
Behavior Based Software Theft Detection

1Xinran Wang, 1Yoon-Chan Jhi, 1,2Sencun Zhu, and 2Peng Liu
1Department of Computer Science and Engineering

2College of Information Sciences and Technology
Pennsylvania State University, University Park, PA 16802

{xinrwang, szhu, jhi}@cse.psu.edu, pliu@ist.psu.edu

ABSTRACT

Along with the burst of open source projects, software
theft (or plagiarism) has become a very serious threat to the
healthiness of software industry. Software birthmark, which
represents the unique characteristics of a program, can be
used for software theft detection. We propose a system call
dependence graph based software birthmark called SCDG
birthmark, and examine how well it reflects unique behav-
ioral characteristics of a program. To our knowledge, our
detection system based on SCDG birthmark is the first one
that is capable of detecting software component theft where
only partial code is stolen. We demonstrate the strength of
our birthmark against various evasion techniques, including
those based on different compilers and different compiler op-
timization levels as well as two state-of-the-art obfuscation
tools. Unlike the existing work that were evaluated through
small or toy software, we also evaluate our birthmark on a
set of large software. Our results show that SCDG birth-
mark is very practical and effective in detecting software
theft that even adopts advanced evasion techniques.

Categories and Subject Descriptors

K.4.1 [COMPUTERS AND SOCIETY]: Public Pol-
icy Issues—Intellectual property rights

General Terms

Security

Keywords

Software Birthmark, Software Plagiarism, Software Theft,
Dynamic Analysis

1. INTRODUCTION
Software theft is an act of reusing someone else’s code, in

whole or in part, into one’s own program in a way violating
the terms of original license. Along with the rapid develop-
ing software industry and the burst of open source projects

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’09, November 9–13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00.

(e.g., in SourceForge.net there were over 230,000 registered
open source projects as of Feb.2009), software theft has be-
come a very serious concern to honest software companies
and open source communities. As one example, in 2005 it
was determined in a federal court trial that IBM should pay
an independent software vendor Compuware $140 million
to license its software and $260 million to purchase its ser-
vices [1] because it was discovered that certain IBM products
contained code from Compuware.

To protect software from theft, Collberg and Thoborson
[10] proposed software watermark techniques. Software wa-
termark is a unique identifier embedded in the protected
software, which is hard to remove but easy to verify. How-
ever, most of commercial and open source software do not
have software watermarks embedded. On the other hand,
“a sufficiently determined attackers will eventually be able
to defeat any watermark.” [9]. As such, a new kind of soft-
ware protection techniques called software birthmark were
recently proposed [21, 26–28]. A software birthmark is a
unique characteristic that a program possesses and can be
used to identify the program. Software birthmarks can be
classified as static birthmarks and dynamic birthmarks.

Though some initial research has been done on software
birthmarks, existing schemes are still limited to meet the
following five highly desired requirements: (R1) Resiliency
to semantics-preserving obfuscation techniques [11]; (R2)
Capability to detect theft of components, which may be
only a small part of the original program; (R3) Scalabil-
ity to detect large-scale commercial or open source software
theft; (R4) Applicability to binary executables, because the
source code of a suspected software product often cannot
be obtained until some strong evidences are collected; (R5)
Independence to platforms such as operating systems and
program languages. To see the limitations of the existing
detection schemes with respect to these five requirements,
let us break them down into four classes: (C1) static source
code based birthmark [27]; (C2) static executable code based
birthmark [22]; (C3) dynamic WPP based birthmark [21];
(C4) dynamic API based birthmark [26,28]. We may briefly
summarize their limitations as follows. First, Classes C1, C2
and C3 cannot satisfy the requirement R1 because they are
vulnerable to simple semantics-preserving obfuscation tech-
niques such as outlining and ordering transformation. Sec-
ond, C2, C3 and C4 detect only whole program theft and
thus cannot satisfy R2. Third, C1 cannot meet R4 because
it has to access source code. Fourth, existing C3 and C4
schemes cannot satisfy R5 because they rely on specific fea-
tures of Windows OS or Java platform. Finally, none of the

280

four class schemes has evaluated their schemes on large-scale
programs.

In this paper, we propose behavior based birthmarks to
meet these five key requirements. Behavior characteristics
have been widely used to identify and separate malware from
benign programs [8,16]. While two independently developed
software for the same purpose share many common behav-
iors, one usually contains unique behaviors compared to the
other due to different features or different implementations.
For example, HTML layout engine Gecko engine [3] supports
MathML, while another engine KHTML [4] does not; Gecko
engine implements RDF (resource description framework) to
manage resources, while KHTML engine implements its own
framework. The unique behaviors can be used as birthmarks
for software theft detection. Note that we aim to protect
large-scale software. Small programs or components, which
may not contain unique behaviors, are out of the scope of
this paper.

A system call dependence graph (SCDG), a graph rep-
resentation of the behaviors of a program, is a good can-
didate for behavior based birthmarks. In a SCDG, system
calls are represented by vertices, and data and control de-
pendences between system calls by edges. A SCDG shows
the interaction between a program and its operating system
and the interaction is an essential behavior characteristic
of the program [8, 16]. Although a code stealer may apply
compiler optimization techniques or sophisticated semantic-
preserving transformation on a program to disguise original
code, these techniques usually do not change the SCDGs.
It is also difficult to avoid system calls, because a system
call is the only way for a user mode program to request
kernel services in modern operating systems. For exam-
ple, in operating systems such as Unix/Linux, there is no
way to go through the file access control enforcement other
than invoking open()/read()/write() system calls. Although
an exceptionally sedulous and creative plagiarist may cor-
rectly overhaul the SCDGs, the cost is probably higher than
rewriting his own code, which conflicts with the intention of
software theft. After all, software theft aims at code reuse
with disguises, which requires much less effort than writing
one’s own code.

We develop system call dependence graph (SCDG) birth-
marks for meeting these five key requirements. To extract
SCDG birthmarks, automated dynamic analysis is performed
on both plaintiff and suspect programs to record system call
traces and dependence relation between system calls. Since
system calls are low level implementation of interactions be-
tween a program and an OS, it is possible that two different
system call traces represent the same behavior. Thus, we fil-
ter out noises, which cause the difference, from system call
traces in the second step. Then, SCDGs are constructed and
both plaintiff and suspect SCDG birthmarks are extracted
from the SCDGs.

We exploit subgraph isomorphism algorithm to compare
plaintiff and suspect SCDG birthmarks. Although subgraph
isomorphism is NP-complete in general, it is tractable in
this application. First, the size of SCDGs is limited by a
predefined parameter (100 or 400 in our experiment). Sec-
ond, SCDGs are not general graphs. Their characteristics
such as various types of nodes, makes backtrack-based iso-
morphism algorithm efficient. Finally, the first matching
suffices for software theft detection, whereas the traditional
isomorphism testing finds all isomorphism pairs. Hence, the

isomorphism testing on SCDGs is tractable and efficient in
practice.

This paper makes the following contributions:

• We proposed a new type of birthmarks, which exploit
SCDGs to represent unique behaviors of a program. With-
out requiring any source code from the suspect, SCDG
birthmark based detection is a practical solution for re-
ducing plaintiff’s risks of false accusation before filing a
lawsuit related to intellectual property.

