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Abstract:

A high-level software tool for automatic generation of simple,
accurate and mathematically tractable parametric device models for
arbitrarily complex physical models of electronic devices 1is
described. For the set of equations defining the SPICE Level2
MOSFET large signal model the problem of approximating the complex
and accurate closed-form formulas by simple and self-consistent
polynomial expressions 1s addressed. The tradeoff between
simplicity and accuracy will also be discussed.

I. INTRODUCTION

Circuit simulation programs such as SPICE provide complex
nonlinear closed-form equations involving large sets of model
parameters to describe accurately the performance of electronic
devices. The complexity of those elaborate models also makes them
totally untractable for analytical manipulation and inappropriate
for the circuit designer to develop any intuitive understanding of
the device electrical behavior. The emergence of complicated and
accurate device models 1s causing a divergence between these
models and the simple analytical models used by designers for
conceptualization and optimization during the design process. This
paper focuses on the development of a high-level software tool for
automatic generation of simple, accurate and mathematically
tractable parametric device models from arbitrarily complex
physical models of electronic devices. This computer tool will be
used for developing multi-dimensional approximated models of the
analytical Level2 MOSFET model implemented in SPICE.

IT. MOSFET DEVICE MODELS

The Level2 MOSFET model implemented in SPICE is characterized by
42 parameters and described by a large set of complex simultaneous
nonlinear equations. It is an analytical one-dimensional model
which includes important second order effects: channel length
modulation, body effect, mobility reduction and short—-channel and
narrow-channel effects. The second order effects for small
geometry devices involve the surface mobility reduction due to
carrier-velocity saturation, the threshold voltage dependence upon
the channel length and the channel width, the depletion charge
sharing by the drain and the source.
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Let consider the drain current as it is introduced in the Meyer’s
Level2 SPICE model to illustrate the complexity of the MOSFET
device model:
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where the main parameters involved are defined below:
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* Effective mobility: pu,= #o[

* Threshold wvoltage:
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* Device width: W
* Adjusted device length: L,;=L-2Lj,
* Effective device length: L.; = L.g(1 — AVpsg)
* Saturation voltage: Vpsar

* Bulk threshold parameter: «,=7(1—-a)
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The model also introduces various expressions for the saturation
voltage VpgaT and the channel length modulation parameter A
depending on the presence or the absence of the channel length
modulation parameter and the speed limit of the carriers VMax in
the .MODEL card specified in the SPICE input deck.

* If A is not input and VMaxX is input in the .MODEL card,
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* If A is not input and VMax is not input in the .MODEL card,
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* If VMax is input, then the saturation voltage is the solution
of a 4th order polynomial according to the Baum and Beneking
theory.

* If VMax 1s not input,
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Considering now the small-signal model, the small-signal output
conductance g, in the saturation region is derived by partial
differentiation of the drain current with respect to the drain-to-
source voltage.
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The small-signal model provided in SPICE for the output
conductance was developed by making major simplicity assumptions
to the device model and therefore implemented as a unique
expression for this small-signal parameter. It is defined as
follows: A
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Nevertheless, hand-calculations of the output conductance
determined four sub-models within the Level2 model according to
the major role played by both parameters A and VMax. Mathematical
computations carried out in order to obtain the exact closed-form
expression of the output conductance in each case led to the
following equations:

* Case 1l: A input, VMax not input:
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* Case 2: A input, VMax input:
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where the saturation voltage is solution of a 4th order prolynomial
according to Baum’s theory of scattering velocity saturation. The
SPICE source code evaluates the saturation voltage by solving the
4th order polynomial through an iterative algorithm. This

algorithm was extended to implement the partial derivative of the
saturation voltage.

* Case 3: A not input, Vmax not input:
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where the derivative of the saturation voltage is described in
case 1.

* Case 4: A not input, Vmax input:
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where the saturation voltage and its derivative were introduced in
case 2.

For rough calculations, however, the simple approximated models
available to the circuit designers neglect the second order
effects. Typical and widely used models for hand calculations are
K'w
Ips = A (Vasq — Vr)?

9o = AMpsq

The discrepancies between the SPICE Level2 large-signal MOSFET
model and the drain current approximation wused in hand
calculations are shown in fig.l. Considering the case where A and
VMAX are not entered as input parameters, fig.2 illustrates a
comparison of the output conductance as predicted by SPICE, as
predicted by the exact analytical expression, and as predicted by
using SPICE to calculate a numerical derivative approximation of
the partial derivative of the drain current. In these plots,
Josprce 1S the output conductance implemented in SPICE, gy 1S the
output conductance mathematically computed by taking the exact
derivative of the drain-to-source current expression, geg, is the
output conductance obtained by using SPICE to the numerical
difference of the drain current. The simulations leading to the
plotted results of fig.l and £fig.2 were run with a minimum-size
device and typical process parameters describing a CMOS 2um
fabrication process.

