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Abstract: The effect of pole-zero pairing on the
total capacitance of cascaded biquad SC filters is
investigated. It is shown that significant
reductions in total capacitance and hence corre-
sponding reductions in silicon area are possible
through optimal pole-zero pairing without
causing significant degradations in filter per-
formance.

1 introduction

Switched-capacitor (SC) filter design methods have
reached a certain level of maturity [1-2]. Specific SC
biquadratic structures suitable for cascaded biquad
designs have evolved [1-8] which are now widely used
because of the recognised low sensitivity characteristics of
these structures relative to those attainable with existing
alternative schemes. Methods which allow designers to
compute the capacitor ratios for these structures rapidly
and exactly, to realise a predetermined set of design spe-
cifications are also available. Several groups have
actually created a ‘SC silicon compiler’ with programs
which automatically select a good filter structure based
upon the given design specifications, size all components,
and generate a circuit layout which can be submitted for
fabrication. The problems of pole-zero pairing and the
minimisation of total capacitance still prevail.

Pole-zero pairing has been discussed in active RC
filter structures for optimal dynamic range and inband
losses [9-11]. For the case of SC filter implementations,
the pole-zero pairing scheme has not been discussed in
detail in the literature. The pole-zero pairing problem can
be seen as the availability of an additional degree of
freedom for the designer to use to optimise performance.
This additional degree of freedom, conceptually, affects
several characteristics of concern to the designer such as
sensitivity, dynamic range, total capacitance etc. Trade-
offs between these characteristics must be made in any
design.

It is generally a goal of the SC circuit designer to opti-
mise circuit performance while simultaneously mini-
mising silicon area [3-6]. Unfortunately this is such a
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challenging problem that most designers commit sub-
optimal designs to fabrication. A method of reducing
and/or minimising silicon area while maintaining a given
set of performance specifications for practical cascaded
SC biquad structures by using an optimal pole-zero
pairing strategy is discussed in this paper.

2 Development

It will be assumed that a function H(z) has been obtained
which meets given desired performance specifications and
that a circuit is to be synthesised to realise H(z). It will be
further assumed that the degree of the numerator of H(z)
is less than or equal to that of the denominator and that
H(z) is to be realised as a cascade of biquadratic sections.
The conventional approach in realising H(z) as a cascade
of biquads is to express H(z) as a product of biquadratic
fractions:
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where a;; and fi;; are real for all i, j. The degree of H(z) is
2n, provided that §,, = 1 for all k and 2n, — 1 when the
B, variables satisfy the equation
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H,(z) represents the corresponding biquadratic fraction in
z. The SC structure is synthesised by cascading n; biqua-
dratic blocks with transfer functions Hy(z), k =1, ..., n,.

It should be noted from eqn. 1 that the pole pair and
7ero pair pairings are not unique and that if there are
real poles and/or zeros, even the pole pairings or zero
pairings into biquadratic polynomials are not unique.
The number of possible pole-zero pairings into biqua-
dratic fractions can be quite large.

To determine the number of 2nd-order pole-zero pair-
ings, assume that all poles and zeros are unique and that
there are n poles, m zeros and n, and m, real axis poles
and zeros, respectively. Define ¢(k) and 6(k) by the
expressions

k=2)/2
IT (k—1—2i) for k even
Plk) = (k:(:,z 2
IT k-2 for k odd
i=0
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and

-]25 for k even
(k) & 3)

There are ¢(k) unique decompositions of a set of k ele-
ments into disjoint subsets of element pairs, and the
aumber of disjoint subsets in each decomposition is 6(k).
Assuming the number of poles is greater than or equal to
the number of zeros and that all zeros are paired (with
the exception of the odd zero for m odd), it can be shown
that the number of unique 2nd-order biquadratic decom-
positions H{z) is given by

o\, .,
N = ¢(mr)¢(nr)<0(m)>0(M)- 4
In the case that some of the real zeros are allowed to be
singly decomposed rather than paired, as is often done
when the number of unique 2nd-order biquadratic
decompositions of H(z)m, increases significantly. Corre-
spondingly, in the case that some poles or zeros are
repeated, the number of unique decompositions will
decrease.