• As one of the most fundamental runtime indicators of pro-
gram behaviors, the proposed system call birthmarks are
resilient to various obfuscation techniques. Our experi-
ment results indicate that they not only are resilient to
evasion techniques based on different compilers or differ-
ent compiler optimization levels, but also successfully dis-
criminates code obfuscated by two state-of-the-art obfus-
cators.

• We design and implement Hawk, a dynamic analysis tool
for generating system call traces and SCDGs. Hawk po-
tentially has many other applications such as behavior
based malware analysis. Detailed design and implemen-
tation of Hawk are present in this paper.

• To our knowledge, SCDG birthmarks are the first birth-
marks which are proposed to detect software component
theft. Moreover, unlike existing works that are evaluated
with small or toy software, we evaluate our birthmark on
a set of large software, for example web browsers. Our
evaluation shows the SCDG birthmark is a practical and
effective birthmark.

The rest of this paper is organized as follows. Section 2
introduces concepts and measurements about software birth-
marks. In Section 3, we propose the design of SCDG birth-
marks based software theft detection system. Section 4
presents evaluation results. We discuss limitation and fu-
ture work in Section 5. Finally, we summarize related work
in Section 6 and draw our conclusion in Section 7.

2. PROBLEM FORMALIZATION
This section first presents the definitions related to soft-

ware birthmark and SCDG birthmark, and then introduces
a metric to compare two SCDG birthmarks.

2.1 Software Birthmarks
A software birthmark is a unique characteristic that a pro-

gram possesses and that can be used to identify the program.
Before we formally define software birthmarks, we first de-
fine the meaning of copy. We say a program q is a copy
of program p if q is exactly the same as p. Beyond that,
q is still considered as a copy of p if it is the result of ap-
plying semantic preserving transformation (e.g., obfuscation
techniques and compiler optimization) over p. The follow-
ing definition of software birthmark and dynamic software
birthmark is a restatement of the definition by Tamada et
al. [27] and Myles et al. [21]:

Definition 1. (Software Birthmark) Let p, q be programs
or program components. Let f(p) be a set of characteristics
extracted from p. We say f(p) is a birthmark of p, only if
both of the following conditions are satisfied:

• f(p) is obtained only from p itself.
• program q is a copy of p ⇒ f(p) = f(q).

281

Software birthmarks can be classified as static birthmarks
and dynamic birthmarks. A static birthmark relies on syn-
tactic structure of a program. Existing static birthmarks
are vulnerable to simple semantic-preserving transforma-
tions [21]. On the other hand, a dynamic birthmark relies
on runtime behavior of a program, which is more difficult to
be altered through code obfuscation techniques. The system
call based birthmark we propose in this paper is a dynamic
birthmark.

Definition 2. (Dynamic Software Birthmark) Let p, q be
programs or program components. Let I be an input to p

and q. Let f(p, I) be a set of characteristics extracted from p

when executing p with input I . We say f(p, I) is a dynamic
birthmark of p, only if both of the following conditions are
satisfied:

• f(p, I) is obtained only from p itself when executing P
with input I .
• program q is a copy of q ⇒ f(p, I) = f(q, I)

2.2 SCDG Birthmarks
Before we define SCDG birthmarks, we first define SCDG.

A system call dependence graph (SCDG) is a graph repre-
sentation of the behaviors of a program, where system calls
are represented by vertices, and data and control depen-
dences between system calls are represented by edges. To
formally define SCDG, we first define dynamic dependence
graph (DDG) [31] of a program run. Later, an SCDG can
be constructed from a DDG.

Definition 3. (DDG: Dynamic Dependence Graph) The
dynamic dependence graph of a program run is a 3-tuple
graph DDG = (N, E, β), where

• N is a set of nodes, and node n ∈ N corresponds to an
executed statement in the program run
• E ⊆ N × N is the set of dependence edges, and each
edge n1 → n2 ∈ E corresponds to a dynamic data depen-
dence or dynamic control dependence between statements
n1 and n2. A data dependence exists between two exe-
cuted statements if the set values used by one statement
overlaps the set of value defined by the other. A control
dependence is introduced if the execution of one statement
depends on the values defined by the other statement, usu-
ally a predicate statement.
• β : E → T is a function assigning dynamic dependence
types, either data or control, to edges.

Definition 4. (SCDG: System Call Dependence Graph)
The system call dependence graph of a program run is a
4-tuple graph SCDG = (N, E, α, β), where

• N is a set of nodes, where node n ∈ N corresponds to a
system call execution in the program run
• E ⊆ N × N is the set of dependence edges, and each
edge n1 → n2 ∈ E denotes that there exists a dependence
path from n1 to n2 in the DDG of the program run.
• α : N → S is a function assigning system call to nodes,
• β : E → T is a function assigning dependence types,
either data or control, to edges.

Figure 1 presents an example to illustrate DDG and SCDG.
Data and control dependences are plotted in solid and dashed
lines, respectively. In Figure 2.2 (b), statement executions 2,

 1 : fd1 = open(path1,"r",. . .);

 2 : read(fd1, buf, ...);

 3 : i f (buf == "1") {

 4 : fd2 = open(path2, "r", ...);

 5 : n = read(fd2,buf,...);

 6 : offset = n + 10;

 7 : lseek(fd2,offset,...);

 ...

 8 : close(fd2);

 }

 9 : fd3 = open(path3,"w",.. .) ;

10: read(fd1, buf, ...);

11: strcpy(outbuf,buf);

12: wri te(fd3,outbuf);

13: close(fd3);

14: close(fd1);

(a) statements

2

1

3

4

5

6

7

8

10

11

12

9

13

14

(b) DDG

1:open

2:read

4:open

5:read

7:lseek

8:close

9:open10:read

12:write 13:close

14:close

(c) SCDG

Figure 1: An Example for DDG and SCDG

10 and 14 have data dependence on statement 1 because they
use the file descriptor defined at 1. In Figure 2.2 (c), sys-
tem call execution“7:lseek” has data dependence on “5:read”
because of the dependence path 7 → 6 → 5; system call ex-
ecution “12:write” has data dependence on “10:read” due to
the dependence path 12 → 11 → 10; System call execu-
tion “4:open” has control dependence on “2:read” because
statement 4 has control dependence on 3 and 3 has data
dependence on 2 .

Next, we define subgraph isomorphism which will be used
to compare similarity of SCDGs.

Definition 5. (Graph Isomorphism) A bijective function
f : N → N ′ is a graph isomorphism from a graph G =
(N, E, α, β) to a graph G′ = (N ′, E′, α′, β′) if

• ∀n ∈ N, α(n) = α(f(n)),
• ∀e = (n1, n2) ∈ E,∃e′ = (f(n1), f(n2)) ∈ E′ such that
β(e) = β(e′),

• ∀e′ = (n′

1, n
′

2) ∈ E′,∃e = (f−1(n′

1), f
−1(n′

2)) ∈ E such
that β(e′) = β(e)

Definition 6. (Subgraph Isomorphism) A bijective func-
tion f : N → N ′ is a subgraph isomorphism from a graph
G = (N, E, α, β) to a graph G′ = (N ′, E′, α′, β′) if there ex-
ists a subgraph S ⊂ G′ such that f is a graph isomorphism
from G to S.

