the expected running time of RAM~., on
input ( Ilfi x) and access to the oracle ~, is bounded above by g(T) “ T, where
T = rll(x).
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Remark. An alternative definition of the overhead of compilers follows: We
say that the overhead of C is at most g if for every II, every x E {O, 1}*, and a
randomly selected ~, the running time of RAMk,, on input (~f, x) and access to
the oracle ~, is greater than g(T) “ T with probability bounded above by 2-‘,
where T = t ,I(x). The results presented in this paper hold for this definition as
well.

2.3. DEFINITIONOF OBLIVIOUSRAM ANDOBLIVIOUSSIMULATIONS. The final
goal of this section is to define oblivious simulations of RAMS.To this end, we
first define oblivious RAMS.Loosely speaking, the “memory access pattern” in an
oblivious RAM,on each input, depends only on its running time (on this input).
We next define what is meant by a simulation of one RAMon another. Finally, we
define oblivious simulation as having a “memory access pattern” that depends
only on the running time of the original (i.e., “simulated”) machine.

2.3.1. Oblivious RAMs. We begin by defining the access pattern as the
sequence of MEMORYlocations that the CPU accesses during computation. This
definition applies also to an oracle-ciw. (Recall that by Definitions 2.1.1.2-
2.1.1.4, the CPU interaction with MEMORYis a sequence of triples (i, a, v) of
“instruction”, “address”, and “value”, respectively.)

Definition 2.3.1.1 (Access Pattern). The access pattern, denoted sdk(y), of a
(detemzinistic) RAM~ on input y is a sequence (a ~, . . . . a[, . . .), such that for
every i, the ith message sent by cpuk, when interacting with kf~kfk(y), is of the
form (“, a;, “). (Similarly, we can define the access pattern of an oracle-RAMk on
a specific input y and access to a specific function ~. )

Considering probabilistic-RAMs, we define a random variable that for every
possible function ~ assigns the access pattern that corresponds to computations in
which the RAMhas access to this function. Namely,

Definition 2.3.1.2 (Access Pattern of a Probabilistic-iumt). The access pattern,
denoted &?k(y), of a probabi/istic-RAMk on input y is a random variable that
assumes the vahIe of the access pattern of &t&ik on a specific input y and access
to a uniformly selected function f.

Now, we are ready to define an oblivious RAM. We define an oblivious RAM to

be a probabilistic RAM for which the probability distribution of the sequence of
(memory) addresses accessed during an execution depends only on the running
time (i.e., is independent of the particular input).

Definition 2.3.1.3 (Oblivious RAM). For every k ~ N, we define an oblivious
RAMk as a probabilistic-RAh4k satisfying the following condition. For every two
strings, yl and yz, if l~k( yl)l and l~k( yz) I are identically distributed then so are
~k(yl) and s?k(y2).

Intuitively, the sequence of memory accesses of an oblivious RAM~ reveals no
information about the input (to the RAMk), beyond the running-time for the
input.

2.3.2. Oblivious Simulation. Now, that we have defined both RAM and oblivi-
ous RAM, it is left only to specify what is meant by an oblivious simulation of an
arbitrary RAM program on an oblivious RAM. Our notion of simulation is a
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minimal one: it only requires that both machines compute the same function.
The RAM simulations presented in the sequel are simulations in a much stronger
sense: specifically, they are “on-line”. On the other hand, an oblivious simulation
of a RAMis not merely a simulation by an oblivious RAM. In addition we require
that inputs having identical running time on the original RAM, maintain identical

running-time on the oblivious RAM (so that the obliviously condition applies to

them in a nonvacuous manner). For the sake of simplicity, we present only

definitions for oblivious simulation of deterministic RAMS.

Definition 2.3.2.1 (Oblivious Simulation of WtM). Given probabilistic-RAM’k.,
and RAM~. we say that a probabilistic-RAM’k,, obliviously simu[ates RAM~ if the
following conditions hold.

—The probabilistic-RAM’~ simulates RAMk with probability 1. In other words,
for every input y, and every choice of a (oracle) function f, the output of
oracle-RAM’A,, on input y and access to oracle f.equals the output of RAM~ on
input j.

—The probabilistic-RA M’A. is oblivious. (We stress that we refer here to (he access
pattern of RAM’L on a f~ed input and randomly chosen oracle function. )

—The random variable representing the running-time of probabilistic-RAM’~
(on input y) is fully specified by the running-time of RAMk (on input y). (Here
u$ain ~verefer to the beha~!ior of RAM’~ on a ftied input and a randomly chosen
oracle ft4nclion. )

Hence, the access pattern in an oblivious simulation (which is a random
variable defined over the choice of the random oracle) has a distribution
depending only on the running-time of the original machine. Namely, let .fi~’(y)
denote the access pattern in an oblivious simulation of the computation of RAML
on input y. Then, .~~’(y] ) and .& ’(yz) are identically distributed if the running
time of RAML on these inputs (i.e., y, and y2) is identical.

We note that in order to define oblivious simulations of oracle-RAMs, we have

to supply the simulating RAM with two oracles (i.e., one identical to the oracle of
the simulated machine and the other being a random oracle). Of course, these
two oracles can be incorporated into one, but in any case the formulation will be
slightly more cumbersome.

We now turn to define the overhead of oblivious simulations.

Definition 2.3.2.2 (Overhead of Oblivious Simulations). Given probabilistic-
RAM’L, RAM~, and suppose that a probabilistic-RAM’~ obliviously simulates the
computations of RAM~, and let g: N I-+ N be a function. We say that the
otwrhcad of the simulation is at most g if, for every y, the expected running time
of RAM’k on input y is bounded above by g(T) “ T. where T denotes the
running-time of RAM~ on input y.

q J 3. Time-Labeled Simula~ions.*.. .. Finally, we present a property of some RAM
simulations, This property is satisfied by the oblivious simulations we present in
the sequel, and is essential to our solution for tamper-proof software-protection~

“’our s{)luti(}n to the problem of weak software-protection ( i.e., protection against non-tampering

adversaries) dots not rely on this extra property, since it is reduced tn ordinary oblivious simulations
(as defined ah,wc),
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(since this solution is reduced to oblivious simulations having this extra proper-
ty). Loosely speaking, the property requires that whenever retrieving a value
from a MEMORYcell, the CPU “knows” how many times the contents of this cell
has been updated.10 That is, given any MEMORYaddress a, and the total number
of instructions, denoted j, executed by the CPU so-far, the total number of times
CPU executed a “store” command into location a can be efficiently computed by
an algorithm Q(j, a). Again, we consider only simulation of deterministic RAMS.

Definition 2.3.3.1 (Time-Labeled Simulation of RAM). Given oracle-RAiWk,,
RAlfk, and suppose that an oracle-RAM’ ~,, with access to oracle ~’, simulates the
computations of RAi14k.We say that the simulation is time-labeled if there exists
an O(k’ )-time algorithm Q(s, S) such that the following holds. Let (i, a, u) be
the jth message sent by CPU’k, (during repeated executions of RAlf’k,). Then,
the number of previous messages of the form (store, a, .), sent by CPU’~ is
exactly Q(j, a). In the sequel, we refer to Q( j, a ) as to the vemion(a ) number at
round j.

Thus, in order to “know” the version number of any address at a particular
time, it suffices for the CPUto keep count of the number of steps executed so far.
We stress that the CPU could not afford keeping the version number of all
memory addresses and so time-labeling is important for obtaining tamper-proof
software-protection. 1*

3. Reducing Software Protection to Oblivious Simulation of RAMs

In this section, we reduce the problem of software protection to the problem of
simulating a RAMon an Oblivious RAM. Note that the problem of simulation of
RAMon Oblivious RAM only deals with the problem of hiding the access pattern,
and completely ignores the fact that the memory contents and communication
between CPU and memory is accessible to the adversary. To make matters worse,
a tampering adversary is not only capable of inspecting the interaction between
CPU and memory during the simulation, but is also capable of modifiing them.
We start by reducing the problem of achieving weak software protection (i.e.,
protection against non-tampering adversaries) to the construction of oblivious
RAM simulation. We later augment our argument so that (tamper-proof) software
protection is reduced to the construction of oblivious time-labeled simulation.

3.1. SOFTWAREPROTECTIONAGAINST NONTAMPERINGADVERSARIES. Recall
that an adversary is called rtontampering if all it does is selects inputs, initiates
executions of the program on them and reads memory contents and communica-
tions between the CPU and the memory in such executions. Without loss of
generality, it suffices to consider adversaries which only read the communication
tapes (since the contents of memory cells is determined by the input and the
communication with the CPU). Using an oblivious simulation of a universal RAM,
it only remains to hide the contents of the “value field” in the messages

‘“ This is used in order to prevent a tampering adversary from replacing the current contents of a
memory location by an old contents of the same location.
I I Weaker versions of the time.labelingcondition may suffice for the latter purpose, Yet they seem

more cumbersome to state.
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exchanged between CPU and MEMORY. This is done using encryption, which in
turn is implemented using the random oracle.