To obtain an appreciation of the number of possible
pole-zero pairings, it follows from eqn. 4 that if H(z) has
four unique real zeros and four unique real poles, N = 18
whereas if there are six unique real zeros and six unique
real poles, N = 1350.

It should be apparent that for large m and n, the
number of possible pairings is quite large. Many practical
SC applications exist in which the number of possible
pole-zero pairings is very large. The questions naturally
arises, ‘How should the pole-zero pairings be made? and
‘How significant are the effects of a nonoptimal pole zero
pairing strategy?

As a simple example, consider the 4th-order Cheby-
chev bandpass approximation which has two distinct
complex conjugate pole pairs located at P;, Pf, P, and
P% and four real axis zeros. Two zeros are located at

= + 1 and the othcr two are located at z = — 1. There
are three possible pole-zero pairing strategies for the
biquadratic decomposition indicated pictorially in Fig. 1.
It is reasonable to anticipate that there will be appre-
ciably different characteristics of the circuits that are syn-
thesised based on the different decomposition schemes.

It is known that in SC filter designs there are tradeoffs
between maximum voltage swing, capacitance, clock fre-
quency and passive sensitivity [5-6]. In an attempt to
isolate the pole-zero pairing effects, it will be assumed
that the topology for implementing all biquadratic sec-
tions [4, 8] is fixed and that the sections are all designed
to have identical w, and Q sensitivities. It will also be
assumed that the gain of the individual biquads is distrib-
uted by one of the following two strategies:

(a) Gain distribution strategy 1 (single frequency):

i/n
- [IH(Z)I B J )

for some w, and for all 1 < k < n. In this expression T is
the clock period. w, could reasonably be chosen at the
middle of the passband.

{b) Gain distribution strategy 2 (equal peak gain):

| Hy(z) |

z=eiolT

max
(¥

Hyz) = Hpx (6)

z=ejoT
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for all 1 < k < n where H,,,, is defined by the expression

max < H Hmaxj) (7)

where H,,,, is the maximum gain of the jth stage.
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Pole-zero pairing possibilities for a 4th-order Chebychev filter
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Fig. 1

Note that both gain distribution strategies are inde-
pendent of how the individual biquads are ordered in the
cascade. These types of gain distribution strategies were
intentionally adopted, possibly at the expense of some
dynamic range reduction, to circumvent the need for con-
sidering position in the cascade as another variable. In
the actual implementation, the sequence of the biquads in
the cascade should be chosen to maximise dynamic range
[8-10].

It is our conjecture that an optimal pole-zero pairing
strategy, in the general case, is a function of:

(1) H(z)

(i) the topology of the biquadratic block

(iii) the specific sensitivity requirements and the gain
distribution strategy

(iv) the sequence of the biquadratic blocks in the
cascade

(v) the system clock frequency.

An analytical treatment of the problem, in general,
appears to be unwieldy. The significance of the pole-zero
pairing strategy is demonstrated in the following Section
by considering practical examples.

3 Significance of pole-zero pairing strategy

It will be assumed that all even-order biquadratic sec-
tions are realised with the low GB sensitivity and low
power consumption structure [4, 8] shown in Fig. 2 and
that partial positive feedback is used in these structures
to reduce total capacitance [4-7]. Relevant design
equations appear in the Appendix. Further it will be
assumed that the partial positive feedback is restricted in
each block to the extent that | S2] < 1 and |S2°| < 1 for
all capacitor ratios o in the structure. The pole-zero
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pairing problem is initially addressed by using AROMA
7] to synthesise H(z) with the cascaded biquadratic
structure using all possible pole-zero pairing schemes.

