TRADEOFFS BETWEEN PASSIVE SENSITIVITY, OUTPUT VOLTAGE SWING AND TOTAL CAPACITANCE IN SC FILTERS

Edgar Sánchez-Sinencio
Randall L. Geiger
Texas A & M University Dept. of Electrical Engineering
College Station, TX 77843

José Silva-Martínez
Autonomous University of Puebla, Pue. México

ABSTRACT

Design guidelines for SC filters taking into consideration passive sensitivity, output voltage swing and total capacitance area are described. In this paper, we discuss the tradeoffs between these three parameters. A popular SC topology with additional positive feedback is used to illustrate the tradeoffs involved in the design of SC filters.

I. INTRODUCTION

A number of SC filters have been published which realize general biquadratic transfer functions [1]-[4]. In particular, SC topologies that have partial positive feedback are capable of significantly reducing the total capacitance [5], [6]. However, attempts to minimize total capacitance in filter structures are often accompanied by an increase in Q sensitivity and/or a reduction in the corresponding output voltage swing of the op amps. Conversely, when the designer only concentrates on minimizing the sensitivities large capacitor areas typically result.

In this paper, we show the tradeoffs between total capacitance and Q sensitivities for a certain output voltage swing of the op amps. Using information presented here the designer can specify the maximum Q sensitivity value permitted and obtain the minimum total capacitance, Ct, under certain op amp output voltage swing conditions, or vice versa the designer can specify the op amp output voltage swing Ct and determine the resultant Q sensitivity.

II. SECOND-ORDER FILTER WITH POSITIVE FEEDBACK

Figure 1 shows a popular general SC filter structure which includes a local positive feedback loop [5]-[6]. This filter, without the positive feedback capacitor bC, reduces to the popular F-circuit reported by Fleisher and Laker [3]. We focus attention here on the positive feedback and the effects of bC on the pole frequency and pole-quality factor, Q, sensitivities.

III. DESIGN AND POLE EQUATIONS

The loop equation defining the pole locations for the circuit of Figure 1 is given by

$$D(z) = 1 - z^{-1}(2ab_i + b_0 - a_0, a_2)/(1+b_1) + z^{2}(1+b_2)/(1+b_1).$$

From this equation we can identify

$$r^2 = \frac{1 + b_2}{1 + b_1}$$

and

$$2\cos\theta = \frac{2ab + b_2 - a_0, a_2}{1 + b_1}$$

where r and \(\theta\) correspond to the pole radius and angle respectively.

![Figure 1. A popular switched-capacitor filter](image_url)

Assuming r and \(\theta\) are given. The following algorithmic design strategy can be used.

Solving (2) we obtain the expression

$$b_1 = \frac{(1+b_2 - r^2)}{r^2}$$

and

$$a_2 = \frac{1 + b_2}{r^2} (1 + r^2 - 2\cos\theta).$$

It can be seen that b_i is a design parameter that can be used to judiciously tailor either sensitivity or total capacitance. Since only the a_i, b_i product is fixed, the designer also has flexibility in specifying one of these parameters. Next, in order to relate the s- and z-plane, we arbitrarily use for purposes of example the impulse invariant response[1] to derive the sensitivity expressions. It can be shown [1] that

$$f_o = \frac{f_s}{2\pi} [\theta + \ln^2 r]$$

and

$$Q = \frac{-2f_o}{f_s \ln r^2}$$

where \(f_s\) is the sampling (clock) frequency and \(f_o\) is the center (cutoff) frequency.

If \(p\) is any capacitor ratio in the circuit of Figure 1, it follows from (2), (6) and (7) that

$$P_o = \left(\frac{f_s}{f_o}\right)^2 \left[\ln r + \theta + \tan\theta \right]$$

where \(V = \frac{\theta}{\tan\theta}\) S_2\(\tan\theta\) and

$$Q_o = \left(\frac{f_s}{f_o}\right)^2 \left[-\ln^2 r + \theta (\ln r + \tan\theta) \right]$$

This work was supported, in part, by the Organization of American State (PIT/EE/081/61/1670).

CH1995-5/84-0000-1062 $1.00 © 1984 IEEE 1062
The sensitivities of $2\cos \theta$ and r^2 that appear in these expressions can be obtained from (2) and (3).

IV. PRACTICAL DESIGN CONSIDERATIONS

There is a tradeoff, in designing SC filters, between the total capacitance C_T, Q sensitivity, and the op amp output voltage swings. It is particularly important to consider these tradeoffs in SC filter topologies which involve both positive and negative feedback. The tradeoffs for the circuit of Figure 1 are illustrated in Table 1 in terms of the sensitivity measure

$$S_{\text{average}} = \frac{1}{2} \left(\frac{1}{|b_1^0|} + \frac{1}{|b_2^0|} \right)$$

(10)

for a particular set of design specifications i.e., $f_0/f_B = 1/50$ and $Q = 10$. Two cases are simultaneously considered for comparison purposes. In one case the op amp outputs are unbalanced, that is V_{o2} is fixed to 0.96 and V_{o1} is variable. In the other case both outputs are scaled (by the choice of the parameter a_1 to 0.96. C_{UB} and C_{LB} are the total capacitances for the unbalanced and balanced outputs, respectively.