THEOREM 3.1.1. Let {RAMA}AG, be a probabilistic RAM that constitutes an
ob[itious sitnu[ation of a universai &tM. Furthermore, suppose that t steps of tile
original R.4Mare simulated by less than t “g(t) steps of the oblivious RAM. Then there
mists u (ompiier, that protects software against nontarnpering adversan”es, with
overheali at most O(g(. )).

PROOF. The information available to a non-tampering adversaxy consists of
the messages exchanged between CPU and MEMORY.Recall that messages from
CPUA toMEM~ have the form (i, a, 7)),where i E {fetch, store, halt}, a
G{ 1,2, ..., 2A} and v E {O, 1}‘J(k’, whereas the messages from MEMA to

o(k) in an oblivious simulation. by definition.CPUL are of the form ~ = {O, 1}
(he “’address field” (i.e., a ) yields no information about the input y = (~fi x). It
is easy to eliminate the possibility that the “instruction field” (i.e., i ) yields any
information, by modifying the CPU so that it always accesses a memory location
by first fetching it and next storing in it (possibly the same but “re-encrypted”
value). Hence. all that is left is to “encrypt” the contents of the value field (i.e.,
7J). so that CPU can retrieve the original value. The idea is to implement an
encryption, using lhe oracle available to the CPU. In particular. the “encrypted
program” will consist of the original program encrypted in the same manner.

For encryption purposes, CPU~ maintains a special counter, denoted encoun t,

initialized to O. We modify RAM~ by providing it with an additional random
oracle, denoted f’. Clearly. the new random oracle can be combined with the
random oracle used in the oblivious simulationlz. Whenever CPU~ needs to store
a value (either an old value which was just read or a new value) into memory
MEMA, the counter enco~nt is incremented, and the value 71 is encrypted by the
pair (~163 f(encount), encount) (where @ denotes the bit-by-bit exclusive-or
operation). When retrieving a pair (u, j), the encrypted value is retrieved by
computing u 6?f(j). We stress that both encryption and decryption can be easily
implemented when given access to the oracle ,f.

Hence, the software protecting compiler, C, operates as follows. On input a
parameter k and a program II, consisting of a sequence of instructions ml, . . . .
T,,, the compiler uniformly selects a function f, and sets

fI, =(m, @f(2L+l ),2 A+l), . . ..(7r., @f(2’+n),2k+ n).

Since the total running time of RAM~, in all experiments initiated by the
adversa~. is at most 2k, we never use the same argument (to f ) for two different
encryptions. It follows that the encryption (which is via a “one-time pad”) is
perfectly secure (in the information theoretic sense), and hence the adversary
gains no information about the original contents of the value field. ❑

We remark that, in practice, one has to substitute the random oracle by a
pscudorandom one Consequently, the result will hold only for adversaries
restricted to polynomial-time. Specifically, the compiler on input parameter k

and program II uniformly selects a pseudorandom function f, and the description
of ,f is hard-wired into CPU~. Hence, CPUL is able to evaluate ~ on inputs of

“ For example, to combine functions j’, and ~2 define ~(; . X) ’5’ ~,(x)
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length k, and no poly(k)-time adversag can distinguish the behavior of this CPU
from the CPU described in the proof of the theorem above. Hence, whatever a
poly(k)-time adversary can compute after a non-tampering experiment, can be
computed in poly(k)-time with access to only the specification oracle (i.e., the
two are indistinguishable in poly(k)-time). A similar remark will apply to the
following theorem as well.

3.2. SOFTWAREPROTECTIONAGAINSTTAMPERINGADVERSARIES

THEOREM 3.2.1. Let {RAMk}kGw be a probabilistic RAM which constitutes an
oblivious time-labeled simulation of a universal RAM. Furthermore, suppose that t
steps of the original RAMare simulated by less than t “g(t) steps of the oblivious RAM.
Then there exists a compiler, that protects software against tampering adversaries,
with overhead at most O(g(”)).

PROOF. In addition to the ideas used above, we have to prevent the adversary
from modifying the contents of the messages exchange between CPU and
MEMORY.This is achieved by using authentication. Without loss of generality, we
may restrict our attention to adversaries that only alter messages in the MEMORY-
to-cpu direction.

Authentication is provided by augmenting the values stored in MEMORYwith
authentication tags. The authentication tag will depend on the value to be stored,
on the actual MEMORY location (in which the value is to be stored), and on the
number of previous store instructions to this location. (Hence, the fact that the
simulation is time-labeled is crucial to our solution.) Intuitively, such an authen-
tication tag will prevent the possibility of modifying the value, substituting it by a
value stored in a different location, or substituting it by a value that has been
stored in the past in the same location.

The CPUk resulting from the previous theorem is hence further modified as
follows: The modified CPUk has access to yet another random function, denoted
f. (Again this function can be combined with the other ones.) In case CPU~ needs
to store the (encrypted) value u, in MEMORY location a, itfirst determines the
current version number of location a. (Notice that the version(a) number can be
computed by the CPU~ according to the definition of time-labeled simulation).
The modified CPU, now sends the message (s tore, a, (v, f(a, version(a), v)))
(instead of the message (store, a, u) sent originally). Upon receiving a message
(v, t) from MEMORY,in response to a (fetch, a, “) request, the modified
CPUk determines the current version(a) number, and compares t against
f(a, version(a), v). In case the two values are equal, CPUk proceeds as before.
Otherwise, CPUk halts immediately (and “forever”) notifying that a tampering-
attack has been detected. Thus, attempts to alter the messages from MEMORYto
CPUwill be detected with very high probability. ❑

4. Towards Oblivious Simulation: The “Square Root” Solution

Recall that the trivial solution to oblivious simulation of a RAM is to scan the
entire actual RAMk memory for each virtual memory access (that needs to be
implemented for the original RAM).We now describe the first nontrivial oblivious
simulation of RAA4kon probabilistic RAM’k, in order to develop some intuition
about the more efficient solution. We further simplify our problem by assuming
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FIG.1. DiiI~structure for “square root” solution

that we know, ahead of time, the amount of memory, denoted m, required by the
program. 13We show below how to simulate such a RAM by an oblivious RAM of
~ze m + 2~rn, such that f steps of the original RAM are simulated by
O(t “ \“m ) steps of the oblivious RAM.

In the sequel, whenever we talk of virtual memory access we mean a memory
access required by the original RAM being simulated. The memory accesses of the
(oblivious) simulating RAM are referred to as actual memory accesses. In
addition we treat. without loss of generality, only virtual accesses which consists
of updating the contents of a single memory cell (i.e., a fetch(i) followed by
storc(i. .) commands, for some i).

4,1. O\JERVIEWOF THE “SQUARE ROOT” ALGORITHM. Intuitively, to com-
pletely hide the virtual access pattern, we must hide the following

( 1) ~Aic/r virtual locations are accessed, and in what order?

(2) how many times is a particular virtual location accessed (in case it were
accessed)?

Informally, to deal with the first problem, it is sufficient to somehow “shuffle”
the memory, so that the adversary does not know which actual memory address
corresponds to which virtual address. To deal with the second problem, we make
sure that any (shuffled) memory location is accessed at most once. The high-level
steps of the simulation are as follows:

—-Initialization. The first m + V’% words of the simulating RAM are allocated
to hold the contents of the m virtual addresses (which the original RAM
accesses during its execution) and fi “dummy” words. The remaining W
words are allocated to serve as auxiliary (“short-term”) storage hereafter
called shelter-. See Figure 1.

1‘ This additional assumption is not needed for the final solution
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—Simulation of RAM Steps. until the simulated RAM halts do begin
The simulation proceeds in epochs each consisting of V steps of the
original/simulated machine. In each such epoch, the following steps are taken:

(1)

(2)

(3)

Randomly permute the contents of locations 1 through m + %. That is,
uniformly select a permutation m over the integers 1 through m + V%
and (obliviously) relocate the contents of (virtual) word i into the
(actual) word m(i). (Later, we show how to do this efficiently and
obliviously.) We stress that the shelter (i.e., locations (m + W + 1)

through (m + 2=)) does not participate in this random shuffling.
Thus, the actual addresses 1 through m + fi are called permuted
memory.

Simuiate G virtual memory accesses of rhe original RAM. During the
simulation we maintain the values (of virtual accesses) retrieved (and
updated) during the current epoch in the shelter. (Since the shelter size
equals the number of virtual accesses in one epoch, we can maintain all
values retrieved during the current epoch in the shelter.) A memory
access of the original RAM, say access to virtual word i, is simulated as
follows:

—First, we scan through the entire shelter and check whether the
contents of the virtual word i is in one of the shelter’s words. (We
stress that here we access each shelter location in a predetermined
order regardless of whether or when we found the virtual word that we
are looking for.)

—In case the ith virtual word is not found in the shelter, we retrieve it
from the actual word m(i) (which is the current location of the ith
virtual word during this epoch).

—Otherwise (i.e., in case the ith virtual word is found in the shelter), we
access the next “dummy word” in the permuted memory (e.g., we
access the actual address m(m + j), where j is the number of steps
simulated in the current epoch).

—In any case the updated value for the ith virtual location is written
(obliviously) to the shelter, by scanning (again) all the shelter’s words.