Consider initially the bandpass filter requirement
depicted in Fig. 3 where H,,, is the peak gain in the
passband, «, is the maximum ripple in the passband and
o, 18 the minimum loss in the stopband. Assume for com-

g *7C0 4 parison purposes that f; =900 Hz, f, = 1.0 kHz, H,,,, =
-——;_Y”_GW 0 dB, o, = 30 dB and «, = 0.5 dB. The effects of the pole-
2 JT.“_t/L zero pairings using a Chebychev approximation and an
- T #1 #2 elliptic approximation (with 0 dB peak gain, 0.5 dB pass-
—%; C-J—— band ripple and 0.5 dB cutoff frequencies at f; and f)
j} g0 72 obtained from standard tables of the poles of the approx-
¢1—t‘”_1_;1 imating functions [12] by using the bilinear z-transform
L L of the corresponding s-domain approximations to obtain
o4Co c G H(z) and the two gain distribution strategies discussed
1 Co _{ 0 . i previously are shown in Table 1 for several values of n
¢ ’fl g1 %270 ¢, (the order of H(z)) for a clock frequency of f, = 8f, =
4 Frgz b _—-‘ 8./f1/f>. The stopband corners f; and f, vary with n. It
e TN R L I g L Yo can be seen from this Table that significant reductions i
i PR ;s T - = total capacitance can be made w%thout sacriﬁli:cir:gn;elrn
- #1 2 - -
=I-— *———’—I—H—‘L—’ formance through judicious pole-zero pairings. For
¢2J,— + #i example, almost a 50% reduction in total capacitance
g, sS04, was observed for the S8th-order Chebychev single-
— |—1—’ frequency approximation by using the minimum total
¢1J_ i ? capacitance structure rather than the maximum total
- T capacitance structure. Furthermore, for the Chebychev
Fig.2  General SC Biquad Structure [4, 8] approximation the single frequency gain distribution pro-

The initial SC design program, AROMA [7], has been
extended to include the gain distribution strategies of the
preceding Section. The total capacitance for each pole-
zero pairing scheme is used as a figure of merit for evalu-
ating the pairings. The ratio TC,, which is the ratio of
the largest total capacitance to the smallest total capac-
itance in the exhaustive comparison, is used to demon-
strate the significance of adopting a good pole-zero

pairing strategy.
\\\\

Hmax _\._

K

Ccp x passband ripple

[H(z)],dB

4
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Fig. 3 Design specifications for a bandpass filter

vides a greater reduction in total capacitance. For the
elliptic approximation the opposite occurs, the greater
reduction is obtained when the equal peak gain distribu-
tion is used.

From this table it can be observed that, in general, the
capacitance reduction potential increases with the order
of the transfer functions. It can also be seen that the total
capacitance varies with the gain distribution strategy and
that for a given order of approximation, the total capac-
itance required for the Chebychev approximation can
differ significantly from that required for the elliptic
approximation. It can also be observed that for low
orders the elliptic approximation requires less total
capacitance, whereas for higher orders, the total capac-
itance required for the elliptic approximation becomes
larger. Finally, although not directly related to the pole-
zero pairing problem, this Table bears out the fact that
the total capacitance for a given approximating function
increases significantly with increasing order.

All possible pole-zero pairing strategies were exhaus-
tively considered to obtain the data presented in Table 1
{e.g., for n = 12, 281 pole-zero pairings were investigated
for the Chebychev approximation). As was demonstrated
previously, the number of combinations becomes
unwieldy as the order of the approximation increases,
making an exhaustive investigation impractical in these
cases.

Table 1: Comparison for different pole-zero pairing strategies, approximations and gain distributions

Approximation Chebychev Elliptic

type

Gain distribution Equal peak gain Single frequency Equal peak gain Single frequency

strategy

Qrder of 4 6 8 10 12 4 6 8 10 12 4 6 8 10 4 6 8 10
approximation

Number of 2 3 4 5 6 1 3 4 5 6 2 3 4 5 2 3 4 5
biquadratic blocks

Number of unique 3 7 19 91 281 3 7 19 91 281 2 6 24 120 2 6 24 120
pole-zero pairings