282

Dynamic Analysis

System

Dynamic Analysis

System

System Call, Call

Stack, Dependences

System Call, Call

Stack, Dependences

Input

Plaintiff

Binary

Suspect

Binary

Noise Filtering

Noise Filtering

Extracting Plaintiff

SCDG Birthmarks

Extracting Suspect

SCDG Birthmarks

Detect ion

Results
Compare

SCDG Birthmarks

Figure 2: System Overview

Definition 7. (γ-Isomorphism) A graph G is γ-isomorphic
to G′ if there exists a subgraph S ⊆ G such that S is sub-
graph isomorphic to G′, and |S| ≥ γ|G|, γ ∈ (0, 1].

Definition 8. (SCDGB: System Call Dependence Graph
Birthmark) Let p be a program or program component. Let
I be an input to p, and SCDGp be system call dependence
graph of the program run with input I . SCDG birthmark
SCDGBp is the subgraph of the graph SCDGp that satisfies
the following conditions:

• program or component q is a copy of p and SCDGq be
system call dependence graph of the program run of q with
input I ⇒ SCDGBp is subgraph isomorphic to SCDGq .
• program or component q is different from p and SCDGq

be system call dependence graph of the program run of q

with input I ⇒ SCDGBp is not subgraph isomorphic to
SCDGq .

According to our definition of SCDG birthmark, program
q is regarded as plagiarized from program p if the SCDG
birthmark of p is subgraph isomorphic to SCDG of q. Al-
though as shown in our experiment SCDG birthmark is ro-
bust to state-of-the-art obfuscation techniques, for robust-
ness to unobserved and unexpected attacks, we relax sub-
graph isomorphism to γ-isomorphism in our detection. q is
regarded as plagiarized from that of p, if the SCDG birth-
mark of p is γ-isomorphic to SCDG of q. We set γ = 0.9
in experiments because we believe that overhauling 10% of
a SCDG birthmark is almost equivalent to changing the be-
havior of a program.

3. SYSTEM DESIGN

3.1 System Overview
Figure 2 shows the overview of our system. It consists of

four stages: dynamic analysis, noise filtering, SCDG birth-
mark extraction, and birthmark comparison. Let us sum-
marize each of the steps before dealing with details in later
subsections.

Dynamic Analysis. In the first step, automated dynamic
analysis is performed on both plaintiff and suspect programs
to record their system call traces. For both programs, we
feed in the same input. Besides system calls, the call stack
for each system call and the dependence relation among sys-
tem calls are calculated and recorded.

Noise Filtering. System calls are low level implementation
of interactions between a program and an OS. It is possible
that two different system call traces represent the same be-
havior, e.g., because of the existence of many system calls
that are dependent on runtime environment. Therefore, we
filter out noises from system call traces before extracting
birthmarks.

SCDG Birthmarks Extraction. We aim to detect com-
ponent theft. Therefore, in this step, we first identify the
system calls invoked by the component of interest in a plain-
tiff program and then extract SCDGs for the component.
Then, we divide SCDGs of the component into subgraphs,
and refine the subgraphs by removing common nodes that
are also found in SCDGs of several unrelated programs. Fi-
nally, the remaining subgraphs are considered as birthmarks
of the plaintiff component.

Although it is possible to choose the SCDG of the whole
suspect program for comparison, the graph’s size would be
too large to efficiently test subgraph isomorphism. As such,
we also divide the SCDG of a suspect program into sub-
graphs.

Birthmark Comparison. Once both plaintiff and suspect
birthmarks are extracted, we examine the birthmarks for
a r-isomorphism using relaxed VF subgraph isomorphism
algorithm [14]. To increase the efficiency, three forms of
pruning are performed to reduce the search space.

3.2 Dynamic analysis
In this subsection, we first briefly introduce our dynamic

analysis system. Then, we describe the design details of the
dynamic instrumentation. Finally, deferred reference count-
ing is introduced and discussed to improve performance.

Our dynamic analysis system consists of Valgrind [23] and
Hawk, as shown in Figure 3. Valgrind is a generic frame-
work to instrument machine code at runtime, and Hawk
is a plugin tool we designed and developed for Valgrind.
Valgrind and Hawk work together to generate system call
traces and their dependences. Specifically, Valgrind takes
a binary client program, which is a plaintiff or a suspect
program in our case, and an input to the client program
for dynamic analysis. Then, it decompiles the client’s ma-
chine code, one small code block at a time, in a just-in-
time, execution-driven fashion. It disassembles the code
block into an architecture-neutral intermediate representa-
tion (IR) block. In Hawk, every memory byte and regis-
ter of the client program is shadowed by a dependence set,
which is a set of system calls it depended on. Hawk instru-
ments the IR block given by Valgrind with analysis code.
The analysis code is used to update the shadow values of
the client program’s memory locations and registers. Then,
the instrumented IR block is converted back into machine
code by Valgrind and executed. The resulting translation
is stored in a code cache and thus it can be reused with-
out calling the instrumenter again. Valgrind also provides
system call hooks for Hawk to instrument system calls of
client programs. When a system call of a client program
is invoked, Hawk create a new node for the system call as
well as the dependence edges between the new node and the
other ones.

283

 Valgrind

Program, Input

 Hawk

System Call, Dependences, Call Stack, Output

 IR Block

Instrumented IR Block

Figure 3: Dynamic Analysis System

Next, we presents the details of IR instrumentation. The
Valgrind IR majorly consists of five types: load memory IR,
store memory IR, get register IR, put register IR, and ex-
pression IR. The first four types of IR are used to read or
write values from memory and registers to the temporary
variables of an IR block. In Hawk, the instrumentation to
the first four types of IR is just transferring of shadow val-
ues between a temporary variable and a register/memory
location. All actual operations are performed by expression
IR. An expression IR is abstracted as td = op(t1, t2, ..., tn)
(n<=4 in practice), where t1, t2, ..., tn denote the set of tem-
porary variables used by the IR and td denotes the tempo-
rary variable defined. The instrumentation of the expression
IR is defined by sh(td) = ∪(sh(t1), sh(t2), ..., sh(tn). Figure
4 shows an example of an IR block and its instrumentation.

Besides IR instrumentation, Hawk also instruments the
system calls of a client program to create new system call
nodes and dependence edges. When a system call occurs, a
handler function of Hawk is called. The system call infor-
mation (number, index, parameter and result) and its call
stack is recorded within the function. In addition, a new
system call node is created, and dependence edges between
the new system call node and previous nodes are established
by the shadow values of the system call’s input parameters.
For example, the read system call in X86 Linux uses register
ebx as the input parameter, which stores a file descriptor id.
Dependence edges are created between this read system call
node and the nodes in the shadow values of ebx. Finally, the
new system call node is assigned to the shadow variables of
the system call’s output parameters. For example, the eax
register is the return variable of the open system call, stor-
ing the descriptor id of an opened file . The newly created
open system call node is assigned to the shadow value of the
eax register.

