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Abstract

A time-domain least squares system identification algorithm is discussed which
is used to calculate frequency responses of linear continuous-time systems with
sinusoidal excitations. Both simulation and experimental results have demonstrated
that the proposed frequency response measuring technique can tolerate considerable
measurement noise as well as significant impurities of excitation signal.

Introduction

Measurement of the frequency response of a linear continuous-time system is a
crucial task for determining the system transfer function[1]. Traditional approaches
usually require high precision circuits to perform either direct measurements such
as analog peak/phase detectors, or indirect measurements which collect time-domain
samples for further interpretation. Both approaches have been found plagued by in-
creasingly erroneous measurements at high frequencies[4]. In this paper, a simple
method to determine the gain and phase responses of an unknown linear system based
on time-domain samples is proposed. Instead of grabbing a large number of consec-
utive samples, this new method uses only randomly, asynchronously sampled finite-
consecutive data sets which are obtained by fast-tracking, low-to-medium resolution
sample-and-hold amplifiers and slow analog-to-digital converters (ADCs). The tight
specifications of fast ADCs or analog peak/phase detectors are thus relieved. Simula-
tion and experimental results have shown that the proposed algorithm can accurately
rmeasure the frequency responses even with noisy/ low-resolution data. This technique
is believed to provide a feasible solution to the performance measuring system for
supporting high-precision filter tunings[4].

Background

Consider an unknown linear continuous-time system T(s) excited by a sinusoidal
input signal

z(t) = Vimcos(wot) (1
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(3]

The steady-state response at the output node is represented by
y(t) = GVimcos(wot + 8) 2

where GG and 8 are known as the gain response and phase response, respectively, at
frequency wg. The transfer function T(s) evaluated at s = Jwo is thus given by

T(jwe) = Ge'? (3)

By applying 2 basic trigonometric identity to (2), the following equation can be
obtained:
y(t) = GVimcos(wot + 6)

= GVim{cos(wot)cosd ~ sin(wpt)sind)) 4)

If we sample z(¢) at t =ty and t = o — T, and sample y(t) at t = #o, then by adding
and subtracting a dummy term into (4), we can derive y(to) as follows:
sin

Y(to) = GVim{cos(woto)cosh + pom

Wcos(wo to)cos{wyT'))

sinf

_GI/,-,,,(sznGSzn(wg to) + m

cos{wyto)cos(woT))
sind
stn(weT)

A linear relationship between output sample, y(ty), and input samples, z(¢¢) and
z(to — T'), thus follows

= G(cos8 + sinfcot{wo T'))Vimcos{waty) — G( Wimeos(wo(to = T))  (5)

y(tu) = bgl(to) + b].’[(io - T) (61’1)

where '
by = G(cosb + sinfeot(woT)) (6b)
b = -G sinf (6¢)

sin(uoT))

Note that (6a) is valid for all ¢, on the real axis provided that woT # Ix for all integers I.
Equation (6a) relates discrete uniformly-spaced time-domain samples of continuous—
time waveforms. It is often more common to denote these samples as sequences by the
expression

y(k) = boz(k) + byz(k — 1) (7)
Equation (7) is also known as a first-order moving average (MA) model. Taking the
Fourier Transformation on (6a), we can derive

Geje = bo + bleﬁjuoT (S)

Our goal is to determine G and 6. It follows from (8) that G and 6 can be readily
obtained if by and b, are known. To measure the frequency response of a linear system
with sinusoidal excitation, we need to measure two different "sets” of time-domain
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samples to solve for by and b; from two linear equations established by (62). If there is
no error in the measurements, a set of exact solution as given in (6b) and (6¢) should
be obtained. In case the measurements are contaminated by noise, a greater number
of different "sets” can be used to perform least-squares algorithms [2,3], to find by and
b;. Both gain and phase responsés can be subsequently derived from (8).

The frequency response measurement method is not imited to applying a first-
order MA model as (7). A higher-order model may also be used in a more general
case, which requires at least N > n 4+ m + 1 sample sets, given by a measurement
system for supporting high-precision filter tunings.

n

(k) =Y aiy(k —i)+ Y bjz(k - 1) (9)
=0

i=1

As before, a least-squares algorithm can be used to determine the {a;} and {b;}
_coefficients in (9) if a sinusoidal excitation is applied. The tradeoff is that more
consecutive samples are required in a "set” of data which establishes (9) for the least—
squares algorithm.. The frequency response at wg can thus be obtained by

m —jlweT
Zl:oble e

= —
Ei:laie JiweT

Gef = (10)