Update the permuted memoty: At the end of an epoch, we use the values
stored in the shelter to obliviously update the contents of the permuted
memory.

Before getting to the implementation details of the above steps, we provide
some hints as to why they constitute an oblivious simulation. We are going to
show how to make memory accesses of Step (1) fixed and thus independent of
the input and the (virtual) access pattern of the original RAM. The memory
accesses executed in Step (2) are of two types: scanning through the entire
shelter (i.e., accessing each of its words tsvice per each virtual access14), and
accessing fi locations in the permuted memory during each epoch. For each
possible fi virtual accesses, the latter W actual accesses are uniformly
distributed among all &-subsets of {1, . . . . m + fi}, where the probability
distribution is induced by the choice of the permutation m. Thus, the actual

‘4That is, once in the first substep of Step (2) and once in its last substep.
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accesses performed in Step (2) yield no information about the virtual accesses
performed in this step. It is easy to see that Step (3) creates no new difficulties,
as it can be handled by performing the actual accesses of Steps (1) and (2) in
reversed order. 15

4.2. l~PL~ME~”r~moN OF THE “SQUARE ROOT” ALGORITHM. We now turn to
details. First, we show how to choose and store (in the CPU) a random
permutation over { 1, 2, . . . . n }, using O(log n ) storage and a random oracle.
The idea is to use the oracle in order to tag the elements with randomly chosen
and distinct (with high prohabiiity) integers from a set of tags, denoted T,,. The
permutation is obtained by sorting the elements according to their tags. It
suffices to have the tags being drawn at random from the set T,, = { 1, 2, . . . ,
/tz/~}. provided that we are willing to tolerate a collision probability of e (i. e., for
our application ● = 2 ~k). Let r: {1, 2,. . . , 11} ~ T,, be a random function
trivially constructed try the random oracle. Then n(i) = k if and only if T(i) is
the kth sm:illest element in {7(j) : 1 s j s n}. In our case n = m + ~rn:
namely. the n elements consists of the m virtual addresses, associated with the
integers 1. . . , m, and the \z;z dummies associated with {m + 1, . . , m +
j/fn }

Now we face the problem of obliviously sorting n elements by tags. The crucial
condition is that the RAM that executes the sorting can store only a fixed
number of values (say 2) at a time. The idea is to “implement” Batcher’s Sorting
Network [Batcher 1968], which allows one to sort n elements by performing
n “[log, n12 comparisons. Each comparison is “implemented” by accessing both
corresponding words, reading their contents, and then writing these values back
in the desired order. The sequence of memory accesses generated for this
purpose is fixed and independent of the input. Note that the oblivious RAM can
easily compute fit each point which comparison it needs to implement next. This
is duc to the simple structure of Batcher’s network, which is uniform with respect
to logarithmic space.16 All this works, provided we store the tag of each element
together with the element (be it a virtual word or a dummy). Clearly, we can
afford doing so and wc indeed do so.

Next, we specify how to access a virtual location or a dummy i. Notice that
after Step (l), the virtual locations 1 through m (as well as the dummies m + 1
through m + \/m) are sorted according to their tags (i.e., 7(”)). Thus, the actual
accesses into the permuted memory at Step (2) are performed by binary search
for the desired tag. Namely, suppose we want to access element i E {1, . . . .
m + ~m }. Then, instead of reaching directly to actual location r(i) as
suggested by the high-level description, we perform a binary search for the tag
T(i). This binary search terminates at the actual location ~(i). Furthermore, the
(p(~ssibly) other actual accesses performed during the search are totally deter-

mined by rr(i). Thus, these additional actual accesses yield no information to an
observer.

We now present two alternative implementations of Step (3). The first
alternative is by reversing the access pattern of Step (2). The second alternative
is sort the entire actual memory (i. e., all m + 2\&r words including the shelter)

“ An altcrrralivc proccdurc is presented below.

‘“ The simplicity nf Biitchcr sorting network is the main reason wc prefer it (in practice) upon the

asymptotically supcri{m Ajtai–K{Jmlos–Szemcredi sorting netwnrk [Ajtai et al. 19X3].
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twice as is hereby described. The first sorting is performed according to the key
(v, u), where v is the virtual address (~ for dummies) and u ~ {O, 1} indicates
whether this word comes from the shelter or from the permuted memory. Thus,
the sorted list has virtual addresses appearing in order with some of them
appearing in duplicate, one next to the other (one version from the shelter and
the other from the permuted memory). Next, we scan this list and for each virtual
address appearing in duplicate mark the second occurrence (originating from the
permuted memory) as dummy (i.e., CC).Finally, we sort the entire memory again,
this time by virtual addresses. (Actually, this additional sorting is unnecessary as
the memory will be resorted anyhow by the next execution of Step (l).)

We conclude this subsection by providing a detailed description of Step (2).
We remind the reader that the main idea of this simulation is that we access each
virtual memory location in the “permuted memory” only once during each epoch
step. Once we access some virtual location, we keep a version of this virtual
location in the shelter. Throughout Step (2) the variable count, kept in the CPU,
maintains the number of virtual accesses simulated in the current epoch. The
variable count is initially O and is incremented until it reaches W. The Boolean
variable @ozd (also kept in the CPU) will record whether the required value was
found in the shelter. When the original RAM accesses its ith virtual word, the
oblivious RAM proceeds as follows:

(2a) Scans through the shelter looking for virtual address i. Namely, for j =
m + Vm + 1 to m + 2v%, the oblivious RAM accesses actual memory
location j setting $ound to true and storing the value in the CPU, if virtual
address i is in actual location j. (The variable found is initialized to f a 1se
before this scanning and remains so if virtual address i was not found.)

(2b) If ~ound = false, then the oblivious RAM accesses the word with tag
m(i), and stores its contents in the CPU. As explained above, this is
implemented by binary search for the tag T(i).

(2c) If ~ound = true, then the oblivious RAM accesses the word with tag
m(m + count) (which is a “dummy”). Also this is implemented by binary
search for the tag r(m + count).

(2d) The oblivious RAM scans through shelter again and writes the (possibly)
updated value of the virtual ith word to the shelter. Namely, for j = m +
~ + 1 tom + 2fi, accesses actual memory location j storing in it the
updated value of virtual address i if either address j contains the (older)
value of virtual address i (and ~ound = true) or found = false and j is
the first empty word in the shelter. (One can use found to avoid writing the
value of the virtual address into several empty shelter words.)

—Increment count by 1.

We stress that an observer cannot see whether CPU has internally stored a
value or not and so it cannot distinguish the execution of Step (2b) from the
execution of Step (2c). Clearly, Steps (2a) and (2d) have a fixed access pattern
and thus leak no information.

4.3. ANALYSIS OF THE “SQUARE ROOT” ALGORITHM. As argued above the
sequence of actual memory accesses (of the oblivious RAM) indeed yields no
information about the sequence of virtual memory accesses (of the original
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RAM). This is so, since during Steps (l), (2a), (2d), and (3), the actual

access-pattern is fixed, whereas during Steps (2b) and (2c) the actual access-
patterns m-e indistinguishable and “random”. 17

lt is left to calculate the overhead of the simulation (i.e., the ratio of number

of accesses done by the oblivious RAM over the number of original accesses). To
this end we calculate the total number of actual accesses performed per epoch
(i.e.. \~m virtual accesses). The number of actual accesses in Step (1) is
determined by the number of comparisons in Batcher’s Sorting Network; namely,
O(m “ log~ m). The same holds also for Step (3). As for Step (2), each virtual
access is implemented by 2N’rn + Iogz(tn + V’m ) = 0( fi ) actual accesses.
This amounts to an amortized overhead’~ of O(~rn “ logz m).

In the next section, we present an exponential improvement over the above
scheme. reducing the overhead from a ~m factor to a poly(log m ) factor.

5. Th c> Hierarchical Soiu t ion

In this section, we prove the main result of the paper:

THEOREM 5.1 (MAIN RESULT). For all k E A“,for any RAMA and for ally of
length < 2~, any t ~ 2k steps of the computation of RAMk on y can be obliviously
simulated by probabilistic -RAM’~ ~~[Or/Og~ with ot’erhead 0((/og t )3). Furthermore.
the simulatioir is on-line and time-labeled.