For large programs, Hawk may generate a great number
of intermediate dependence sets. Thus, a garbage collec-
tor for dependence sets is needed. There are several ways
to implement a garbage collector, such as reference count-
ing, mark-sweep and copy collection. Here we use reference
counting instead of mark-sweep or copy collection because
the number of dependence sets during execution are huge
and tracing would be prohibitively slow. Also, there are no
cycles to cause problems. However, a disadvantage of ref-
erence counting is that frequent update of reference count
may hurt performance. This is a severe problem in our case,
because every instrumentation of an IR may need to update
reference count. To solve this problem, we exploit deferred
reference counting [6]. Deferred reference counting was orig-
inally used to reduce the cost of maintaining reference counts
by avoiding adjustments when the reference is stored in the
stack. In our case, we avoid updating references on tem-
poral variables due to the short lifetime of the temporal

0x4000B02: addl %edx,4(%eax)
—— IMark(0x4000B02, 3) ——
*1: t9 = GET:I32(0) # get %eax
2: sh(t9) = sh(%eax)

*3: t8 = Add32(t9,0x4:I32) # add address
4: sh(t8) = sh(t9)

*5: t2 = Ldle:I32(t8) #load
6: sh(t2) = sh(memory(t8))

*7: t1 = GET:I32(8) # get %edx
8: sh(t1) = sh(%edx)

*9: t0 = Add32(t2,t1) # addl
10: sh(t0) = sh(t2) ∪ sh(t1)

*11: STle(t8) = t0 # store
12: sh(memory(t8)) = sh(t0)

0x4000B05: movl 0x2E0(%ebx),%eax
—— IMark(0x4000B05, 6) ——
*13: PUT(60) = 0x4000B05:I32 # put %eip
*14: t11 = GET:I32(12) # get %ebx
15: sh(t11) = sh(%ebx)

*16: t10 = Add32(t11,0x2E0:I32) # add
17: sh(t10) = sh(t11)

*18: t12 = Ldle:I32(t10) # load
19: sh(t12) = sh(memory(t10))

*20: PUT(0) = t12 # put %eax
21: sh(%eax) = sh(t12)

Figure 4: IR instrumentation Example. Statements
with mark * are original IRs. Instrumentation IRs
are pseudo code for brevity.

variables. During the execution, dependence sets cannot be
reclaimed as soon as their reference counts become zero. Be-
cause there might still be references to them from temporal
variables, such sets are added to a zero count table (ZCT)
instead. The dependence sets in the ZCT are scanned at the
end of code blocks, and any sets with zero reference count
are reclaimed.

Currently, Hawk does not trace control dependence for
efficiency concerns. Our experiments in section 4 show that
data dependence alone is powerful enough for software theft
detection.

3.3 Noise Filtering
As a low level abstraction of the interaction between a

program and the OS, system call sequences contain noise.
Due to the noise system calls, the same behavior could be
represented by two different system call sequences. We filter
out the noises from system call traces in the following ways.
First, some types of system calls are ignored because they
apparently do not represent the behavior characteristic of a
program. For example, the system call gettimeofday returns
the elapsed time since Epoch in seconds and microseconds.
Many programs periodically call gettimeofday with no sig-
nificant impact on their behaviors; therefore, we remove get-
timeofday if no other system calls depend on them. Another
example is related to memory management system calls. A
libc malloc function is normally implemented by system call
brk and/or mmap. The mmap system call is used when
extremely large segments are allocated, while the brk sys-
tem call changes the size of the heap to be larger or smaller
as needed. Normally, C function malloc first grabs a large
chunk of memory and then splits it as needed to get smaller
chunks. As such, not every malloc in C involves a system call
and two identical programs may have very different memory
management system call sequences. Therefore, we ignore
all memory management system calls. Second, some types
of system calls are considered as the same in system call
birthmarks, because some system calls provide multiple ver-
sions that take slightly different parameters for convenience.

284

For example, fstat(int fd, struct stat *sb) system call is the
same as stat(const char *path, struct stat *sb) except that
fstat uses the file descriptor fd as its parameter instead of
the file name path. By considering such system calls iden-
tical, we can not only reduce the sophistication of dealing
with many different system calls, but also address the coun-
terattack where an attacker replaces one system call with
another. Finally, since failed system calls do not affect the
behavior characteristic of a program, they are also ignored.
For example, when a program tries to open a file, it may
fail at the first time but succeed at the second time. Al-
though system call open is called twice, here the first failed
call should be removed.

3.4 Extraction of SCDG Birthmarks
⊙ Extraction of Plaintiff Birthmarks. There are four steps to
extract SCDG birthmarks for a plaintiff component. First,
by analyzing the system call trace whose noise has been re-
moved, we determine whether a system call is called by a
plaintiff component. This is useful for detecting software
component theft because we need to know which system
calls are invoked from which component of a plaintiff pro-
gram. Specifically, there are two implementation options.
One method is to use a special list, L, containing informa-
tion on the functions belonging to the plaintiff component.
List L can be automatically generated by processing the
source code of the plaintiff component with a tool such as
Elsa [2]. Then, whenever a system call is called, Hawk can
notice whether the system call is called by the plaintiff com-
ponent by searching in the call stack (containing callers of
the system call) for any occurrence of the functions listed
in L. Note that we can preserve the symbol table of the
plaintiff component because we have control over the com-
pilation of plaintiff source codes. Alternatively, a simpler
method which does not need to maintain list L is available.
If we can compile the plaintiff component into a dynamic
linked library (DLL), Hawk can simply use a utility func-
tion provided in Valgrind to retrieve the DLL component
that contains any of the callers of the invoked system call.

Second, an SCDG and a dynamic call tree are built from
the system call traces corresponding to the the plaintiff com-
ponent. Building an SCDG is trivial given nodes (system
calls) and edges (dependences). Besides SCDG, we also
build a dynamic call tree, which will be used to partition
an SCDG in later steps. A dynamic call tree here is a tree
with subroutine calls as internal nodes and system calls as
leaf nodes. A node’s parent is its caller and its children are
its callees. The path from a leaf system call node to the
root node is the call stack of the system call. The process of
generating a dynamic call tree is also trivial: we just need
to merge all the call stacks.

Third, we divide an SCDG into subgraphs. Because an
extracted SCDG may be too large to efficiently compute
subgraph isomorphism and/or too specific for the plaintiff
program, they are not directly used as birthmarks. As a
component theft is mostly likely to happen over a subrou-
tine, we partition the graph based on dynamic call tree.
That is, we extract a subtree from the dynamic call tree,
and the leaf nodes in the subtree and their dependence re-
lation consist of an SCDG birthmark candidate. The par-
tition process is as the following. We first set a parameter
m, which is used to guarantee that the subgraph is not too
large or too specific for the partition. Then, the dynamic

call tree of the selected component is traversed by a depth
first search algorithm. When a tree node is visited, the num-
ber of leaf nodes in this subtree is calculated. If the number
is less than m, the subtree is selected and search within the
subtree is skipped. The process is finished when all nodes
in the dynamic call tree is traversed.

Finally, we remove the SCDG subgraphs which represent
common behaviors. This step is necessary because we need
to find the unique behavior of plaintiff components as birth-
marks. For this purpose, a set of training programs are used.
The set of programs should include programs which have a
similar component with the plaintiff program but are indeed
completely unrelated programs. The SCDG subgraphs are
compared with the SCDGs of the training set. All SCDG
subgraphs which are subgraph isomorphism to the SCDGs
of the training set are removed, and finally, the remaining
subgraphs become birthmarks.
⊙ Extraction of Suspect Birthmarks. As mentioned earlier,
we assume that there are no source code and symbolic de-
bugging information of a suspect program. Hence, it is diffi-
cult to identify the suspicious components in a suspect pro-
gram, not to mention extracting SCDGs from them. Thus,
we have to extract SCDG birthmarks based on the SCDG
of the whole suspect program. Specifically, we partition the
whole SCDG according to dynamic call tree, as in the case
for plaintiff birthmark extraction, except that we choose m

to be several times larger.