Note that the numerical derivative and the exact analytical
expression of g, are in close agreement but differ significantly
from the value of g, predicted by SPICE. This difference makes the
SPICE small signal model non self-consistent with its large-signal
counterpart.
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III. COMPUTER TOOL DESCRIPTION

The above plots illustrate the discrepancies between computer
models and models used for hand calculations. Note that the
approximated models are expressed in terms of multivariable
polynomials of process variables and terminal electrical variables
of the MOSFET device. In order to keep this simplicity in
approximated models, a tool has been developed which generates
multivariable polynomial expressions for the models describing the
MOS transistor. This algorithm is based upon expanding the
functions of interest in a truncated multivariable Taylor series
by using a forward finite-difference method to approximate the
ordinary and mixed partial derivatives of the expansion. For
simplycity purposes this section will focus on the expansion of a
function of two variables. The Taylor series of a function f of
two variables x and y around the point (xX,,Yo,) can be expressed as
follows:
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I=Z0

k=0 Y=Yo

Each partial derivative is being evaluated by computing a forward
numerical differentiation scheme wusing a regular spacial
distribution of the points of evaluation. For instance, a forward

derivative expression can be developed at x = x;, using a 2nd
order polynomial. Assuming the following notation:

fin = f(l'i+1) with Tiy1 =zZ;+ h

Fioo = Fflz...) with Pon = . L Ok
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the first forward derivative is determined by expanding a Taylor
series about the points xi;; and xj,,. Therefore,

h2
finn = fi+ hf,'(l) + —2"—f,-(2) =+ error

2h)2
figo = fi 4 (2h)f;(l) + gQ—l)ﬂ(2) + error

Combining the above equation and solving for £;1), the first
forward derivative approximation using an order-two polynomial is
obtained:

1
P 57 (=3fi + 4~ fipn)

Where (O)h? is the order of error associated with the finite
diference approximation.

The software implements the approximation of partial ordinary and
mixed derivatives up to the 7th order for arbitrary multivariable
functions. In order to perform an accurate evaluation of each
derivative, the computer tool carries out an automatic procedure
for scaling the discretization step h. When the relative
difference between two consecutive computations of a given
derivative falls below a preassigned small value, the calculation
is stopped and it is asumed that an accurate value of the
approximated derivative has been found.

IV. EXAMPLES OF APPROXIMATION

The discussion focuses on the approximation of the drain-to-source
current with models of dimension one through four.

* Qne-dimensiconal approximated model

The expansion of the drain-to-source current up to the 7tR order
around the quescient value of the gate-to-source voltage (Vgsg =
2.0V) led to the obtention of 8 approximated derivatives. Fig. 3
shows the evaluation of the approximated function for a range of
Vgs of 4.0 volts. Comparing the approximated value and the actual
value of Ips, note that the maximum relative error is 3.0%. For a
gate-to-source voltage of 3.0V, the relative error is far less
than 1.0% (error = 0.43%).

For Vgsg = 3.0V, Ips can be expressed as:

+ 0.75096 F — 04(VG5 — VGSQ)2

the other coefficients of the expansion being neglected since
their overall contribution only reaches 0.02%.
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The drain current was expanded with respect to two variables Ves

and Vr around their quiescent value. The total number of
approximated derivatives computed reached 36. For Vese = 3.0V, the
number of coefficients of the expansion can be reduced to 6 since
the total contribution of the other coefficients represents a
negligible percentage (0.17%).

Ips is then written as:

+ 0.75088E — 04(Vgs — Vasq)? +0.75442E — 04(Vy — Vipg)?

— 0.15038E — 03(Vis — Viasg) (Ve = Vig)

* Four~dimensional approximated model

The expansion was performed with respect to four variables Ves, Vr,
Vbs and K’. The computer tool determined 307 coefficients for the
Taylor series expansion. This very high number can be reduced to
8. The relative error between the approximated evaluation and the
actual value of the drain current is then equal to 0.09% at
Vese=3.0V, The approximated expression of Ips can therefore simply
represented by the following summation of 8 terms.
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Ips = 6.8404E — 05+ 0.14625E — 03(Vis — Vizsg) — 0.14625(Vy — Virg)
+ 0.2348TE — 05(Vps — Vpsg) + 0.75091 E — 04(Vs — Visg)?
+ 0.75442F — 04(Vy — Vig)? + 0.37114E — 05(Vees — Vaso)(Vos — Voso)

~ 0.15036 E — 03(Vgs — Vasq) (Ve — Vig)
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All simulations were run for Vesg=2.0 V, Vpg=0.93 V, Vpge=6.0 V.

V. CONCLUSIONS

In this paper, a computer tool for generation of simple,
mathematically tractable and accurate models for electronic
devices was introduced. Simulations of a MOS drain current showed
a very good agreement between the approximated expression and the
exact closed-form equation (less than 1.0% error) and consequently
allowing the rewriting of the drain current expression in terms of
a multivariable polynomial with very few terms. However, when the
order of the expansion exceeds 4, some problems were encoutered
which prevented an expansion involving more variables and higher
order terms. The time consumption becomes critical at higher order
expansions and the step size algorithm needs some fine
adjustments. The next application should be the development of new
models of the much needed small-signal output conductance of the
MOS transistor.



