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ABSTRACT

The fundamental limits of the most common CMOS amplifier structures
for high frequency monolithic continuous—time filter applications are exam-
ined. Applications of these amplifiers in integrator-based filters are investi-
gated. It is shown that transconductance amplifiers (TA’s) have inherently
better high frequency response than operational voltage amplifiers, and that
TA based open-loop integrators are better suited for high frequency applica-
tions than are closed loop feedback integrator structures.

I. INTRODUCTION

Implementation of high frequency (3> 100 kHz) continuous-time filters in a CMOS process
has applications in AM and FM IF filters, TV signal processing, as well as other telecommu-
nication and instrumentation applications. In these frequency ranges, the aliasing problem
inherent in sampled data filters along with other known limitations of existing sampled-data
technologies make a continuous—time filter approach attractive. Recent publications report
simulated designs [1],[2] and experimental results [3],[4] of monolithic CMOS continuous-time
filters designed to operate at frequencies up to 1 MHz. Devices termed “operational amplifiers®
(op amps) and transconductance amplifiers (TA’s) have been reported as basic gain blocks.
Analysis of the basic gain block topologies provides insight into which are best suited for high
frequency filtering as applications enter the MHz range. In this paper, the term op amp will
be used to denote any amplifier with very high gain which is intended for use in applications
where the characteristics of the circuit using the device are ideally independent of the amplifier
gain. When distinction of op emp variety is necessary, the amplifier type will be included, such
as Operational Transconductance Amplifier (OTA) and Operational Voltage Amplifier (OVA).

In the following section, the frequency response of published high frequency gain block
topologies is analyzed. Emphasis is placed on small signal performance at high frequencies.
Two families of gain blocks provide excellent bandwidth and little excess phase. In Section
III, we examine the two families of high frequency gain blocks in integrator topologies. One
structure is found useful as a high frequency building block.
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II. GAIN BLOCK COMPARISON

Most published high frequency gain blocks can be divided into 3 categories: t{rans-
conductance amplifiers (including both the TA and OTA), traditional two—stage op amps,
and the newer single-stage “op amps”. Each category will be identified by a basic topology
and transfer function. The transconductance category covers all transconductance circuits from
the simple differential amplifier [3] to the more complex TAs [1],[4]. These can be constructed
from transconductance subcircuits and current mirrors, excluding any internal high impedance
nodes. The traditional two—stage op amp (OVA) incorporates an internal high impedance node
used for compensation. The newer single-stage “op amp” category is comprised of operational
amplifiers with high impedance outputs which are compensated by load capacitance. Included
in this category are the stacked mirror [5] and the folded—cascode op amps [6]. These latter
structures also find applications as transconductance amplifiers in circuits where the transfer
characteristics of the circuits depend directly on the gain of the amplifiers [7]. '

TAs and OTAs
A generic TA block diagram is shown in Fig. 1. This topology utilizes an input transcon-
ductance stage followed by current mirrors which steer currents to a high impedance output.

The transconductance and current mirror subcircuits have wide transfer function bandwidths
and no internal high impedance nodes, so the overall TA bandwidth is very large. The transcon-

ductance gain can be modelled by

on(e) = 7350 ()

where wy is an “effective” pole characterizing several very high frequency internal mirror poles.
This lumped model is mathematically tractable and reasonably accurate to nearly w,. These
parasitic poles are sufficiently large to justify using the single pole model well into the MHz
range. Unfortunately, a single pole model cannot be justified in this range for the remaining
gain blocks discussed in this section.
Traditional Two-Stage Op amps

A conventional two-stage op amp (OVA) is shown in Fig. 2a and its small signal equivalent
circuit in Fig. 2b. The two-stage OVA is characterized by an internal high impedance node
used for compensation. When no nulling resistor (Rz) is used it is well known that the op amp
has a dominant pole {p,), a load—dependent second pole (p;) and a RHP zero :

) -1 —9m2 Im?2
S, = M 2
PL™ CoRumB:  ?7 0, P *T ¢, (2)

assuming that Cy is much smaller than either C; or Cg, and that the poles are widely spaced.
The RHP zero is often close to the non—dominant pole (p;) which seriously degrades the phase
margin. Addition of a series nulling resistor (with value Rz =1 /9ma) removes the RHP zero
and creates a third pole at pg m —1/RzCy = —gnm2/Cy. Since C; is usually much smaller than
Cc, the phase margin improves significantly. :