3.5 Birthmark Comparison
Once both the plaintiff and suspect SCDG birthmarks are

extracted, they are compared using (relaxed) VF subgraph
isomorphism algorithm [14]. n ∗ m pairs subgraph isomor-
phism testing are needed in principle, where n and m are the
numbers of plaintiff and suspect birthmarks, respectively.
Fortunately, most pairs can be pruned through three forms
of loseless pruning.

Pruning Search Space First, SCDG birthmarks smaller
than an interesting size K or the types of system calls smaller
than T are excluded from both plaintiff and suspect birth-
marks. For software theft detection, we only need to locate
birthmark pairs of non-trivial ones, which, if found, can pro-
vide strong evidence for proving theft. Second, based on
the definition of γ − isomorphism, a SCDG birthmark pair
(g, g′) can be excluded if |g′| < γ|g|, where g and g′ are
SCDG birthmarks of plaintiff and suspect programs, respec-
tively. Finally, a SCDG birthmark pair can be pruned based
on the characteristics of SCDGs. In this paper, we use vertex
histogram as the characteristics of SCDGs and the similar-
ity between two vertex histograms can be used for pruning.
Specifically, a plaintiff SCDG birthmark g is represented by
vertex histogram h(g) = (n1, n2, ..., nk), where ni is the fre-
quency of the ith kind of vertices, and a suspect SCDG birth-
mark g′ is represented by h(g′) = (m1, m2, ..., mk). We de-
fine the difference between h(g) and h(g′) as d(h(g), h(g′)) =
Pk

i=0
ei, where ei = ni−mi if ni > mi and ei = 0 if ni ≤ mi

. Based on the definition of γ−isomorphism, the pair (g, g′)
can be excluded if d < (1 − γ)|g|.

Computational Feasibility. Because our SCDG birthmark
involves subgraph isomorphism testing, we discuss the com-
putation feasibility of the testing. As mentioned in [19],
although subgraph isomorphism is NP-complete in general,
research in the past three decades has shown that some al-
gorithms are reasonably fast on average and become com-

285

putationally intractable in a few cases [12,13]. For instance,
algorithms based on backtracking and look-ahead, e.g., Ull-
mann’s algorithm [30] and VF [14], are suitable with graphs
of thousands of nodes.

In addition to the general tractability issue, the charac-
teristics of graphs and the needs for a specific application
also reduce the computational cost [19]. In our application,
the computational cost are reduced for the following reasons.
First, the size of SCDGs is limited by a predefined parame-
ter (100 or 400 in our experiment). Second, SCDGs are not
ordinary graphs. Their characteristics such as various types
of nodes, makes backtrack-based isomorphism algorithm ef-
ficient. Last, the first matching suffices for software theft
detection, whereas the traditional testing finds all isomor-
phism pairs. Hence, the isomorphism testing on SCDGs is
tractable and efficient in practice.

Finally, our search space pruning phase can effectively
identify and discard the spurious SCDG pairs which are
obviously not isomorphic to each other, avoiding detailed
isomorphism testing. As a result, only a small portion of
SCDG pairs are really tested in the case of a real software
theft. Thus, our detection is computationally efficient in our
specific problem settings.

4. EVALUATION
In Section 1 we mentioned five key requirements on soft-

ware theft detection. It is easy to see R4 and R5 are al-
ready met by our design. In this section, we evaluate the
performance of SCDG birthmarks with respect to three pri-
mary criteria: (M1) capability to detect component theft for
large-scale programs, (M2) credibility to independently de-
veloped program, and (M3) resiliency to obfuscation. These
three criteria contain more than R1, R2 and R3 because of
M2.

In the following, we first discuss the implementation of our
system and environmental setup. Then, we evaluate criteria
M1 and M2 for SCDG birthmarks with over 30 real-world
large application programs. Finally, we evaluate criteria M3
against evasion techniques that apply different compilers,
different compiler optimization levels, or obfuscation tech-
niques.

4.1 Implementation and Environmental Setup
We implemented a prototype of SCDG birthmark based

software theft detection system. The entire system consists
of about 5,000 lines of C/C++ code and 1000 lines of Tcl
script code. Our implementation of the γ-isomorphism test-
ing algorithm was adopted from VFlib1. We used tree.hh2,
an STL-like C++ tree class, for dynamic call tree represen-
tation and operation. The version of Valgrind we used is
3.3.1. The entire detection system runs under Ubuntu 8.04.
For detection purpose, we fed the same input and perform
the same operation (spell checking) if applicable; otherwise,
an appropriate input and a simple operation was provided.
In our experiment, we set γ = 0.9, minimal size of SCDG
birthmarks K = 15, and maximal size of SCDG birthmarks
m 100 for plaintiff programs and 400 for training programs
and testing sets (i.e., suspect programs), respectively.

1http://amalfi.dis.unima.it/graph
2http://www.aei.mpg.de/∼peekas/tree

4.2 Effectiveness of SCDG
We chose two subject program components for experi-

ments: Gecko layout engine for web browser and GNU As-
pell spell checker. Before we give details on the subject
components’ SCDG birthmarks and show the effectiveness,
we first introduce the training program set and the testing
program set.

Training Program Set. The following programs were
part of the training program collection: Dillo, Yudit, Meld,
Gimp, Totem, Pdfedit and Dia. Dillo was chosen for its
similar web content rendering behavior with Gecko engine.
Yudit was chosen for its similar spell checking behavior with
Aspell. Others were chosen for general common behaviors.
Each training program was executed under our dynamic
analysis system and performed a simple operation and then
quit. We fed one of our authors’ home page url as input to
Dillo and quit it after the home page was displayed. The
home page html was also fed to Yudit and performed spell
checking and quit. For other programs, appropriate input
and a simple operation were provided (e.g. giving Gimp a
gif file and then adjust color balance) and then quit. Table 1
shows the statistics for the SCDGs of the training program
set. Note that for the training program set, we have already
known that none of them contains our subject components.

Table 1: Training set statistics

Program Version Type
SCDG

Node # Edge #
Dillo 0.8.6 Web Browser 2612 1510
Yudit 2.4.1 Text Editor 4576 1023
Meld 1.1.5.1 Diff Viewer 12314 7084
Gimp 2.4.5 Graph Editor 59372 5972
Totem 2.22.1 Media Player 21865 6762
Pdfedit 0.3.2 PDF Editor 8937 4867

Dia 0.96.1 Diagram Drawing 27145 29185

Table 2: Testing set statistics

Program Version Type
SCDG

Node # Edge #
Flock 2.0.3 Web Browser 21337 9343

Epiphany 2.22.2 Web Browser 16864 9011
Konqueror 3.5.10 Web Browser 11850 5589

Amaya 10 Web Browser 42701 23958
Opera 9.52 Web Browser 58485 21361

Songbird 1.1.2 Web Browser 37103 25547
Galeon 2.0.7 Web Browser 19825 7450

AbiWord 2.4.6 Word Processor 12975 5642
KWord 1.6.3 Word Processor 15408 6630
LyX 1.5.3 Latex Editor 21977 18656