The magnitude and phase of the system transfer function at the frequency of the
sinusoidal excitation frequency are directly determined from (10). It is interesting to
note that the difference equation of (9) is functionally identical to a difference equation
which characterizes the system at all frequencies. It follows from (10) that

H(‘-'_l)l:=cj”07 = Gejs (11)

If one now defines the z-domain rational function from the "a” and "b” coefficients
identified from the sinusoidally excited system characterized by (11), we obtain the
z-domain rational function which agrees with Ge’® at w = wy. This is depicted
graphically in Fig.1. :

A major difference between the least-squares frequency response measurement and
the least-squares system identification is that the former allows undersampling (i.e.,
sampling at sub-Nyquist rate) of the sinuscidal excitation while the latter only takes
oversampled data to avoid aliasing problems. The latter, moreover, usually requires 2
much "richer” excitation which is usually a band-limited signal.

The measurement system structure based upon the first-order MA model de-
scribed in (7) is depicted in Fig.2. The structure consists of three fast-aperturing,
low-jitter track-and-hold amplifiers to sample the time-domain data on both the in-
put and output of a continuous-time linear system, a precise sinusoidal generator to
excite the system. a low-speed, low-to-medium resolution ADC to convert the analog -
samples, a memory module to store the data and a digital controller to coordinate the
data collecting mechanism. All three track-and-hold amplifiers, during most of the
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time of their operations, are in the ” racking” mode. When the input Joutput signals
are well tracked, the controller first issues a hold command which generate two clocks
é; and @7, spaced by a period T, to get two consecutive samples at the input and one
correlated sample at the output, namely z(k), z(k'~ 1) and y(k), with the track-and-
hold amplifiers. The samples are converted to digital data which are stored into the
memory module. The amplifiers are then set back to their tracking mode again. This
process is repeatedly performed until ample sampled data sets are acquired. Note
that, under this mechanism, I can be arbitrary integers and are therefore not limited
to consecutive integers since the analog-digital conversions are not necessarily real-time
operations. Once sufficient samples are obtained, the system host begins calculating
the coefficients b and b in (8) by solving the least-squares linear equations

WT = [X (107X (R P00 Ty(k)] (12)

where W = [bg, by)7, X(k) = [2(k), z(k = DI, k = [ki, kg, .. k)7 where N is the
dimension of k, and k;’s are arbitrary real numbers denoting when each sample set is to
begin which in real-time identification problems are chosen to be successive integers,
and z(k) and y{k) are vectors of the sampled input and output, and z(k — 1) isa
vector of the late sampled input, with a dimension N.

The solutions obtained from (12) can thus be used to compute the gain and phase
responses of the continuous-time system at frequency wo- ;

To simulate the proposed frequency response measurement scheme, a 2nd-order
bandpass filter with a selectivity of 10 has been chosen as the typical linear system.
The system is excited by a frequency at its resonant frequency. The amplitude of the
sinusoidal is set to unity. The signal nonideality of the excitation is approximatéd
by a second harmonic sinusoid with a nominal amplitude of 0.01. Other system
nonidealities including quantization errors, measurement noise, system noise and
the timing mismatch/uncertainty are simplified into random sequences uniformly
distributed in (-0.01,0.01) added to both input and output measurements. The first-
order least-squares algorithm, as presented in {12), is used to solve coefficients by and
b;. The simulation results are shown in Figs.3-6. Several observations can be made
based upon these results. First, the measurement results become more and more
accurate as the dimension N increases. This can be best verified by observing: the
standard deviation of the measurements. Second, the measuring structure is able to
tolerate fairly noisy environments (as low as 20dB SNR) while still maintaining 1%
accuracy. Finally, as shown in Figs.4.5 and 4.6, it is observed that the total harmonic
distortion( THD) of the excitation signal has little impact on the measurement accuracy
unless the sinusoidal excitation is severely distorted. All statistics shown in simulation
results are calculated from 100 independent trials.