<table>
<thead>
<tr>
<th>b_2</th>
<th>$V_{o1}(\text{dB})$</th>
<th>S_{average}</th>
<th>C_{UB}</th>
<th>C_{LB}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.02716</td>
<td>0.49884</td>
<td>134.91</td>
<td>134.91</td>
</tr>
<tr>
<td>.025</td>
<td>0.3345</td>
<td>2.2770</td>
<td>61.714</td>
<td>61.714</td>
</tr>
<tr>
<td>.05</td>
<td>0.23916</td>
<td>4.2014</td>
<td>54.725</td>
<td>54.725</td>
</tr>
<tr>
<td>.1</td>
<td>0.4919</td>
<td>7.607</td>
<td>43.953</td>
<td>43.953</td>
</tr>
<tr>
<td>.2</td>
<td>0.3107</td>
<td>12.676</td>
<td>45.352</td>
<td>45.352</td>
</tr>
<tr>
<td>.4</td>
<td>2.4886</td>
<td>23.09</td>
<td>63.28</td>
<td>63.28</td>
</tr>
<tr>
<td>.8</td>
<td>2.4886</td>
<td>36.94</td>
<td>362.76</td>
<td>362.76</td>
</tr>
</tbody>
</table>

Table 1. Balanced and unbalanced outputs versus Q sensitivity and C_T, with $V_{o2} = 0.96$.

The tradeoff between C_T and Q sensitivity for balanced op amp outputs will now be considered. The total capacitance C_T can be expressed as [3]:

$$C_T = \left[(a_2+b_2C+b_1C_1+C+K+C) / C_{\text{min}} \right] + \left[(a_1C_1C) / C_{\text{min2}} \right] C_0,$$

(11)

where C_{min1} and C_{min2} are the smallest capacitors in the sets(C, K, b, C_1, b_2C_1, a_1C) and(C_1, a_1C_1), respectively. Since the variable a_1 has been used to obtain balanced outputs, it follows from (4) and (5) that C_0 is actually only a function of the single variable b_2. The nonlinear nature of C_T in terms of b_2 is illustrated in Figure 2 for a family of different f_0/f_T and a fixed $Q = 10$.

1) Figure 2 illustrates the compromise between the total capacitance C_T and S_{average} for a family of f_0/f_T values. Note that for this plot Q is fixed, in this case $Q = 10$. Another set of curves can be easily generated for any desired Q value. These curves can be used to obtain the tradeoff between the C_T and S_{average} for a given f_0/f_T value. These curves also can be used to obtain the minimum C_0 for a given maximum permissible sensitivity value or a minimum sensitivity for a given total capacitance.

Fig. 2. Total capacitance versus the capacitor ratio b_2 for a fixed $Q=10$, and different f_0/f_T values.

Two practical solutions are now considered.

2) Figs. 3 and 4 already include the scaling of both op amp outputs for $V_{o1}=V_{o2}$.

Fig. 3. Average Q sensitivity versus total capacitance for a fixed $Q=10$, and different f_0/f_T values.

1 We do not present results on S_0 since they are around 0.5, therefore not critical.
For a given value of Q, we can determine the compromise between S_{average} and C_T. This is shown in Figure 4 for a family of Q values and a fixed ratio of $f_o/f_s = 1/10$. In either case considered, once the desired operating point is determined the required value of b_2 can be obtained from Figure 2. It is important to emphasize that in Figures 2, 3, and 4, C_T is bi-valued and the value of S_{average} is not unique. b_2 should be chosen to render the minimum S_{average}.

![Graph showing Q sensitivity versus total capacitance for a fixed $f_o/f_s = 1/10$, and different Q values.]

V. EXAMPLES

The following examples illustrate the use of Figures 2, 3, and 4. First, assume the design specifications are $f_o/f_s = 1/50$, $Q = 10$ and a center frequency gain of 0dB. Assume that the maximum permitted value of C_T is 40uF. The problem is to determine S_{average} and b_2 for the above data. By using Figure 4, the corresponding value of S_{average} becomes 2.9. Then $b_2 \in (0.07, 0.90)$ from Figure 2. The smallest b_2 gives the smallest S_{average} of the two choices. Table 3 describes all the component values for the balanced and unbalanced output cases. The particular case of $b_2 = 0$ is included in the Table. It is observed in the latter case that S_{average} is reduced by a factor of about 6, however the total capacitance is increased by nearly a factor of 2.

![Table showing C_T and Q sensitivities for example 1.]

<table>
<thead>
<tr>
<th>b_2</th>
<th>C_T (uF)</th>
<th>S_{average}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.07</td>
<td>3.2725</td>
</tr>
<tr>
<td>0</td>
<td>0.90</td>
<td>3.2725</td>
</tr>
</tbody>
</table>

VI. CONCLUSIONS

We have presented design guidelines that consider the tradeoffs between the op amp voltage swing, Q sensitivity and total capacitance. We illustrated the approach using plots for certain particular design specifications. It can be seen that the advantages of using positive feedback in the reduced capacitance area at the expense of increased Q sensitivity. General equations are given which are suitable for any desired design specification.

REFERENCES