Texmaker 1.6 Latex Editor 6897 3223
Kile 2.0.0 Latex Editor 50937 24615

Gedit 2.22.3 Text Editor 25113 5867
Bluefish 1.0.7 Text Editor 10952 3502

GNU Emacs 22.2.1 Text Editor 14807 4734
Vim 7.1.138 Text Editor 2582 1979

Pidgin 2.5.2 Messenger 10816 8014
Kopete 0.12.7 Messenger 16319 7144
Kmess 1.5 Messenger 10830 6247

GnoCHM 0.9.9 CHM Viewer 21191 8354
Evince 2.22.2 Doc. Viewer 16179 7095

GV 3.6.3 Doc. Viewer 6508 3267
Quod Libet 1.0 Media Player 15839 10725
Evolution 2.22.3 Email Client 13798 6787

Testing Program Set. We evaluated Gecko SCDG birth-
marks and Aspell SCDG birthmarks against 24 large appli-
cation programs shown in Table 2. Each test program was
executed under our dynamic analysis system and perform a
simple operation and then quit. Again, we fed the home page

286

open

stat read

open open

stat read

open

stat read

open

stat read

access open

stat read read close

access open

stat read read read read close

access open

stat read read read read read read read read read close

open

stat read read read lseek

mmap

read read read close munmap

open

stat read read read close

lseek

mmap mmap close

munmap

close

open

stat read

open

stat read

lseek

mmap mmap close

munmap

close

read closeclose

read close

Figure 5: An Example Birthmark extracted From Aspell

url as input to all browsers, and performed spell checking if
applicable, and then quit after the home page was displayed.
We fed the home page html to all word processors, text ed-
itors, instant messengers and email clients and performed
spell checking if applicable and quit. For other programs,
appropriate input and a simple operation were provided and
then quit. Table 2 shows statistics for the SCDGs of the test
program set. Note that for most of programs in the testing
sets, we do not have the preknowledge whether they contain
Gecko and/or Aspell or not; that is, our test is a blind test.

Experiment of GNU Aspell. In this experiment, we
test whether a program in the testing set contained a small
software component – GNU Aspell spell checker. GNU As-
pell is the standard spell checker for the GNU software sys-
tem. It can either be used as a component (library) or as
an independent spell checker. As a software component, it
has been widely used in word processors, document editors,
text editors and instant messengers.

We extracted birthmarks of Aspell from a standalone pro-
gram Aspell 0.60.5. The extracted SCDG graph contains
481 nodes and 659 edges. One SCDG birthmark, shown
in Figure 5, was generated after compared with SCDGs of
the training programs set (i.e., after removing the common
SCDGs). The Aspell SCDG birthmark was compared with
SCDGs of the programs in the testing set. The result is
that five programs, including Opera, Kword, Lyx, Bluefish,
Pidgin, contain the Aspell Birthmark. It shows that each
of the five programs contain Aspell component, while others
not. This result was confirmed by manually checking the
programs in the testing set.

Experiment of Gecko Engine. In this experiment,
we study SCDG birthmarks using web browsers and their
layout engines. A layout engine is a software component
that renders web contents (such as HTML, XML, image files,
etc.) combined with formatting information (such as CSS,
XSL, etc.) onto the display units or printers. It is not only
the core components of a web browser, but also used by
other applications that require the rendering (and editing)
of web contents. Gecko [3], which is the second most popular
layout engine on the Web, is an layout engine used in most
Mozilla software and its derivatives.

We extracted Gecko SCDG birthmarks from Firefox 3.0.4.

The extracted SCDG graph contains 726 nodes and 1048
edges. Two SCDG birthmarks were extracted after compar-
ing with the training program set. Figure 6 shows an exam-
ple SCDG birthmark of Gecko. The two Gekco SCDG birth-
marks were compared with SCDGs of testing programs set.
The result is that four programs, including Flock, Epiphany,
SongBird and Geleon, contain one of the two Gecko Birth-
marks. It shows that each of the four programs contain
Gecko components, while others not. This result was con-
firmed by manually checking the programs of the testing
set.

4.3 Impact of Compiler Optimization Levels
Changing compiler optimization levels is a type of seman-

tic preserving transformation techniques which may be used
by a software plagiarist to avoid detection. Here, we eval-
uated the impact of compiler optimization levels on sys-
tem call based birthmarks. A set of programs were used:
bzip2 (the second-most popular lossless compression tool
for Linux), gzip (a lossless compression tool) and oggenc (a
command-line encoding tool for Ogg Vorbis, a non-proprietary
lossy audio compression scheme). To avoid incompatible
compiler features, single compilation-unit source code (bzip2.c,
gzip.c and oggenc.c) were used 3. We used five optimiza-
tion switches (-O0,-O1,-O2,-O3 and -Os) of GCC to generate
executables of different optimization levels (e.g., bzip2-O0,
bzip2-O3, etc.) for each program. The generated executa-
bles were executed with the same input, a system call trace
was recorded, and finally SCDGs were generated for each
executable. We compared the system call sequences and
found that applying optimization options does not change
the system call traces and SCDGs of bzip2 and gzip, while
the system call traces for oggenc with optimization options
(-O3 and -Os) contain only one “write” system call less than
that with optimization options (-O0, -O1 and -O2). This
result shows that system call based SCDG birthmarks are
robust to compiler optimization.

4.4 Impact of Different Compilers
A software plagiarist may also use a different compiler to

3http://people.csail.mit.edu/smcc/projects/single-file-
programs/

287

open

read

stat open

read read

open

lseek read

lseek

read close

read read read close

open

lseek

lseek

read

lseek

read readread read read

open

lseek

read

lseek

read read read read closestat open

read read read read read close

read read read close

Figure 6: An Example Birthmark Extracted from Gecko

avoid detection. To evaluate the impact of applying dif-
ferent compilers, we compared system call sequences with
three compilers: GCC, TCC and Watcom. We used the
three compilers to generate executables for each of the three
programs (e.g., bzip2-gcc, bzip2-tcc) we used before. The
generated executables were executed with the same input
and a system call trace and SCDG is recorded for the each
executable. We used GCC result to compare with TCC
and Watcom results. The results show that the system call
traces and SCDGs are exactly the same between TCC and
GCC (both with default optimization levels). The system
call traces between GCC and Watcom look different. By
checking the compilers, we found that the differences were
caused by different standard C libraries used by the com-
pilers, not because of the compilers themselves. Both GCC
and TCC use glibc, while Watcom uses its own implemen-
tation. Three types of differences are found. First, different
but equivalent system calls are used between the two libc im-
plementation such as stat and stat64. Second, failed system
calls appear many times in one result, but not in the other.
Last, some differences caused by memory management sys-
tem calls. Fortunately, as mentioned in Section 3.3, such
differences can be removed by our noise filtering step. As
such, our proposed birthmarks can survive under the three
different compilers in this experiment.