5.1. OVERVIEW. The hierarchical solution presented in this section is a
generalization of the solution presented in the previous section. One can view
the solution of the previous section as consisting of two parts: the random
shuffling and reshuffling of the actual memory contents every V’m virtual
accesses (i. e., Steps ( 1) and (3)), and the very simulation of the virtual accesses
through their randomized locations (i.e., Step (2)). Substeps (2a) and (2d) can be
thought of as simulating a “powerful RAM”19 in which the CPU can hold up to
\ ‘m values in its local registers at any time. In these terms the “Square Root”
solution is as follows: The CPU decides whether it already holds the required
value in its V’m registers (which we call a “buffer”). If the answer is negative
then the CPU fetches the value, else it reaches for a new “dummy” cell. When
trying to generalize the solution, we want to decrease the amortized cost of the
random shuffling. An over-simplified approach is to first consider simulating a
RAM by a “even more powerful RAM” that can hold ~(m ) words in its internal
registers. where ,f is a suitably selected function, and then to recurse. This
approach does improve over the V’m overhead (cf., Goldreich [ 1987]), but fails
short of obtaining a poly]ogarithmic overhead. Our polylogarithmic solution is

1“‘1’h,t( i,. cxmsidcring only the Itist ~ccess in each such step, wc recall that it is uniformly distributed

amc)ng all permuted memory locations not acccsscd in the current cpt~ch. ASfor the accesses done for

the binary warch. thcw are determined try the las~ access.
!8 Act~lallv, [he ~lb(,vc ~h(>j~e of p~~arnetcrs (i.e., the shelter size) is not ~ptirn~l. Using a shelter ‘)f

size \ (anti corrcspimdingly an epoch of .s virtual accesses), we obtain an amortized overhead of

O(m lcrg~ m }
----— + (2.7 + 1 + logrrr)

.s

which ii minimized by setting s = 6)( \~m . log m ).

‘“’Alas. such a ‘<powerful RAM” is disallowed by our definitions
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based on storing the virtual memory in a random-hash table, rather than as a
randomly sorted array and to recurse more carefully. However, we believe that
an explicit presentation that avoids recursion is more clear. Using such a
presentation, the idea is to have buffers (i.e., hash tables) of different sizes
according to the frequency with which they are reshuffled. That is, we will have a
small-size buffer that we frequently shuffle. We will have bigger and bigger
buffers that will not have to be shuffled as frequently, striking a balance in the
(amortized) cost. Thus, we introduce a hierarchy of buflers ofdifferenl sizes, where
essentially we are going to shuffle buffers with frequency inversely proportional
to their sizes.

For exposition purposes, we make a simplifying assumption about the possible
access pattern and first present a solution for this simpler problem. At first
reading, it may not be clear why we select this particular solution for the
simplified problem. The reason, however, will become obvious, once we show
how to extend it to the general case.

5.2. THE RESTRICTEDPROBLEM. Suppose we are guaranteed that each mem-
ory location in a virtual memory containing n words is going to be accessed at
most once. For concreteness, let A = ((71, 2EI), . . . . (7., %.)) be an
array/block of virtual memory locations, denoted by 7fis, together with their
values, denoted by %is. We consider the problem of hiding the access pattern
into A. Further assuming that each entry of A is to be accessed, we merely need
to hide the order in which words in A are accessed. Instead of taking the
approach of the previous section, we introduce a new data-structure, which will
prove to be useful for our general problem. In particular, instead of randomly
permuting memory contents, we create a hash-table with n buckets, numbered
from 1 to n, where each bucket contains O(log n) words (see Figure 2).

We are going to map virtual memory addresses to the hash table, using the
random oracle to compute our hash function, denoted A. The preprocessing step
works as follows:

(1) Allocate a block of memoty of size n . O(log n ) words. In this block, we call
each consecutive subblock of size 0( log n ) a bucket, and we number our
buckets from 1 to n.

(2) Oblivious hashing, For i = 1 to n, obliviously store the pair (Ti, %i). into
bucket %(Vi) (i.e., into the first available word in a bucket &(Ti)).

Remark. At this point, we do not describe how Step (2) could be imple-
mented obliviously and efficiently. We merely hint that extending techniques
developed in the previous section, Step (2) can be implemented obliviously by
O(n “ (log n )2) actual accesses.

Remark. Notice that we store n items into a hash table with n entries
according to a random mapping. Hence, the probability that any bucket will
overflow (taken over the choice of the random mapping) is l/poly(n ). In case an
overflow occurs, we may select a new random hash function and rehash the items
into the table. In the sequel, we assume that the hashing is such that no bucket
overflows. (We also remark that this is the main reason why we talk about
expected running time of the simulation.)
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FIG.2. The restricted proh[em.

Recall that we are dealing with the restricted problem, where we assume the
virtual access pattern is a permutation of { 1, . . . , n }. After the preprocessing
step, we can easily hide the access pattern, utilizing this assumption. The solution
is straightforward: when asked to access virtual address V we scan the entire
bucket %(W) looking for a tuple (T, “). We claim that the actual access pattern is
identically distributed for all virtual access patterns. Furthermore,

LEMMA 5.2.1. Let h be uniformly selected among all jitnctions mapping the
it~~s V,, . . . , T“,l inlo {1, . . . , n } so that no range element has more than
1 = O(log n) preimages. A t-lega[ sequence is a virtuai access pattern in which t
virtual addresses urc accessed and each is accessed once. Then for even t ~ n, and
for every t-legal sequence, the actua[ access pattern of the above scheme is distributed
identica!!y,

PROOF. The key observation is that for every integer f and for every t s n
and permutation m on {1, . . . . n}, the sequence h(lrr(l )), . . . . h(Vz,, )) and
the sequence h(’l”l), . . . . h (’V, ) are identically distributed. z’)The lemma follows
by observing that the actual access pattern for the virtual access pattern
7’m(l),..., 7’m(r) is determined by the sequence h(l’mf, ~), . . . . h(?”m([)). O

2“ In fact the observation extends to an arbitrary sequence over {V,, , T’r,} (even if it contains

repetitions). The observation is due to the symmetry of the distribution of h‘s which do not overflow

(with respect to permutations of the T,’s).
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FIG.3. Hierarchical data-structure.

Remark 5.2.2. We emphasize a crucial aspect of the above solution: our
procedure is allowed to access the same bucket more than once. In fact, it will do
so when collisions occur. Notice, however, that the distribution is the same as if

we select (for n times) one of the n buckets uniformly (conditioned on not
selecting the same bucket more that O(log n ) times) and sequentially scan it. We
stress that the bucket size is set to be logarithmic in n for efficiency purposes
(i.e., in order to make the probability of overflow small and consequently reduce
the effect of rehashing on the complexity). The bucket size has no bearing on the
validity of Lemma 5.2.1 (i.e., on the obliviousness of the actual access pattern
once a random non-overflowing hash function is used).

5.3. ALGORITHM FOR THE GENERAL CASE. We now waive all the previous
restrictions, and in particular allow multiple accesses to the same location. In
addition, we do not rely on the a-priori knowledge of the total virtual memory
size.

Instead of a single hash-table introduced in the previous subsection, we use
several hash-tables of different sizes. With each hash-table, we associate a
different hash-function. We call these hash-tables buffers and number them from
1 to N so that the ith buffer (also referred to as level (i) buffer) has 2i buckets;
see Figure 3. We “obliviously hash” contents of buffers at different frequencies,
according to their sizes (for smaller buffers we do so more often than for bigger
ones). Specifically, we (obliviously) rehash the ith buffer every 2i -‘ virtual
accesses and this is done by using a new hash function for this buffer. The idea is
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to ensure that for each buffer, no element in that buffer is accessed more than
once in between two consecutive “oblivious hashes”, thus reducing the general
problem to the restricted problem of the previous subsection.

Let t be the current length of the access sequence (i.e., the current running
time of the program which is being simulated). Actually, we initialize t to equal
the input length and increment it every time we perform a virtual access. We
allocate memory for N = ( 1 + (Iog2 tl)distinct buffers, where the ith buffer is
a hash-table consisting of 2’ buckets. i = 1, ~~f. , N. Each bucket, regardless of
the buffer to which it belongs, consists of m = O(log t)) actual memory words.
With each buffer we associate a partition of time into epochs so that the length
of the epoch corresponds to the size of the buffer. Specifically, the ith buffer,
holding 2’ buckets, has an epoch of length 2’-1, so that its jth epoch is the time
interval [(j – 1) “ 2;-] + l,j “ 2’ -‘]. The buffer parameters are tabulated
below. For each buffer and each epoch, we associate a (random) hash func-
tion mapping the set of all virtual addresses into the buckets of this buffer.
Specifically, the hash function associated with the jth epoch of the ith buffer
is denoted h,,] and has range {1, . . . . 2’}. All these hash functions are
defined ~~nd computed via the random oracle fi for example, we can let
h,,(l”) = ( f(i, j, T“) mod 2’) + 1. We stress that these hash functions are
totally random and independent of one another.

size epoch length moved “down”z ]

i’h buffer T buckets 2/1 every 2’ virtual accesses

Before we describe our algorithm, let us motivate it by stating how our access
pattern is going to look to an “adversary” (i.e., what is the distribution of actual
memory accesses). During the simulation we will be introducing more and more
buffers at some predetermined intervals of time (i.e., the i + 1st buffer is
introduced at time 2’). Furthermore, the size of the buckets in these buffers will
grow with time so that at time 2’ all buckets are of size O(i). For any virtual
memory access, we scan all (i.e., both) buckets of the first buffer, and for each
the other buffer (currently existing) we scan a single bucket, which appears to be
randomly chosen. By ~canning a bucket, we mean accessing all the m actual
memory words associated with the buckets.