The use of two-stage OVAs (even with the improved compensation technique) in high
frequency filters is limited by their gain-bandwidth product (GB). OVA based active RC
filters show large G B-induced filter characteristic shifts when G Bs of the OVAs are close to
the desired filter critical frequency. Increasing the OVA (B, given by GB = ¢,1/Ce, requires
a very large input stage transconductance (g,,1) and a small compensation capacitor (C¢). But
both large g, and small Cc make stabilizing the resultant op amp very difficult. The parasitic

pole positions (p; and ps) relative to the OVA GB determine stability. The normalized poles
are:
D2 — Im2 CC’ CC _ 9m2 CC' (3)

ps|_ Lo _ 9m2
GBl' gmi C3’ ]GB ImiBzC1 gm1 C1
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The non~dominant OVA poles (p; and ps) must be far above the filter critical frequency to
avoid excess phase, and well above the OVA GB for good op amp phase margin. The C;
capacitor includes the load capacitance and the drain-bulk capacitances of the (typically very
wide) output devices. Its substantial size tends to constrain the ps/GB ratio near unity,
limiting the useful frequency range of the two-stage OVA.

The bandwidth achievable from a two—stage OVA is inferior to that of the OTA because of
the additional internal high impedance node and compensation capacitor. The single parasitic
pole in the OTA depends orily on device parasitics, and is located well above the unity gain
frequency (assuming a capacitive load) at w,. In contrast, the first {(non—dominant) parasitic
pole in the two—stage OVA depends on the large C; capacitance. There is also a pole due to
the OVA current mirror near 2w, (not included in the model of Fig. 2b), and a third (ps) pole
. {usually around w,). Consequently, the design of a two—stage OVA with large GB and sufficient
phase margin for critical frequency applications above 1 MHz appears to be very difficult.

Single~Stage Op amps

The newer single-stage op amps are characterized by high impedance outputs and com-
pensation by load capacitance. Very significant improvements in bandwidth over what is at-
tainable with the two—stage op amps have been reported in the literature with gain—bandwidth
products beyond 50 MHz being common [7]. These circuits are topologically equivalent to the
TA block diagram of Fig. 1. No internal compensation capacitor is required because there are
no internal high impedance nodes. Differences between the various single-stage op amps are
mainly due to choice of current mirrors, and the style of common mode feedback used in fully
differential designs. The frequency response of the single—stage op amp is similar to that of the
topologically equivalent TA and is given by (1). The bandwidth is limited by the same parasitic
(mirror) poles affecting the TAs, with some differences in w, due to the type of current mirror

selected.
In summary, from a high frequency performance perspective there is no preference between

the topologically identical TAs and the single-stage op amps as both exhibit very good high
frequency performance and have no internal high impedance nodes. The major difference i8
due to the names applied to these devices by the authors. The two—stage OVAs were shown to
have much smaller usable bandwidths than the single-stage op amps, the TAs and the OTAs
because of their internal high impedance node and compensation capacitor.

1. INTEGRATOR COMPARISON

The fundamental building block used in most active filters is the integrator. Most in-
tegrators discussed in the literature are either based upon the Miller (feedback) structure of
Fig. 3a or the transconductance {open loop) structure of Fig. 3b or some minor variant of these
structures. For either type , the unity gain frequency of the integrator is the key parameter
which determines filter characteristics. The Miller structure of Fig. 3a requires a very high
gain operational amplifier. The structure employs a large amount of feedback to render a gain
expression Ay =V, /V; = —~1/sRsCr, where the unity gain frequency, w, = 1/RsCf, is inde-
pendent of the gain of the op amp. The TA based integrator of Fig. 3b has a gain expression
of the form Ay =V, /V; = gy /sCL. This is an open loop rather than a feedback structure, in
which the voltage gain is directly dependent upon the transconductance gain gn,.

Closed Loop (Miller] Integrator

A traditional closed loop (Miller) integrator is shown in Fig. 8a, and the corresponding
small signal model is in Fig. 4a. Loading by an identical stage is assumed, which introduces
the load resistor (R;) and the load capacitor (C1). Two options for the op amp will be
considered. If the two—stage internally compensated amplifier (OVA) is used, it is well known
from basic active filter theory that practical unity gain frequencies are typically limited fo
around .01GB. Even if modifications of the basic integrator structure are made, it is difficult
to obtain satisfactory operation above 0.1GB. Since the GB of the OVA is typically limited to
the MHz range, the Miller integrator with an OVA is not useful at high frequencies.
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As a second option, the transconductance amplifiers or the OTA type op amp such as the
single-stage “op amps” will be considered. In this case, an expression for the voltage gain of
the closed loop integrator is

AV e o RSIGL [82 + S(Ug - gmowg/CF] (4)
Vi 88 +sPap+say +gLw,/RsCLCr

’
9r = (
¢ T ReC, r T\ T RsC.q

gm.,+g’LJr 1 ) 9%

with g = wy + RaCrCy

where 1/g} = Rr || r, and 1/C., = (1/Cr) + (1/CL). By assuming a dominant low frequency
pole the closed loop integrator poles and zeros can be approximated by :