4.5 Impact of Obfuscation Techniques
Obfuscation is another type of semantic preserving trans-

formation techniques. There are two types of obfuscation
tools: source code based and binary based. A source code
obfuscator accepts a program source file and generates an-
other functionally equivalent source file which is much harder
to understand or to reverse-engineer. A binary obfuscator
exploits binary rewriting technique for obfuscation. We eval-
uated the impacts of obfuscation techniques over two state-
of-the-art obfuscation tools. For source code obfuscation, we
used the commercial product Semantic Designs Inc’s C ob-
fuscator that implements abstract syntax tree (AST) based
code transformation. Its features include (but not limited
to) identifier scrambling, format scrambling, loop rewriting,
and if-then-else rewriting. For binary code obfucation, we
used control flow flattening implemented in Loco based on
Diablo link-time optimizer [20]. Control flow flattening can
transform statements ‘s1; s2;’ into ‘i=1; while(i) { switch(i)
{ case 1: s1; i++; break; case 2: s2; i=0; break;}}’. We
used the two obfuscators to obfuscate and then compile each
of the three programs we used before. The generated exe-
cutables were executed with the same input and a system
call trace and SCDG were recorded for the each executable.
The system call traces and SCDGs between the original pro-
grams and obfuscated programs are exactly the same. This
results show that SCDG birthmark is robust to these two
state-of-the-art obfuscation tools.

5. DISCUSSION

5.1 Robustness
Besides those tested obfuscations in Section 4.5, SCDG

birthmark is robust to most types of obfuscation techniques
presented in [11] including split or merge variables, promote
scalars to objects, convert static data to procedure, change
encoding, change variable life, split or merge arrays, reorder
arrays, unroll loop, reorder expression, extend loop condi-
tion, reorder statements and so on. Although they can sig-
nificantly alter the source code and binary code appearance,
they do not change system calls and dependence relations
between system calls. As a consequence, SCDG birthmark
is robust to the all these obfuscations.

5.2 Counterattacks
One of the possible counterattacks to SCDG birthmark is

the system call injection attack. An attacker may insert a
great number of system calls in the plagiarism program with-
out compromising its original behaviors. This counterattack
may avoid our detection when a small m is used for gener-
ating suspect birthmarks. However, this counterattack may
not work in practice because (1) these injected system calls
will most likely be filtered out in the noise filtering phase,
and (2) system calls are very costly due to context switching
between the kernel mode and the user mode. A large num-
ber of injected system calls will result in great slowdown of
the plagiarism program, which thwart a plagiarist from us-
ing this counterattack. Moreover, a bigger m can be always
used to defeat such counter attacks. It is a tradeoff between
performance and robustness.

Another possible counterattack is the system call reorder
attack. Although this attack changes the order of system
calls in traces, it leaves SCDGs unaltered. Two or more sys-
tem calls can be reordered only when they are not bounded
by dependences. Otherwise, reordering could break depen-
dences, and thus cause behavior change or program errors.
As such, this counterattack can not evade our detection.

There may exist other counterattacks which overhaul SCDG
birthmarks. For these unknown and unexpected attacks,
SCDG birthmark is still robust to some extent, because it
is tolerant to a certain percentage overhauling by using γ-
isomorphism.

5.3 Limitations and Future Work
SCDG birthmark bears the following fundamental limita-

tion. First, it will not apply if the program of interest does
not involve any system calls or has very few system calls,
for example, when there are only arithmetic operations in
the program. Second, it is not applicable to the programs
which do not have unique system call behaviors. For ex-
ample, the only behavior of a sorting program is to read
an unsorted file and print the sorted data. This behavior,
which is common to other sorting programs or even irrel-

288

evant programs, is not unique. As such, our tool should
be used with caution, especially for tiny common programs
with few system calls. Third, as a detection system, it bears
the same limitation of intrusion detection systems; that is,
there exists a fundamental tradeoff between false positives
and false negatives. The detection result of our tool de-
pends on the parameters (m and γ) a user defines. To have
higher confidence, one should use large parameters, thus it is
likely to increase false negative. In contrast, reducing these
parameters may increase false positive. Unfortunately, with-
out many real-world plagiarism samples, we are unable to
show some concrete results on such false rates although we
have showed SCDG birthmarks exist for all the programs we
studied. As such, rather than applying our tool to “prove”
software plagiarisms, in practice one may use it to collect
some initial evidences before taking further investigations,
which often involve nontechnical actions.

We will study the impact of input on SCDG birthmarks as
our future work. As a dynamic birthmark, SCDG birthmark
requires the original program and the suspicious program to
be fed with the same input. This requirement sometimes
is difficult to meet. For example, a software plagiarist may
illegally use a real time computer vision library as a part
of their motion understanding software, whereas the origi-
nal program uses the library for different purposes, say face
recognition.

We will also examine how the birthmark of a component
changes over software versions. A component of software
might be upgraded frequently; some updates may change the
implementation of the component significantly, which may
include totally redesigned programming interfaces. These
changes can invalidate the birthmarks computed before the
updates. Will these changes help a plagiarist evade the de-
tection by stealing an old version of the component? To an-
swer this question, we will investigate the similarity of the
birthmarks of different versions of the Gecko layout engine
in the future.

6. RELATED WORK
We roughly group the literature into two categories: soft-

ware birthmark and clone detection.
Software Birthmark: There are four classes of software
birthmark: static source code based birthmark [27], static
executable code based birthmark [22], dynamic WPP based
birthmark [21], and dynamic API based birthmark [26,28].

Static source code based birthmark: Tamada [27] et al.
proposed four types of static birthmark: Constant Values
in Field Variables Birthmark (CVFV), Sequence of Method
Calls Birthmark (SMC), Inheritance Structure Birthmark
(IS) and Used Classes Birthmark (UC). All of the four types
are vulnerable to obfuscation techniques mentioned in [22].
In addition, they need to access source code and only work
for object-oriented programming language.

Static executable code based birthmark: Myles and Coll-
berg [22] proposed a opcode-level k-gram based static birth-
mark. Opcode sequences of length k are extracted from
a program and k-gram techniques which were used to de-
tect similarity of documents are exploited to the opcode se-
quences. Although the k-gram static birthmark is more ro-
bust than Tamadas birthmark, it is still strongly vulnerable
to some well-known obfuscations such as statement reorder-
ing, junk instruction insertion and other semantic-preserved
transformation techniques such as compiler optimization.

Dynamic WPP based birthmark: Myles and Collberg [21]
proposed a whole program path (WPP) based dynamic birth-
mark. WPP is originally used to represent the dynamic con-
trol flow of a program. WPP birthmark is robust to some
control flow obfuscations such as opaque prediction, but is
still vulnerable to many semantic-preserving transformation
such as loop unwinding. Moreover, WPP birthmark may not
work for large-scale programs due to overwhelming volume
of WPP traces.

Dynamic API based birthmark: Tamada et al. [28,29] also
introduced two types of dynamic birthmark for Windows
applications: Sequence of API Function Calls Birthmark
(EXESEQ) and Frequency of API Function Calls Birth-
mark (EXEFREQ). In EXESEQ, the sequence of Windows
API calls are recorded during the execution of a program.
These sequences are directly compared to find similarity. In
EXEFREQ, the frequency of each Windows API calls are
recorded during the execution of a program. The frequency
distribution is used as the birthmark. Schuler et al. [26]
proposed a dynamic birthmark for Java. The call sequences
to Java standard API are recorded and the short sequences
at object level are used as a birthmark. Their experiments
showed that API birthmarks are more robust to obfuscation
than WPP birthmark in their evaluation. Unlike the Java
or Windows API based birthmarks that are platform depen-
dent, system call birthmarks can be used on any platform. In
addition, system call birthmarks are more robust to counter-
attacks than API-based ones. To evade API-based birth-
marks, attackers may hide API calls by embedding their
own implementation of some API routines. However, there
are no easy ways to replace “system calls” without recom-
piling the kernel because because system call is the only
way to gain privilege in modern operating systems. More
importantly, existing API-based birthmarks have not been
evaluated to protect core components theft.
Clone Detection: A close research field to software birth-
mark is clone detection. Clone detection is a technique to
find the duplicate code (“clones”) in a large-scale program.
Existing techniques for clone detection can be classified as
four categories: String-based [5], AST-based [7, 17], Token-
based [15,24,25] and PDG-based [18,19].