f 550 750 800 860 870 550 750 800 860 870 800 850 880 888 800 850 880 888
fa 1350 1150 1100 1040 1030 1350 1150 1100 1040 1030 1100 1050 1020 1012 1100 1050 1020 1012
., 157 355 507 813 1137 157 320 420 779 1087 111 324 707 1392 111 355 709 1499
c,,, 199 441 809 1286 1877 199 462 817 1286 1877 111 486 869 2183 111 447 851 1917
c, 127 124 159 1566 1.65 1.27 144 196 164 172 100 150 123 157 1.00 126 120 128
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Others have investigated the pole-zero pairing
problem in related applications [9-11]. Some investiga-
tors have been concerned with sensitivity reduction
whereas others were concerned about maximising
dynamic range. In these discrete applications, the com-
ponent spread, which is related to total capacitance in SC
applications, did not serve as the focal point of the inves-
tigations. The component spread was not of major
concern from an economic viewpoint because the actual
cost of discrete components is not strongly dependent on
the nominal component values in audio frequency filter-
ing applications. These resecarchers were able to develop
‘rules of thumb’ for pole-zero pairing which resulted in
reasonable filter performance. The resultant pole-zero
pairing strategies were typically based on a readily com-
putable metric relating to the relative spacing between
the poles and zeros. Such a strategy is useful because the
pole-zero pairings can be achieved easily with relatively
minimal computational overheads.

We have been looking for a similar spacing-based
pole-zero pairing strategy for total capacitance mini-
misation in SC circuits. To date, we have not been suc-
cessful at finding such a strategy. Numerous examples
involving lowpass, bandpass and highpass functions with
varied approximating functions, orders, clock frequencies
etc. have been investigated. Space limitations preclude
discussing these investigations in this paper. Suffice it to
say that in some examples pairing closely spaced poles
and zeros resulted in a relatively low total capacitance
whereas in other examples such a strategy resulted in a
relatively large total capacitance.

3.1 Statistical approach

As an alternative, we are suggesting an exhaustive inves-
tigation when the number of pairings is small and a sta-
tistical approach when the number of combinations is
large. Remarks on the statistical approach follow.

As the number of unique pole-zero pairing strategies is
finite, they can be rank ordered relative to the total
capacitance TC by the sequence Sy, ..., S;, where S,
i=1,..., M denotes a specific pole-zero pairing strategy
and TC; > TC, for i > j. Relative to this rank ordering,
the total capacitance ratio, defined previously, is given by
TC, = TCy/TC,. Ideally, we would like to obtain the
pairing strategy S;.

Assume initially that TC;~(TC, — TC)i— 1)/
(M — i) + TC,. This assumption has been made because
in the examples considered, a reasonably uniform dis-
tribution between TC, and TC,, was observed. If it is
now assumed that K pole-zero pairing strategies are ran-
domly selected from the group of M possible structures,
the expected value of the pairing strategy in this group of
K elements with minimum total capacitance is, for large
K, approximately given by

(TCy —TCY)

TCyx pin = TC
K, min 1+ K+1

®)

Table 3: Effects of changing filter specifications on TC,

The pole-zero pairing strategy is thus to pick K pole-zero
pairings randomly and select the one from this set which
results in minimum total capacitance. Although the
minimum total capacitance will not, in general, be
obtained with this scheme, significant reductions in total
capacitance relative to an arbitrary pole-zero pairing
strategy can be anticipated in the average sense.

3.2 Effects of clock frequency and filter specifications
on TC,

It was seen in the example presented in the preceding
Section that an increase of nearly 100% in total capac-
itance can result in practical SC applications with a non-
optimal pole-zero pairing strategy. In this Section, the
influence of changing clock frequencies and filter specifi-
cations will be investigated.

To investigate the effect of clock frequencies, consider
for comparison purposes a 6th-order Chebjchev filter
which has the same specifications as considered pre-
viously, namely H,, =0 dB, o, =05dB, o, =30 dB,
J1 =900 Hz and f, = 1000 Hz. In Table 2, the values of

Table 2: Effects of clock frequency on total capacitance for
different pole-zero pairings

f.=8kHz f,=16kHz f, =32 kHz

7C,,., 355 780 2209
TC,... 441 1036 3182
TC, 1.24 1.33 1.44
TC,,. and TC,, are in terms of unit capacitances

TC, for this circuit with three different clock frequencies
using the equal peak gain distribution strategy are pre-
sented. Note that although major differences in TC, are
not observed, the pole-zero pairing does become more
critical for high f,/f, because total capacitance increases
significantly with f, .