Experimental Results

The experimental prototype structure of the proposed measurement scheme is
shown in Fig.7. In Fig.8(a), gain responses of a 2nd-order bandpass filter with Q=10
obtained at 30 uniformly-spaced frequencies by the proposed measurement scheme
(marked by ’Q"), are compared with other measurements. One hundred sets of samples
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were- acquired for each excitation frequency by the HP54111 and were then used to
calculate the first—order least-squares solutions. The sampling frequency was set to
2.5MH:z. The excitation amplitude was set to 1V,,, and the maximal measurable
ranges of both input and output channels were fixed at 1.28V. The solid line was
measured by the HP3585A, while X’ markers were measured directly from HP54111
after 64 times of waveform averaging. The measurement difference between the two
instruments was due to their different input capacitance and the imperfectness of
the filter buffer circuits. The phase response measurement results of the 2nd-order
bandpass filter are presented in Fig.8(b). The absolute measured difference for both
gain and phase are given in Fig.8(c) in which one can observe the gain errors and
phase errors are, in general, below 1% and 2 degrees, respectively. Note that the raw
samples used in the least-squares calculation have less than 6-bit accuracy. The same
measurement algorithm was used to .measure the frequency response of a 2nd-order
lowpass notch filter. The results are given in Figs.9(a) and 9(b) in which both gain and
phase measurements show relatively larger errors around the notch frequency. This
problem can be partially overcome by dynamically scaling the input measurement
range of the ADC and consequently achieving better resolutions.

Conclusions

We have developed a new frequency response measurement scheme which is
feasible for high-frequency, monolithic implementations. Instead of using state-of-the-
art high-frequency analog peak/phase detectors or high-speed ADCs, the structure
exploits only fast-aperturing track-and-hold amplifiers as the front-end circuits. From
extensive simulations, the algorithm has proven to be insensitive to harmonic distortion
of the input and noise unless the sampled data are badly contaminated. With 6-bit
resolution samples, the experimental results have shown the algorithm can effectively
measure the gain and phase responses with 1% and 2-degree accuracies, respectively.
Further improvements of the accuracy are readily available by implementing higher-
resolution and dynamically scalable ADC.

References

[1] K.H.Loh, D.L.Hiser, W.J.Adams and R.L.Geiger, "A Versatile, Digitally’ Con-
trolled Continuous-Time Filter Structure with Wide-Range and Fine-Resolution
Programmability”, submitted to JEEE Transactions on Circuits and Sysiems,
under reviewed. ’

[2] N.K.Sinha and B. Luszta, "Modeling and Identification of Dynamic Systems”,
Ch.3, Van Nostrand Reinhold Company, 1983

[3] V.Strejc, ”Leaéﬁ Squares Parameter Estimation”, Automatica, pp.535-550, vol.16,
no.5, September 1980.

[4] C. Yu,et. al.. "Tterative Least Squares Method for Identification of Continuous-
time Systems”. Proc. IEEE International Symposium on Circuits end Systems,
Singapore, June 1991 ’

ECCTD-91 PROCEEDINGS

123




K.-H. Loh and R.L. Geiger ' 6

Magnitude Response

Magnilude Response

1.2 ~
Agreement of H(z7!) and Ge’?
0.6 ~
0.4 <
—— System Response
- = Triol 1
--- Tricl 2
02 —-- Trigl 3
— — Triol 4
-~ Triol &
0.0 T T T : .
0.7 0.8 0.8 1.0 1.1 1.2
Frequency (Rad/Sec)
100 ~
—— Systerm Response
75 4 -~ = Trigl 1
===+ Trigl 2
—-- Trigt 3
07 — — Trial 4
eee- Triol 5
25 <
i \
-25 1 \
7
-50 < Agreement of H(z7?) and Ge¢’?
-75
-100 T T T T T
0.7 0.8 0.9 1.0 11 1.2
- Frequency (Rod/Sec)
Fig.1 Frequency Response Identified with First-Order Models:

(2) Magnitude Response, (b) Phase Response

ECCTD-91 PROCEEDINGS

724




K.-H. Loh and R.L. Geiger

10 0000

01000

00100

00010

Absolute Meon Phase Error (Degros)

0 o001

10 00

=}
=3

Phate Deviations (Degras)

o
S

Fig.(4)

-1

X(1)=Vym COS(Wat+©) [Continuous—Time System] Y{t)=Vom COS(Wor+(0)
H(s)
N I B ____: High-Speed Track/Hold
t Amplifi
L-} _*42“_*:‘_’___-_ ___________ P_‘k_’_ 4 fmelien
Low-Speed Anaiog-Digital Converter ]

Daia Collecting Data
Controller Memory Device

System Host |.

Fig.(2) The proposed Measurement System Architecture

=)

Absolute Meon Gain Error (%

0 O00IC 4

00001 T T T T —
. 20 30 40 50 60
R
SNR (dB) SNR (cB)
1000
’\ —— Nm10
~ = N=100
N

- N=1000

-~ .

5 -

~ 100 N

" v

» .

2

3

K3

H

I

£ o004 e T

°

©

oo . T T -
20 A 30 40 50 &0 T 20 30 40 50 60
SNR (dB) SNR (dB)

Monte Carlo Simulation of the Phase Response vs.