—9}, —Wg . 4gmo/CL
= — = — 1 :t T 1
p1 RsgmoCr P23 2 [ J\/ g ] (5a)
= 9y, [1 4 Hme/Cr
Z12 = 3 [1 + 14 wg ] (55)

Open Loop Integrator
The open loop integrator is constructed from a transconductance amplifier with a grounded
load capacitor. It is depicted with a TA gain block in Fig. 3b, and a corresponding small signal
model is shown in Fig. 4b. The stacked current mirrors gives rise to a large output resistance
(r,) and the frequency dependence of the transconductance gain is modeled in (1). Loading
by an identical stage will not affect the circuit model, only the effective load capacitance. The
integrator voltage gain is :

v, ImoTo
A = e I 6
VTV, T (L4 s/w,)( +e7.CL) (©)

and the unity gain frequency is approximately gmo/CL.

The closed loop (Miller) integrator and the open loop integrator can now be compared
based on their pole/zero distributions. The position and number of high frequency integrator
singularities relative to the filter critical frequency determines the excess phase and the deriva-
tive of the phase at the critical frequency. It is well known that very small amounts of excess
phase (< 1°) can cause serious shifts in filter characteristics. The open loop integrator has a
single high frequency parasitic pole at w,. The closed loop integrator has two high frequency
parasitic poles, a LHP zero and a RHP zero given by (5). Note that large values of gm./CL

- and gpmo/Cr give high frequency poles (p2,3) and zeros (z;,2) well above w,. Unfortunately,
* this makes the Miller integrator unstable, as can be seen by the loop gain

~80mo/CrL -
Ay (od) = /O - - )
(1+S/wg)[32+s{gL+-——RSCL(I—{-—C-f; }+m = F]

It is clear that large values of w, produce a 90° phase margin, wy; = gm./Cr produces a 45°
phase margin, and w, much below g.,,/Cr may cause instability if higher-order poles are
present. To facilitate comparison between the open and closed loop integrators, values for Cr
and Cy, in the closed loop equations must be specified. The maximum high frequency perfor-
mance from the closed loop integrator will be obtained as the op amp phase margin reaches its
minimum acceptable value (practically 45°) and for minimum Cp. The lowest realistic value
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for the feedback capacitor will be defined as Cr. This is probably overly optimistic, but will
establish an upper performance bound for the closed loop integrator.

Based on these assumptions, the pole/zero root locus plots for both integrator topologies
are shown in Fig. 5 relative to the w, of the OTA. Aside from the low frequency dominant
pole, the open loop integrator has one high frequency parasitic pole at w,. The closed loop
integrator has a RHP zero at .62w,, a pair of complex poles (@ = 1) with magnitude w,,
and a LHP zero at 1.62w,. For a given critical frequency it may be possible to design both
with zero excess phase, but the slope of the closed loop integrator phase function will be at
least double that of the corresponding phase function in the open loop integrator because of
the additional singularities near w,. Process parameter variations and statistical mismatches
between supposed matched devices will cause phase slope to be a significant limiting factor
in the realizability and tunability of high frequency monolithic designs. In practice, having
fewer significant high frequency singularities (and at higher frequencies) means that open loop
integrators will exhibit less excess phase at a given critical frequency and be feasible at higher
frequencies than closed loop integrators. For the pole/zero positions of Fig. 5, it is possible
to calculate the frequencies at which the excess phase reaches .5° (called f.;). For the open
loop integrator, f., # w,/100, and for the closed loop integrator, f,,  w,/200. Since it was
observed that the stated conditions for the closed integrator provide only marginally acceptable
stability to improve the excess phase of the overall structure, it can be stated that the .5° phase
error frequency for the open loop integrator is at least twice the .5° frequency of the closed
loop integrator.

V. CONCLUSION

An examination of the reported high frequency gain blocks, including OTAs, the newer
single-stage OVAs, and the traditional two-stage OVAs shows results consistant with previous
observations. Because of the internal high impedance node and accompanying compensation
capacitor, the two—stage OVA is an inferior high frequency gain block. The OTA and single-
stage OVA are topologically equivalent, differing only by the definition of the output quantity
(current or voltage). Minor differences occur due to the choice of internal current mirrors, but
they generally have better bandwidth and less excess phase than the two-stage OVAs.

Using a gain block with the TA topology (Fig. 1) allows construction of both open and
closed loop integrators. The open loop integrator was shown superior to the closed loop (Miller) "
integrator using reported high frequency gain blocks. The open loop (TA style) integrator most
naturally utilizes a transconductance based description of the gain block, implying that the
“best” suited high frequency gain blocks are TAs {(employed in open loop integrators).
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Fig. 3 (a) Closed loop (Miller) integratbr.
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(b) Miller integrator pole/zero plot.