To consider the effects of changing filter specifications,
the bandwidth of the Chebjchev and elliptic bandpass
responses were varied. The ripple, gain and clock fre-
quency were held constant («, = 0.5 dB, «, = 30 dB and
Jo =84 f,). The TC, values are compared in Table 3.
Note that although rather significant changes in the spe-
cifications were made, the TC, changes are comparable
in magnitude to those observed for changing clock fre-
quency, order, gain distribution strategy or type of
approximation.

4 Conclusions

The effects of pole-zero pairing in cascaded biquad SC
filters have been investigated. To compare different pole-
zero pairings with the same circuit properties several
design constraints were imposed. It was shown that sig-
nificant reductions in total capacitance can be anticipated
through an optimal pole-zero pairing scheme relative to a

Chebychev Elliptic
BW, Hz, 100 300 500 100 300 500
1 Hz 900 800 700 900 800 700
fh Hz 1000 1100 1200 1000 1100 1200
Order 4 6 8 10 6 8 10 8 10 4 6 8 10 6 8 10 6 8 10
msn 199 441 809 1286 160 288 455 188 294 111 486 869 2183 169 309 760 120 238 577
=n 157 355 507 813 113 194 307 134 206 111 324 707 1392 131 237 493 91 165 370
C, 1.27 1.24 159 156 1.42 149 148 1.41 143 1.0 15 123 157 13 13 151 131 144 156
TC

: max@nd TC__ are in terms of unit capacitance
A



random pairing strategy without deterioration in filter

erformance. The reduction in total capacitance should
result directly in a silicon area reduction at fabrication.
The importance of considering the pole-zero pairing
problem becomes more significant both at high clock fre-
quencies and as the degree of the approximating function
H(z) increases. From the examples presented, it appears
that the magnitude of the pole-zero pairing problem is
not strongly dependent on the exact filter specifications
or gain distribution strategy.

For higher-order H(z) the number of possible pole-
zeroc pairing combinations becomes unwieldy. Although
an exhaustive computer search may be justified in some
cases, a simple statistical approach which offers, on
average, appreciable reductions in total capacitance was
introduced.
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6 Appendix: Design equations for the SC biquad
[4, 8]

The transfer function when input and output are sampled
at the same time for the SC biquad of Fig. 2 is given by

7

As
H(z) =
@) 1+ g

22 —zlos + o5 — ap(0ty + og)]/os + (s — o )0l

1+«

Z2 —2[2 + g + g —0(2067]/(1 + (18) + 1 + a:
)

Eqn. 9 can be also written, for convenience, as
2
é

H(z) = K —— 182+ (10)

z2 — 2r cos 0z + r?

A simple solution of the design equations for the poles
follows. Let ag = kagand 0 < k < 1:

1 -2
_— 11
w1 (1

1 —r?
= 12
Ug 7'2 —k ( )

select o, and obtain

o7 = (1 + ag)(l + r? — 2r cos )/, (13)

k is related to S ie., k = SZ/(1 + S2). Table 4 shows the
zero placement formulas for different type of filters used
in this paper. The notation used is described on p. 163 of
Reference 2. K = o5/(1 + ag) unless otherwise specified.

Table 4: Equations for filters used in the paper

Filter type Design equations Simple solution
LP 20 a5~ a0, _ 1 a,=0, a;=a;
a5 ,
as=K(1 +ag)
as + a5 — a,(a, +a4):_2 a,a, = 4ay
as
BP 20 as+a;—ay(a,+a,)=0 a;=0,0a,=0
a;=K(1 +ag)
05—0204:_1 a,a,=ag
a’5
HP 05+a’5—az(a1+a4):2 a,=a,=0
a’S
s =K(1 + ap)
05-0204:1 as=ag
dg
General K= a; a;=K(1+ag)
1+ag
(except BP 20) a,=0
_axla, tay) —as - a; _K(1 +ag)(e+K+KS)
B K(1 + ag) @ a,
¢5=05_7204 a; = oay
a5
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