Initially, all the buffers are empty .22 In the beginning of the simulation, we
obliviously hash the program and the data into the Nth buffer (according to the
hash function hjv,, ), where N equals the logarithm of the input (i.e.,
program +data) length. In addition, we initialize r to 2“- 1. The on-line simula-
tion proceeds according to the epoch structure of all buffers. When treating the
tth virtual memory access, we first perform some actual accesses in order to
implement this virtual access and next re-hash (obliviously) all buffers the epoch
of which has just ended. Let us start by describing the first part.

Suppose that at time t we need to access the virtual memory address T. Then,
we first scan both buckets of the 1th buffer (i.e., access all actual memory words

21 See discussion and Step (4) below.

22 An alternative description can be obtained by treating the placing of the input into the memory as

an ordinary execution of the original RAM.
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belonging to the first buffer), looking for (T, “). In case we have not found (T, .)
in this buffer, we scan bucket h ~,[,121(T”) of the second buffer. If we have not
found it there either, we scan bucket h~,r,,~l(~) of the third buffer, and so on.
Say we found the virtual memory address T in the ith buffer, then for all the
bigger buffers (i.e., buffers i + 1, i -t 2, . . . . IV), we scan a randomly chosen
bucket. Actually, for everyj > i, we scan bucket hj,[,,a~-]l (“dummy”, t) of thejth
buffer. Having the contents of virtual address ~, the CPU can store it in its
registers and update it. In any case, at the end, we store the updated value of the
virtual address ‘T in the first buffer (e.g., in bucket h, ,,(V) ) .23 We stress that we
store in the Ist buffer only the “address-value” pair we have been looking for,
and not the entire bucket in which we have found it. Nor do we store any other
information retrieved during the search (i.e., in the buckets that were scanned
but did not contain the virtual address ‘if).

The following is a more detailed description of the actual accesses done in
time t in order to implement a virtual memory access to location T:

—Reset the Boolean variable found to f a 1se. (We stress that found k an
internal variable of the CPU.)

(1)

(2)

(3)

Access all actual memory words associated with each of the two buckets of
the 1st buffer. In case a pair of the form (T, %’)is found, store it in the CPU
and set found to true. (We stress that the adversary cannot see the internal
actions of the CPU and thus it cannot tell if a pair has been stored in it or if
found has been set.},
For i from 2 to N ~f 1+rlog2tl do:

(2.1)

(2.2)

if not found (Le., the virtual address ~ has not been found
yet), then access all actual memory words associated with the
hi,r(/2(-ll(~)th bucket of the ith buffer. In case a pair of the form
(V, %) is found, store it in the CPU and set found to true.

i f found (i.e., the virtual address V has already been found), then
access all actual memory words associated with the hl,rf/2 -11(0, t)th
bucket of the ith buffer. We assume that the virtual addresses are
encoded as integers and thus that they are disjoint of pairs of the form
(o, t),

The CPU updates the contents of the virtual address V and stores the update
pair (7, %) in the first buffer. This storing is done while accessing each
actual memory word associated with the 1st buffer and so that if ~ appears
in the lth buffer the new value overwrites on it.

Note that in the above description, the data is always “moved up” to the lth
buffer. Thus, after several accesses, the 1st buffer may become full. To avoid
potential “overflow” we must frequently “move” the contents of the first buffer
to the second buffer. Then (at longer intervals) we must move contents of the
second buffer to the third buffer, and so on. When we “move” contents of the ith
buffer into the i + 1st buffer, we “obliviously hash” the contents of the ith buffer
and the contents of i + 1st buffer to the i + 1st buffer, according to a new,

23Actually, there is no need to use a hash function (and oblivious rehashing) for the first buffer as its
contents is always accessed obliviously (i.e., by scanning all the words of both buckets). We have
adopted the current description only for sake of uniformity.
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random hash function; namely, hi, ,,, where j is an index of a new epoch for the
i + 1st buffer. Further details for the oblivious hashing operation are postponed
to Subsection 5.5. At this point we merely state that the contents of the ith buffer
are moved into the i + 1st buffer and the latter buffer is rehashed every 2’

virtual accesses (i.e., at the end of an epoch of the i + 1st buffer). Thus. every
time the ith buffer becomes potentially24 full, we move its contents into the next
bigger buffer. If this larger buffer does not yet exist, we allocate it. Thus, the

following actions take place (after implementing the rth virtual access as
described above).

(4) For i from 1 to max{j : 2’ divides [ }, obliviously rehash the current contents
of the ith buffer and the i + 1st buffer into the i + I st buffer. using the
hash function h, , ,,{, ~~+,.

The implementation of Step (4) is given in Subsection 5.5. We stress that if the
contents of a virtual address appears in both the ith and the i + 1st buffers then
the value in the i + 1st buffer is to be ignored since it is older.

Remarks. After implementing exactly (2q + 1) “ 2’ virtual accesses, the total
number of virtual memory words in the first i buffers is at most 2;, and hence
merging their contents into the i + 1st buffer (which also contains at most 2i
virtual words) is unlikely (o cause overflow. We stress again that when imple-
menting the oblivious re-hash, we act as if these i + I buffers contain exactly
?’+ ) virtual words. We remark that we could have merged the contents of all i
smaller buffers directly into the i + 1st buffer rather than merge the 1st buffer
into the 2nd. merge the 2nd into the 3rd and so on till merging the ith buffer into
the i + Ist.

When we move contents of a smaller buffer into the larger buffer. we pick a
new hash function and place into the bigger buffer the contents of the smaller
buffer i]nd the contents of the bigger buffer, according to this new hash function.
Thus, the collisions which might have occurred in the smaller buffer do not
influence collisions which may occur in the bigger buffer. That is. collisions do
not accumulate.

Note that we do not need to know a priori the length of the virtual access
sequence. Instead. we do an adaptive simulation, starting with twice the size of
the input and adding more memory “as needed” (but obliviously of the real
access. ) That is, after f steps we use O(t “(log t)z) memory. Notice that this does
not reveal the rate at which the memory is actually used up by the program.

our scheme can be generalized as follows: For any integer h > 1, we may let
the ith buffer contain h’ buckets (each of the same size as above). The epoch of
the ith buffer will have length b’ 1; that is, it will be obliviously rehashed every
b’ 1 virtual accesses (each time using a new random hash function). Analo-
gously. the contents of the ith buffer will be merged into the i + 1st buffer every

2’ T(, maintain obliviousness. our actions are independent of {hc virtual access pattern and so wc

cannot (and do not) take advantage of cases in which the same virtual addresses were being accessed.

Wc rncrcly use the upper hound by which in 2’ acccsscs at most 2’ \irtual Iocati{ms are accessed and
S(J the (th buffer will contain at most 2’ virtual words in its 2’ huckcts. Although each bucket can

contain logarithmically many words, we better not fill up this buffer any more c~r else we risk

increasing the probability of overflow.
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bi virtual accesses. In practice, using large values of b may yield a reduced
overhead; see Subsection 5.6.

5.4. OBLIVIOUSNESS OF ACCESSPATTERN. Let us start with an overview of our
proof. The key observation underlying the proof of the obliviousness of the
access pattern in Steps (1) through (3) is taken from the analysis of the restricted
problem (see Subsection 5.2). The observation is that as long as we never try to
access the same virtual memory address (or the same dummy) twice, from the
same buffer during the same buffer epoch, our actual access pattern in Step (2)
reveals no information to the adversary. As Steps (1) and (3) are clearly
oblivious, as they amount to scanning all words in the first buffer regardless of
the virtual access request, we are done. A more elaborate justification, to the
obliviousness of the actual accesses made in Step (2), follows.

LEMMA 5.4.1. Let i > 1, j a 1, r ~f (j–l) “ 2; and n ~f 2i. Consider the jth
epoch of the ith buffer and suppose that at the beginning of this epoch the buffer
contains u < n virtual addresses, denoted V,, . . , , V,,. Further suppose that hi,]
is selected uniformly among all functions mapping the items Q,, . . . , 7,.
(O, t+ l),.,., (0, t+2n-u)info {l,..., n } so that no range element has
more than m ~f O(log t) preimages. Then, the actual accesses made into the ith
bufler during the jth epoch are oblivious (i.e., do not reveal any information on the
virtual access pattern ).25

PROOF. The proof is analogous to the proof of Lemma 1. All that we need to
do is prove that during Step (2), the same item (be it a virtual address Yti or a
dummy (O, r + u)) is never used twice as a target for access within the same
epoch. That is, we claim that during the jth epoch of the ith buffer we access the
buckets hi,j(T1), . . . . hi,j( T,,,2), where T, through T,,,2 are n/2 distinct ele-
ments from the 2n-item set {%”1,. . . , V,,} U {(O, t + 1), . . . , (O, t + 2n –
v)}.

The claim is proven by reviewing Step (2). Firstly, if a virtual address %“Uis
ever used as a target during the jth epoch (i.e., if at some time t‘, t < f‘< t +

(n/ 2), we evaluate hi,,(%’”,,) and access the resulting bucket) then by Step (3) the
(updated) contents of T“,, is moved to the first bucket. Furthermore, according to
Step (4), during the remaining t + (n/2) – t‘ < (n/2) virtual accesses ~,, may
be moved only upto the i – 1st buffer (as i – 1 = log2(n/2)). It follows that in
the remaining t + (rz/2) – t’virtual accesses, if sought at all, ‘VUmay be found
in one of the first i – 1 buffers and thus is never used again as a target in buffer
(2). This establishes that the same virtual address is used at most once as a target
for search in the ith bucket during its jth epoch.

