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ABSTRACT

The integrator Q factor has been recognized
as a figure of merit for predicting performance
of filter structures which employ integrator
blocks. This factor optimizes the phase response
of the integrator. It is shown that the filter
transfer function is dependent on both the inte-
grator's magnitude and phase responses. The
paper presents a new circuit for use as an inte-
grator block in filters. It is designed to
eliminate first-order operational amplifier time
constant effect: oun the filter transfer function
without requir.ng matched operational amplifiers.
This circuit optimized both the magnitude and
phase response of the integrator, while integra-
tors designed for a high Q factor optimize
only the phase response. The paper shows the
improvement in magnitude response of the pro-
posed integrator over the state of the art
circuits. It also shows that the new
circuit's phase response closely matches that
of the state of the art integrators with the
highest Q. The new circuit achieves this
improvement in performance with a lower compo-
nent count than the high Q designs.

INTRODUCTION

Integrator blocks find use in many popular
filter structures [1] - [7] that typically have
lTow passive sensitivities, low component count,
or a choice of low-, high-, and band-pass out-
puts. The non-zero time constant of the opera-
tional amplifiers employed in these integrators
can seriously degrade filter performance at
high frequencies.

“The integrator transfer function, I{jw).
may be written as follows:

! : (1)

H3e) = ey + )

The quality factor Q, is defined to be [7], [8]

X
0 - Kol (2)
Note that the phase angle, 6, of I(jw) is de-
fined as
(3)

8 = - arctan [é%%%] = - arctan (Q).
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An integrator's phase is ideally 90 degrees;
therefore, the Q is ideally infinite. The state
of the art circuits [8] - [10] seek maximize the
Q thus optimizing the phase response of the
integrator.

SENSITIVITY ANALYSIS

The performance of active filters employing
these integrators rather than the characteristics
of the integrators themselves is of prime impor-
tance. The filter transfer function is dependent
upon both the integrator's magnitude and phase
responses. If the integrator is characterized by
a transfer function of the form
() = 1¢° (4)
then a filter structure with two integrator blocks
has a transfer function which may be written
functionally as

Te(Jw) = 8

FI,, 6 (5)

T
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It follows from a Maclaurin series expansion of
F in the four variables I], 12, 6], and 6o that

the relative change in F due to deviations of the
integrators from ideal can be approximated by
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where F and all partial derivatives are evaluated

at the nominal or ideal values for the integrators.
This miuy-be expressed in terms of the sensitivi-

t’ies:
S
0

2
(7)

This analysis can be extended for filters employ-
ing any number of integrator blocks.
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For the second-order, state-variables band-
pass filter shown in Figure 1, the gain is given
by the expression
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Second-order, State-variable Filter
Structure with Integrators

I](s) and Iz(s).

Figure 1:
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For typical choices of 11, e], 12, and 6, in (8)

it can be shown that the terms multiplying
AI]/I] and AIZ/I2 are comparable in magnitude to

those multiplying Ae]/e1 and Aez/ez. Since the

sensitivities in (7) are dependent upon the
topoiogy of the filter structure rather than the
topology of the specific integrator employed,

it is desirable to design the integrator blocks
such that both AI/I and A8/6 approach zero for
optimum filter performance.

PROPOSED INTEGRATOR

An inverting integrator circuit with first-
order Op Amp time constant effects eliminated is
shown in Figure 2. Given the normalization Sy =
SRC and t,= 1/RC, the transfer function is

IlC
[

Integrator with First-order Op Amp
Time Constant Effects Eliminated.

Figure 2:
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Ignoring second-order terms and without requiring
matched Op Amps, this reduces to the ideal

I(s,) - S—‘ (10)
n

This demonstrates that all first-order Op Amp
time constant effects are eliminated for both
the integrator and for any filter employing
this circuit.

COMPUTER ANALYSIS

Figure 3, and 4 are computer derived plots
of the percent difference from the ideal versus
frequency for the magnitude and phase angle of
the circuit of Figure 2 and a selection of the
state of the art integrators [8], [9]. Two
different values of normalized t are used.
can be seen that the magnitude response of
the circuit of Figure 2 is much improved over
any other integrator graphed even for the 7
Ty = 0.050 case. For the state-variable filter

of Figure 1, this value of RC would correspond
to a center frequency of 50 KHz for Op Amps with
gain bandwidths of 1 MHz. It can be seen from
these plots that the phase response of the
circuit of Figure 2 closely matches that of

the state of the art circuits with the highest

Q factor.

It

Another advantage of the integrator of
Figure 2 is that it has a component count of
four. This is just one more Op Amp than the
popular single Op Amp integrator with a much
improved performance. This component count is
the same as Brackett and Sedra's High Q invert-
ing integrator ([8] circuit le.) while the
new integrator has an improved magnitude
response. The circuit of Figure 2 has less
components than Soliman and Ismail's actively
compensated Balanced Time Constant Integrator
[9] which has the further disadvantage of
requiring matched RC products.

CONCLUSION

In conclusion, the circuit of Figure 2
demonstrated a much improved magnitude response
and a phase response closely matching the best
of the state of the art integrators. It achieves
this with a Tow component count.
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Key for Figures 3 & 4

Circuit of Figure 2

Soliman, active compensated BTC [9]
Brackett and Sedra, Circuit le [8]
Brackett and Sedra, Circuit 1f [8]
Brackett and Sedra, Circuit 1d [8]
Popular Single Op Amp Integrator
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