Signal-Noise Ratio: {a) Phase Error, (b) Standard Deviation of {a)

Fig{3) Monte Carlo Simulation of the Magnitude Resplon_se vs.
Signal-Noise Ratio: (a) Magnitude Gain Error, (b) Standerd Deviation of (a)

ECCTD-91 PROCEEDINGS

725




K.-H. Loh and R.L. Geiger &

s
vt
Q‘c - E
E & §
¢ 3
o 3 s
§ i
H
e b‘;# : © 00001
; n b4 © 0 ©
H °°Q‘°° wo (#9)
H
Y
* “# 1000 .
N .« et
°°¢ 20 0 a0 0 © =
o {(¢8) H
oo H
£
2
g h H
Lo 0w S
i
-
H
g o oo 20 » 0 =0 0
: o (dB)
Fig.{6) Monte Carlo Simulation of the Phase Response vs.
4 Lotal Harmonic Distortion: (a) Phase Error, (b) Standard Deviation of (a)
oo L -
» »* b %0 .
THO (08)
Fig.(5}  Monte Carlo Simulation of the Magnitude R vs.

Toral-Harmonic Distortion: (a} Magnitude Gain Error, (b} Sundarereviniv;m of (a)

) Ch2
) wesant

Digital
- Oscilloscope chy

HP3585A IN v, Programmable
Spectrum Continuous—Time Filter

Analyzer QuUT : H(s)

5

IEEE-488
Standard Bus

HP3325A

<:> Function
Generstor

HPR000 /300 RS232C Senial Port
Workstation

Fig.(7) Experimental Emulating Systems

ECCTD-91 ' PROCEEDINGS

726




K.-H. Loh and R.L. Geiger

16~
—— Weotures by 3584
Meosured by Set11
- Meosurement Resutts
k3
S
2
Iy
H
[-d
)
1
£
2
e
0 T T . . . \
400000 430000 200000 350000 800000 £50000 700000
Frequency (M2)
100 ]
-B  Meosurad by SATVY ﬂ;
754 - O Mearorement Resutz /l‘ N
g |
30 o ’ '
’ i
-~ N \
N / B
& !
g i i
a o ]
3 il \
H e J
-2¢ @ '
& - \
a
g ® ¥ '
s 90 \ ce
! -8 -
' P
[
-84 5-®
-100

T T ¥ T
400000 450000 00000 330000 800000

froquency (Mz)

0000 4 reo
—~ Mognituge D-flerence
-5 Prose Diterence

©100¢ o
-
S
> -~
= 00100 §
3 1 s
2 e
& 2
3 00010 o 2
E LY
3
e

00001 ,

1 ® . "
. .
' ‘. ,'\ :
o A
00000 &, 00
400000

550’000 wo‘ooc 550'000 200000
Frequency (H1)
Fig.(8) Experimental Results of the Frequency Response Measurements of a 2nd-order

Bandpass Filter; (a) Magnitude Response; (b) Phase Response; (¢) Measurement
Errors;

ECCTD~91 PROCEEDINGS

727




K.-H. Loh and R.L. Geiger 10

160000 4
= Measues by 354
*B Meciures by Satt:
y E SO Mesiurement Pesny
~
>
hS
>
Z
© 1000
2 1
2
T
-4
§ 001004
£
00010 4
0.000t T T T T T T 7 g T——-
Froquency {Mz)
100 -
-D  Heoswred by Sem1s
’ - O deosuraman| Resulis
78 4 1"t
i °
2 &
ok A LA N el
e | o) geless
) 4 ' 2 = o
! 234 4 + ° )
-3 ! P S
° i .8
e ° v
£ T 3
H ' I3
£° -28 4 'l 14
]
4 '
30 "/
°
P T
-100 v r v ¥ T T T v T -
& P P
Froquancy (Hz)
010090 o - 25
4 —e~ Mogriuwoe Dference
"I -8 Pnose Ditference
1 %
. o
S £01000 4 . :
S -
> " 3
2z . L 2
> X 3
g (=]
% 000100 =
g °
o 10§
3 2
2 a
£
& 000000 L.
4
SN .
a »a =
0 60001 T wt Y 0

PP P
Treauency (W2) :

Fig.(9) Experimental Results of the Frequency Response Measurements of a 2nd-order

Lowpass Notch Filter (a) Magnitude Response; (b) Phase Response; (c) Measurement
Errors;

ECCTD-91 PROCEEDINGS

728