By definition the virtual addresses and the dummies (i.e., the items (t + u))
are disjoint. Thus, it remains to show that no dummy is twice a target for search
in the ith bucket during itsjth epoch. But this is apparent from the description of
Step b (2.2) and so the claim follows and so does the lemma. ❑

We stress that the above proof holds regardless of whether the virtual access
made in Step (2) corresponds to a virtual word that resides in the ith buffer
during the jth epoch. In particular, the argument does not depend on whether a

15That is the ~cfual access pattern considered are identically distributed for every possible virtual

access pattern being simulated.
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virtual word that resides in the ith buffer also resides in larger buffers. As for
every buffer and each of its epochs, the actual access pattern into this buffer
during this epoch reveals no information on the virtual access pattern being
simulated, we get

COROLLARY 5.4.2. The actual access pattern in Steps (1), (2). and (3) is
ohlij io14s of the tfirrt4a/access pattern.

5.5. How TO PERFORM THE OBLIVIOUS HASH. In this subsection, we provide
an efficient implementation of Step (4) (of Subsection 5.3 above); namely, we
show how to perform oblivious hash.

Recall that in our algorithm, the data is always “moved up” to the smallest
(level I ) buffer. Thus, after several virtual accesses, the level 1 buffer may
become full. To avoid potential “overflow” we must “move” the contents of the
first level buffer to the second level buffer. Then (at longer intervals) we must
move contents of the second level buffer to the third level buffer, and so on.
When we “move” contents of buffer level i to buffer level i + 1, every 2’ virtual
accesses, we “obliviously hash” the contents of buffer level i and the contents of
buffer level i + 1 into buffer i + 1 according to a new hashing function. We
stress that if this is time to move the contents of buffer i + 1 Up (to buffer i +
2) too. then we perform this latter activity after completing the rehashing into
level i + 1 (which in fact has been done in vain).zb Thus, the problem is always
as follows: we have two hash-tables, S4 and %. Table (i has n buckets, while table
33 has 2n buckets, and each bucket has size m words. Jointly. both .4 and %
contain no more than 2n values, where each (nonempty) value is a pair (7”,, !7,).

Our goal is to efficiently and obliviously transfer all these pairs into B, using a
new random hash-function h. so that all non-empty entries (’V,, T,) from both A
or B end-up in the corresponding buckets h (T”[). Before getting into details of
how this is done, let us discuss two issues. The first issue is that we wish h tobe
a nono~.er-f Iowi n~ hash function in the sense that no element in its range has
more than m preimages in the set of 4n elements mentioned in Lemma 5.4.1
(i.e.. the upto 2n ‘}’,’sl residing in ,4 and B, augmented by upto 4n elements of
the form (0. j)). The reader may wonder how we can know ahead of time
whether h is nonoverflowing. The answer is that we do not know (a-priori
whether h is overflowing or not). Instead, h is a random mapping defined by the
random oracle (as well as the buffer number and its epoch number) and we try to
use it. With very high probability (i. e., at least 1 – 2n “ z-~]lz > I – l/n), the

function h is nonoverflowing. Yet, with nonnegligible probability, we find out,
during the rehashing that h is overflowing. In such a case, we select a new
hashing function and redo the entire process. This does not increase the expected
number of operations by much (as overflow occurs with probability smaller than
the inverse of the number of actions it causes). Finally, we remark that a new
hashing function is determined by (artificially) incrementing the epoch number
(or equivalently, increasing the counter of virtual accesses by the corresponding
amount).

The second issue to be addressed is that both A and B may contain an entry of
the form (7”, “) for the same virtual address 7“. In this case the value stored with

‘“ Nevertheless, wc prefer the current description due to its simplicity
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7 in,4 is newer than the value stored in B. Thus, during the re-hashing we need
to get rid of the older value and this should be done obliviously.

Our Oblivious Hashing of A and B into B proceeds in 12 steps each employing
one of the following primitives. The first primitive, called scanning, consists of
scanning all words in a memory array and possibly modifying their value. We
stress that we scan all these words one by one (in a predetermined order) and
thus this process is oblivious. In particular, each word is accessed twice; the first
time for reading its contents and the second time for writing new contents (which
may be identical to the old contents). Thus, the access pattern is the same
regardless of whether we have changed the contents of some words or not. The
second primitive is oblivious sotiing. Here we use the procedure introduced in the
previous section (i.e., on the “Square-Root” Solution). In different steps we will
be sorting the array of words according to possibly different sorting keys. Yet,
each of these oblivious sorting procedures can be implemented while making
(log~t actual accesses (to fixed locations independent of the sorted values),
where t? is the number of words in the array, (We remark again that the above
uses the Batcher Sorting Network [Batcher 1968], whereas, for an asymptotically
superior result, one may use the AKS Sorting Network [Ajtai et al, 1983] yielding
O(elOgq actual accesses.)

(HI)

(H2)

(H3)

(H4)

Write all words of both buffers into one (temporary) array of 3mn words,
denoted C. (Recall the above two buffers contain n + 2n = 3n buckets
each containing m words. At most 2n of these words contain virtual words,
that is, have contents (V, %).) While copying the words into C, mark the
virtual words appearing in A by “N” (standing for new) and mark the
virtual words appearing in B by “O” (for old).

Obliviously sort the words in array C giving priority to virtual words,
among them by the virtual address, and among those with the same virtual
address—putting the one labeled “N” first. (At the end of this step, the
virtual addresses are in the first part of the array and in case the same
virtual address has appeared in both ,4 and B these occurrences appear
adjacent in the sorted array with the word originating in A appearing first.)

Scan array C, “erasing” each virtual word mark “O” which is preceded by
the same virtual word marked “N”. Namely, while dealing with a specific
actual word, if the current contents of this word is (V, %, N) then update it
to (T, 9?) (omitting the marking “N”) and save T (in the CPU) as the last
virtual address scanned. In case the current contents of the actual word is
(~, %’, 0) and the last virtual word scanned is T then update the actual
memory word to “empty” (i.e., erase it). Finally, in case the current
contents of the actual word is (T, !%’,0) and the last virtual word scanned
is not ‘1”then update the actual memory word to (T, %’) (omitting the
marking “O”). (At the end of this step, array C contains at most 2n virtual
words each appearing exactly once. Furthermore, the virtual words in C
are exactly the newest versions of each virtual word in either ,4 or B,
excluding the out-of-date versions that might appear in B.)

Add j < 4n dummies (i.e., words of the form (O, t + j), where r is the
number of virtual accesses simulated so far) to complete the number of
nonempty words in C to 4n. All the other 3nm – 4n actual words are
empfy. This can be done as follows: First, scan the first 2n words of C



Software Protection and Simulation on Ohlitious RAMs 465

counting the number of virtual words residing in them. (Here, we take
advantage of the fact that after Step (H2) only the first 2n actual words
may contain virtual words. ) Next, without loss of generality, scan the last
4n actual words of C writing the necessary dummies into (some of) these
locations. (Here, we use 4n s 3nm – 2n. )

(H5) Scanning C. :iugment each of the 4n nonempty words by a tag obtained by
applying the new hash function,z’ h, to the appropriate contents. Namely,
if the words contain a virtual word (-~. X) then the tag is II(3”). Otherwise,
the nonempty word has contents (0, r + j) and the tag will be h(tl, t + j).

(H6) Obliviously sort the array C giving priority to nonempty words and among
them to words with lower tag (i.e., hash value). (At the end of this step, the
nonempty words appear in the 4n-long prefix of the array in order
corresponding to their tags. )

(H7) Scanning array C, check if some tag was given to more than m words. If so
repeat Step (H5) (while increasing the value of t to t + n). ~x Otherwise,
continue. (Note that the outcome of the current step, namely the “bit”
indicating whether overflow has occurred or not, yields no information
about the virtual words in array C.)

(H8) Scanning array C. tag 2nm of the empty words, so that for i = 1, . . . . 2n,
exactly m such words are tagged i. This can be done by tagging, for each
i= l.... .~flandj= l,..-, m, the actual word (n + i – 1) “m + j
with the value i. (Here, we take advantage of the fact that only the first
4n < nm words are nonernpty. At the end of the current step, for each i =
1, ..., 2n, there are at least m words having tag i and at most m virtual
words have tag i,)

(H9) Obliviously sort the array C giving priority to tagged words (regardless if
they belong to the 4n rtonempty words or not), among them to words with
a lower tag (i.e., hash value), and among those of the same tag—to
nonempty words. (At the end of this step, the tagged words appear in the
prefix of the array in order corresponding to their tags. )

(H1O) Scan array C. leaving exactly m words with tag i, per each i ● {1, . . . .
2)1}. This is done by ‘erasing’ some of the tags made at step (H8).