Besides to be used to decrease code size and facilitate
maintenance, clone detection can be also be used to de-
tect software plagiarism. However, existing clone detection
techniques are not robust to code obfuscation. String-based
schemes are fragile even by simply renaming identifiers in
programs. AST-based schemes are resilient to identifier re-
naming, but weak against statement reordering and control
replacement. Token-based schemes are resilient to identifier
renaming, but weak against junk code insertion and state-
ment reordering. Because PDGs contain semantic infor-
mation of programs, PDG-based schemes are more robust
than the other three types of existing schemes. However,
PDG-based is still vulnerable to many semantics-preserving
transformations such as control flow flattening and opaque
predicates. Moreover, all clone detection techniques need to
access source code.

7. CONCLUSION
In this paper, we proposed the SCDG software birthmark.

We evaluated it with a set of real world programs. Our ex-
periment results showed that all the plagiarisms obfuscated
by the two state-of-the-art tools were successfully discrimi-

289

nated. Unlike existing schemes that are evaluated with small
or toy software, we evaluate our birthmarks with a set of
large-scale software. The results showed that SCDG Birth-
mark is effective and practical in detection of components
theft of large-scale programs.

8. ACKNOWLEDGMENT
The authors would like to thank Jonas Maebe of Univer-

sity of Ghent for his help in compiling and using Loco and
Diablo; Semantic Designs, Inc. for donating C/C++ ob-
fuscators. The work of Wang and Zhu was supported by
CAREER NSF-0643906. The work of Jhi and Liu was sup-
ported in part by AFOSR MURI grant FA9550-07-1-0527,
ARO MURI: Computer-aided Human Centric Cyber Situa-
tion Awareness, and NSF CNS-0905131.

9. REFERENCES

[1] [online]Available from World Wide Web: http:
//news.zdnet.com/2100-3513_22-5629876.html.

[2] Elsa: An elkhound-based c++ parser,
http://www.cs.berkeley.edu/~smcpeak/elkhound.

[3] The gecko engine, http:
//en.wikipedia.org/wiki/Gecko_layout_engine.

[4] Khtml engine, http://en.wikipedia.org/wiki/KHTML.

[5] B. S. Baker. On finding duplication and near
duplication in large software systems. In Proc. of 2nd
Working Conf. on Reverse Engineering, 1995.

[6] H. G. Baker. Minimizing reference count updating
with deferred and anchored pointers for functional
data structures. ACM SIGPLAN Notices, 29:29–9,
1994.

[7] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier. Clone detection using abstract syntax trees.
In Int. Conf. on Software Maintenance, 1998.

[8] M. Christodorescu, S. Jha, and C. Kruegel. Mining
specifications of malicious behavior. In Proceedings of
ESEC/FSE, 2008.

[9] C. Collberg, E. Carter, S. Debray, A. Huntwork,
C. Linn, and M. Stepp. Dynamic path-based software
watermarking. In Proceedings of the Conference on
Programming Language Design and Implementation,
2004.

[10] C. Collberg and C. Thomborson. Software
watermarking: Models and dynamic embeddings. In
Principles of Programming Languages 1999, Jan. 1999.

[11] C. Collberg, C. Thomborson, and D. Low. A
taxonomy of obfuscating transformations. Technical
Report 148, The Univeristy of Auckland, July 1997.

[12] C. Hoffman. Group-theoretic Algorithms and Graph
Isomorphism. Springer Verlag, 1982.

[13] J. E. Hopcroft and J. K. Wong. Linear time algorithm
for isomorphism of planar graphs. In ACM Symp. on
Theory of Computing, 1974.

[14] J. E. Hopcroft and J. K. Wong. Performance
evaluation of the vf graph matching algorithm. In
Processing of 10th Int. Conf. on Image Analysis and
Processing, 1999.

[15] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a
multilinguistic token-based code clone detection
system for large scale source code. IEEE Trans. Softw.
Eng., 28(7), 2002.

[16] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. A.
Kemmerer. Behavior-based spyware detection. In
Proceedings of the 15th conference on USENIX
Security Symposium, 2006.

[17] K. Kontogiannis, M. Galler, and R. DeMori. Detecting
code similarity using patterns. In Working Notes of
3rd Workshop on AI and Software Engineering, 1995.

[18] J. Krinke. Identifying similar code with program
dependence graphs. In Proc. of 8th Working Conf. on
Reverse Engineering, 2001.

[19] C. Liu, C. Chen, J. Han, and P. S. Yu. Gplag:
detection of software plagiarism by program
dependence graph analysis. In Proceedings of the 12th
ACM SIGKDD international conference on Knowledge
discovery and data mining, 2006.

[20] M. Madou, L. Van Put, and K. De Bosschere. Loco:
An interactive code (de)obfuscation tool. In
Proceedings of ACM SIGPLAN 2006 Workshop on
Partial Evaluation and Program Manipulation (PEPM
’06), pages 140–144, 2006.

[21] G. Myles and C. Collberg. Detecting software theft via
whole program path birthmarks. In ISC, pages
404–415, 2004.

[22] G. Myles and C. S. Collberg. K-gram based software
birthmarks. In SAC, 2005.

[23] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In
Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementation.

[24] L. Prechelt, G. Malpohl, and M. Philippsen. Finding
plagiarisms among a set of programs with jplag.
Universal Computer Science, 2000. Available from
World Wide Web: citeseer.ist.psu.edu/article/
prechelt01finding.html.

[25] S. Schleimer, D. S. Wilkerson, and A. Aiken.
Winnowing: local algorithms for document
fingerprinting. In Proc. of ACM SIGMOD Int. Conf.
on Management of Data, 2003.

[26] D. Schuler, V. Dallmeier, and C. Lindig. A dynamic
birthmark for java. In ASE ’07: Proceedings of the
twenty-second IEEE/ACM international conference on
Automated software engineering, 2007.

[27] H. Tamada, M. Nakamura, A. Monden, and K. ichi
Matsumoto. Design and evaluation of birthmarks for
detecting theft of java programs. In Proc. IASTED
International Conference on Software Engineering,
2004.

[28] H. Tamada, K. Okamoto, M. Nakamura, and
A. Monden. Dynamic software birthmarks to detect
the theft of windows applications. In International
Symposium on Future Software Technology 2004.

[29] H. Tamada, K. Okamoto, M. Nakamura, A. Monden,
and K. ichi Matsumoto. Design and evaluation of
dynamic software birthmarks based on api calls.
Technical report, Nara Institute of Science and
Technology, 2007.

[30] J. R. Ullmann. An algorithm for subgraph
isomorphism. Journal of the ACM, 23(1):31–42, 1976.

[31] X. Zhang, S. Tallam, and R. Gupta. Dynamic slicing
long running programs through execution fast
forwarding. In Processing of 14th ACM SIGSOFT
Symposium on Foundations of Softw. Eng., 2006.

290