Furthermore. tags of nonempty words are never erased. Here we rely on
the fact that C w~s sorted so that nonempty words appear first among all
words of the same tag. Specifically, the above is implemented by scanning
the array C and counting the number of occurrences of the current tag.
Once the count reaches the value m, the excess occurrences are erased.
(At the end of the current step, for each i = 1. . . . . 2n, there are exactly
m words having tag i. Furthermore, the words with tag i reside in
locations j + 1, . . . . j+m, where (i-1) .m<js (i–1).2m. In
fact. we expect j = (i - 1) “ (m + 2). )

(H 11) Obliviously sort the array C (for the last time), giving priority to tagged
words and among them to words with a lower tag (i.e., hash value). (At
the end of the current step, the tagged words reside in the 2nm -prefix of

2- The new hash function is defined as h(t) = ~(i, j, .K) mod 2n where ~ is the random (Iracle. i the

level of huffcr B and ~ = (/rr.

2XThis increiiw guar:mtees that a new hash function will be defined nc~t time Step (H5) is invnked.
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C and furthermore they appear in consecutive blocks, each containing m
words, so that the words of the ith block are all tagged by i.)

(H12) Scan array C, “removing” all tags and “erasing” the contents of actual
words that do not contain a virtual word (and thus making them empty).
Finally, move the 2nm -prefix of the array C into the 2n -bucket buffer B
(in the natural manner).

LEMMA 5.5.1. Suppose that h is nonoverf70wing. Then, the above procedure
obliviously moves the 4n nonempty words into the 2n buckets specified by the hash
value (i.e., the virtual word T is moved to bucket h(~) whereas the dummy (O,j) is
moved to bucket h(O, j)). Furthermore, the procedure can be implemented using
O(nm log(nm)) actual memoty accesses and a uniformly selected h is overj70wing
with probability at most n “exp { –m }.

PROOF. Correctness follows by observing that things may go wrong in the
above process only if some tag is assigned in Step (H5) to more than m virtual
addresses. This cannot happen if h is nonoverflowing. The obliviousness of the
entire process follows from the obliviousness of each of its 12 steps. The
complexity estimate is obtained by using the AKS Sorting Network as a basis for
the oblivious sorting. Finally, the probability bound, for overflowing hash func-
tions, is obtained by applying a multiplicative Chernoff Bound. •l

5.6. Cost. Lemmata 5.4.1 and 5.5.1 establish the obliviousness of the Hierar-
chical Simulation presented above. To complete the proof of the main part of
Theorem 5.1, it remains to consider the overhead/cost of this simulation. For
sake of clarity, we analyze the cost of our simulation using the generalized
construction in which the ith buffer is of size bi, where b > 1 is some fixed
integer (see remark at the end of Subsection 5.3). Our presentation above used
6=2.

Using this notation, a computation of length t (i.e., involving tvirtual accesses)
is simulated using N = 1 + f logb t1 buffers. The bucket size at the last steps is
m = 0( log t). We now bound the number of actual accesses performed in each
step of the simulation. For Steps (1) and (3) (i.e., scanning the first buffer) we
use bm actual accesses per virtual access. For Step (2) (scanning one bucket in
each bigger buffer), we use at most N . m such actual accesses. Now we get to
the cost of rehashing. Here we compute the amount of work done per each
rehashing of each buffer (and later amortize by the length of the epoch of this
buffer). Considering the ith buffer, we observe that the dominating cost is due to
the oblivious hashing of a temporary array of (bi-’ + bi) “m entries. This cost,
in turn, amounts to O(bim “ log(bim )). Thus, the amortized complexity of
rehashing the ith buffer is

O(b’m “ logz(b’nz))
hi-t

= O(bm “ (log, m + i log, b)).

Thus, we get

LtZNI~A5.6.1. The expected number of actual accesses pe~orrned by the above
procedure for simulating t virtual accesses is O(t log3 t).
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PROOF. The bound on the complexity of rehashing was computed assuming
that the hashing function is nonoverflowing. However, since the probability of
this event is at least 1/2, the expected complexity (for a uniformly selected
hashing function) is at most twice this bound. The lemma follows by summing-up
together the contributions of Steps ( 1)–(3) and the contributions of all buffers to
the complexity of Step (4). Specifically, we get the following upper bound on
amortized complexity

>V

2bm + Nm + ~ O(bm log:m + ibm Ioglb)
,=j

= 2bm + Nm + O(Nbm Iogzm ) + O(Nzbm log~b )

and the lemma follows by setting b = 2, N = 2 + Iogz t, and m = O(log t). ❑

Remarks. If one uses Batcher’s Sorting Network instead of the AKS Network
used in the above complexity bounds, then one gets an overhead factor of O(log~
t ) (instead of the 0( log; t) factor stated in the lemma). However, the constant in
the O-notation for the Batcher variant will be of the order of 10 whereas the
constant in the lemma has the AKS constant hidden in it.

Our oblivious simulation uses a small number of CPU registers. Typically, we
use {}nly three registers—one for holding the number of steps simulated so far
and two for holding the contents of at most two actual words recently retrieved.

Clearly, if the CPU can hold more data in its protected, internal memory then the
simulation can be done while incurring lower overhead. One obvious thing is to
keep some of the smaller buffers inside the CPU rather than in unprotected
memory. Another saving is possible when basing the Oblivious Sorting on a
sorting network with components that may sort several elements rather than two
(cf., [Ajtai et al. 1992]).

5.7. MAKING HIERARCHICAL SIMULATION TIME-LABELED. In order to estab-
lish the Furthermore Clause of Theorem 5.1, we need to make our simulation
time-labeled. (This is needed in order to be able to invoke Theorem 3.2.1.) Recall
that the simulation is time-labeled if there exists a linear space computable
function Q(., .) so that Q(w, t) is the number of times we’ve written a value into
the actual word address }V during the first t actual accesses done in the
simulation.

LFMMA 5.7.1. ThCJhierarchical simulation can be implemented in a time-
Iabeled manner (while preserving its obliviousness and its complexity bounds).

PROOF. A key observation towards this goal is that, for any i > 1, during our
(hierarchical) simulation, the contents of the ith buffer are only changed during
the oblivious hashing (i.e., Step (4)). This observation is proven by inspecting the
various steps of the simulation. Steps (1) and (3) only refer to the first buffer. As
to Step (2). during this step the contents of some words in the ith buffer may be
read, but nothing is ever written to this buffer.

Another easy observation is that the access pattern to the words of the first
buffer, during Steps ( 1) and (3) is fixed and easily computable (in linear space).
Thus. Steps ( 1) through (3) are time-labeled.
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Next we note that if the hash function is nonoverflowing, then the accesses
structure in Step (4) is fixed and linear space computable. It follows that if no
hash function is ever overflowing, then the entire simulation would be time-
labeled. Thus, we are left to deal with the case in which Step (H7) detects that
the hash function in use is overflowing. In order to simplify the analysis, we
modify the rehashing procedure as follows. In the modified Step (H7), we will
not return to Step (H5) in case overflow is detected but rather proceed to Step
(H8). The remaining Steps (H8) through (H12) will be executed with the
following modifications. (We stress that these modifications apply only to the
case in which we found the hash function to be overflowing.) In the modified
Step (H8), we scan the array but do not tag any word. In the modified Step (H9),
we sort the array giving priority to nonempty words. Likewise, in Step (H1O) we
scan the array but do nothing and in Step (Hl 1) we sort again as in Step (H9).
Note that the access pattern in all these modified steps is exactly as in the
original steps (i.e., the access pattern in scanning and in sorting are oblivious to
what is being searched for or sorted by). Once the rehashing is done for the i th
buffer, that is the buffer in which an overflow has occurred, we perform 2i- 1
dummy virtual accesses and simulate them as usual. (The actual access pattern
will be time-labeled here, too. ) This will now bring us to rehash the ith buffer
again, which was our original goal. Note that all these redundant operations do
not change the asymptotic cost of our oblivious simulation (due to the low
probability of overflow and the moderate cost incurred in this case). ❑

The Furthermore Clause of Theorem 5.1 now follows.

5.8. SOFTWARE PROTECTION. We can now combine Theorems 5.1 and 3.2.1 to
establish

THEOREM 5.8.1SOFTWARE PROTECTION (INFORMATION-THEORETICCASE).
There exists a software-protecting compiler C such that for any probabilistic-RAM C
protects software against tampering adversaries with overhead 0((log2 “)3).

We stress that the above theorem holds in the information-theoretic sense on a
probabilistic-RAit4 (which uses a random oracle.) As noted in the introduction,
instead of random oracle, we can use pseudorandom functions [Goldreich et al.
1986], and state a practical analogue of the above theorem. That is, assuming the
existence of a one-way function, the above algorithm can be implemented in
practice using O(t “(log2f)3“poly(k) ) steps, where k is the security parameter
as well as the word length (note that the CPUregisters should be able to hold keys
of length equal to the security parameter). Thus, we get

THEOREM 5.8.2 SOFTWAREPROTECTION (POLYNOMIAL-TIME CASE). Suppose
one-way functions exist. Then there exists a faed polynomial p and a sofware -
protecting compiler C with overhead p(k) which is secure against all poly(k)-time
tampering adversaries. (Recall: k denotes the size of the CPU’Sprotected registers.)

PROOF. We start by assuming, for simplicity, that there exists one-way
functions that can be computed in linear space. (This follows from the existence
of arbitrary one-way functions by a trivial padding argument. ) Next, we invoke
the constructions of Hastad [1990], Impagliazzo et al. [1989], and Goldreich et al.
[1986] to obtain a family of pseudorandom functions. We note that the resulting
pseudorandom functions will be also computable in linear space.
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Using the compiler of Theorem 5.8.1, we replace all calls to the random oracle
by computations of a uniformly selected (and fixed) pseudorandom function. We
stress that the seed specifying such a function will be uniformly selected in {().
I }L. by the compiler and stored in the CPU. By definition, no poly(k )-time
adversary can distinguish such a pseudorandorn function from a truly random
function and thus it cannot distinguish a simulation in which a pseudorandom
function is used from one in which a random function is used. The software-
protection property of the new compiler thus follows from the software-protec-
tion property of the compiler of Theorem 5.8.1.

The overhead of the new compiler is at most a factor poly(k ) bigger than the
overhead of the original compiler. (The extra factor comes from the time
required to evaluate a pseudorandom function compared to the unit cost per an
oracle access to the random function. ) Finally, recalling that we have restricted
(in our definitions) all adversaries to run no more than 2A steps, we have log [ s
k and thus poly(k) “ Iogj t = poly(k), justifying the overhead claim. D

6. A Lower Bo14nd

T}+EOREM ti. 1. Even oblivious simulation of R,4.&~on input y by probabilistic -
14,4Mmust make al least (max{ Iyl, ~l(t . log t)} accesses in order to simulate t steps.

PROOF. The task c~fsimulating RAM on an oblivious RAM can be modeled by
the following game between three entities:

—a plav(~r who. at each time, can hold at most b balls and who can take
prt~b~bilistic m{wes. (The player impersonates the CPLI.)

—a req14eslseq14erlce:(r, , . . , r,) of length t, where each r, is in [m] ~f {l,. . .. m},
(The request sequence models the virtual memory accesses required by the
pr(}gram. In contrast to the situation in an on-line simulation, we consider an
arbitrary. but fixed, request sequence and allow the player (CPU) to have full a
priori knowledge c~fthe request sequence. )

—a n obscn ’er.

The game is played with m balls that are located in m nontransparent cells, each
capable of holding a single ball. Initially, ball i is in the ith cell. The actions that
the player may take at any time is stick its hand to a cell and either fetch the ball
residing in it (in case such exists) or place a ball in the cell (in case it is currently
empty) or just Ieavc things in the cell as they were. The observer sees to which
cell the player sticks his hand, but cannot tell which action (i.e.. “take ball. ”
“place ball,”’ or “nothing”) was taken. (The balls model virtual words and the
cells actual memory locations. We relax the conditions of oblivious simulation by
allt~wing the player to remember “for free” which ball is in which cell. For this
reas(m, we may replace the (PU’S access to a random oracle by merely allowing
the player to toss coins—he can record the outcome for free and thus simulate a
random function. )

The game proceeds for ~ rounds. In round i = 1, . . . . t, the request sequence
(secretly) specifics to the player a request r, that is a ball number from 1 to m.
(The observer is not told this request.) The goal of the player is to end-up
holding ball ri (at the end of the current round), yet the player should achieve
this goal without letting the observer gain information on the value of ri. That is.
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the obliviousness condition requires that the observer can learn nothing about 
the request sequence from the sequence of cells accessed by the player. We stress 
that the player should be able to handle any request sequence. Our aim is to 
show that in order to meet these requirements the player should take at least 
max{m, fI(t log t)} actions. The lower bound of m is obvious (by considering 
only the first round and recalling that initially ball i resides in the ith cell). It thus 
remains to establish the lower bound of fl(t log t). 

Consider a probabilistic mapping of t-element long sequence over [m] (i.e., all 
possible request sequences) into a pair of two q-element sequences determining 

the behavior of the player as follows. The first sequence V = ( ul, . . . , uq) 
describes the visible access pattern, that is a sequence of cells to which the player 
has stick in his hand. This sequence is visible by the observer. The second 
sequenceH = (h,, . . . . h4) describes the hidden actions that the player makes 
and the observer cannot see (i.e., taking a ball from the cell, placing a ball in the 
cell, or doing nothing). Note that there are, at most, b + 2 possibilities as in case 
a ball is placed in the cell it can be one of the upto b balls held by the player at 
that time. Hence, in response to request sequence (T,, . . . , I,) and possibly some 
probabilistic choices, the player conducts actions (ul, h,), . . . , (u4, h,), where 
ui is a cell number (i.e., element of [ml) and hi is one of the b + 2 (hidden) 
actions mentioned above. Clearly, this action sequence must satisfy the request 
sequence. Namely, there exists a sequence 1 5 jI I j * 5 j, = q (i.e., when 
rounds are “finished”) so that, for every (round) i ( 1 5 i 5 t), after actions ( ul, 

h,), . . . , (uj,, hj,) the player holds ball rj in his hand. In such a case we say that 
the action sequence (v,, h ,), . . . , ( u4, h4) satisfies the request sequence 
rl, . . . , rr. 

An important observation is that a fixed sequence of player actions (u,, 

h,), . . . , (u,, h4) may satisfy at most bq request sequences, as after each step the 
player holds at most b balls.29 Another important observation is that each visible 
q-long sequence, V, may be coupled with at most (b + 2)4 possible hidden 
action sequences. Thus, each such I/ may satisfy at most b9 * (b + 2)” request 
sequences, where we say that a visible access pattern V satisfies a request 
sequence if there exists a hidden sequence H so that (V, H) is a legitimate action 
sequence satisfying the request sequence. Finally, by the obliviousness condition, 
the visible sequence V must be statistically independent of the particular request 

sequence (except for its length). It follows, in particular, that it must be able to 
satisfy all m’ possible request sequences. We thus get 

bq * (b + 2)4 > m’ 

and so q > t logbct.+2j m. The lemma follows by considering 112 = t. 0 

Remark. The above bound does not rely on the fact that the simulation needs 
to be done on-line. That is, the above lower bound holds, even if the simulation 

is performed with the entire program request sequence given to the oblivious 
RAM before the simulation begins. 

” An alternative bound which may is easier to understand is (f) . 6’. 
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7. Concluding Remurks 

We have presented a compiler which translates RAM-programs to equivalent 
programs that defeat attempts to learn anything about the program by executing 

it. The translation was carried-out on the instruction level: namely, we have 

replaced the memory access of each instruction by a sequence of redundant 

memory accesses. Clearly, all statements and results appearing above, apply to 

any other level of execution granularity. For example, on the “paging” level this 
would mean dealing with “get page” and “store page” as atomic access instruc- 
tions. and substituting single “page access” by a sequence of “page accesses”. In 
general. we have provided a mechanism for obliviously accessing a large number 
of unprotected sites when using a single protected site. The application to 
software protection was the only application discussed above. but other applica- 

tions are possible as well. Below, we discuss two such applications. 

One possible application of our work is for a secure/private management of a 

distrihutcd database in a network of trusted sites connected by insecure channels. 
No site can hold the entire database and so the database is distributed among the 
sites. Users are connected to single sites to retrieve information from the 

database in a way that does not allow an adversary (that monitors the channels) 
to learn which part of the database is more useful, or. more generally, to learn 
the access pattern of any user to the database. In this application, we are not 
required to hide the fact that a database request was done by some site at some 

time. we merely need to hide any information regarding the piece of data 

required. We also assume that we are allowed to handle the users’ requests 

one-by-one (rather than in parallel). It is easy to see that an oblivious simulation 

of a RAM can be applied to this application by associating the sites with memory 
cells. The role of the <‘PII will be played by the site that currently requests data 
from the database, and information regarding the simulation can be passed 
between the sites in an oblivious manner. We note that the above application 
diffcra from the problem of Traffic Analysis as treated by Rackoff and Simon 
[ IYYi]. A telling special case of their setting consists of 2n parties wishing to 
communicate concurrwt~, in II disjoint pairs. and wanting to hide information 

regarding the matching (the pairing). 
Another application of our technique is for data-structure checking as treated 

in Blum et al. [ 19911 (which in turn follows Blum’s notion of program checking, 
as introduced in Blum and Kannan [1989]). In this setting, it is desirable to 
maintain a data-structure while using only a small amount of reliable memory. 
Most of the data-structure is to maintained on an unreliable memory that can be 
thought of as being tampered with by an adversary. The goal is to provide a 
mechanism for checking the integrity of the data so stored. As observed by Blum 

et al. [ IYYI], an oblivious simulation of RAM certainly solves the general 

problem (i.c.. protecting any “data structure”); however it is somewhat of an 

overkill and a more efficient solution for this case is given by them. Further 

efficiency improvements are possible for particular data structures. such as 
qucucs and stacks. and indeed Blum et al. [lYYl] provide such solutions. 
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