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ABSTRACT

This paper studies robust control of multi-body mechan-
ical systems. A robust stability condition is presented together
with a simple procedure for synthesizing such robust PID con-
trollers. The Kharitonov theorem is generalized to polynomi-
als with matrix coefficients bounded between two symmetric
positive definite matrices of the same shape. Its restriction to
the third order case applies to multi-variable PID-controlled
robotic manipulators and it states roughly that a controller
designed for an upper bounding inertia matrix results in stable
set-point regulation for all other inertias. Furthermore, an
example is presented to show that our result cannot be general-
ized to polynomials with positive symmetric matrix coeffi-
cients lying in general matrix intervals.

1. Problem Formulation

Consider the dynamics of a multi-degree-of-freedom
mechanical system (e.g. robot manipulator) given by

M@ +C,0)+GO)=F (1)

where & is a vector of joint displacements, M(8) is the config-
uration-dependent symmetric positive definite inertia matrix,
C(6,8) are centrifugal and corolis forces (quadratic in 8),
G(6) is the gravity force vector and F is the vector of applied
joint forces. If a multivariable PID set-point controller with
gravity compensation is used, the control is given by

Pk, _[ e(t)dt—Kpe—Kpé+G(6) 2)

where e=6 -6, and 6; is the constant set-point and
Kp, Kp, K; are symmetric (usually dTgonal in practice) con-

troller gain matrices. Defining ¢ & | e(r)d7 and linearizing

the combined dynamics of the robot and controller about the
equilibrium point (¢, 8, 8) = (0, 8,, 0) yields

M@6,) e® + Kpé+ Kpé + K;e=0. 3)

If these linearized dynamics are exponentially stable,
then Lyapunov’s indirect method (see [1] page 179) implies
tbe (local) exponential stability of the equilibrium point
(0, 8,, 0) for the combined nonlinear system (1) and (2). How-
ever, with 6, time-varying, stability is not guaranteed. The
interested reader 1s referred to [2] and [3] for approaches to the
nonlinear tracking control problem.

The problem addressed in this paper is that of finding
set-point controller gains Kp, K;, Kp such that (3) is stable
for each fixed 6,;. Our results only provide theory for the set-
point regulation problem. However, the results can provide
guidance to practitioners who iteratively tune PID tracking

>l

controller gains at a family of set-points representing the range
of robot inertias.

We begin by designing controller gains which stabilize
the system (3) for each fixed 8,. Since robots and other
mechanical systems usually have revolute joints, or prismatic
joints with limited motion, the set of inertias is assumed to be
continuously parameterized by a parameter in a compact set,
©. Thus, there exist positive definite symmetric matrices M
and M such that M < M(8) < M for all ¢ € ®. This raises
two important Kharitonov-like stability questions. (1) Under
what conditions will the PID regulated robot manipulator be
stable for the whole class of inertias? (2) How do we design a
gbust gtabﬂlz:mg controller if bounds on the inertia matrix are

own?

Question (1) is answered in section 2 where a simple
sufficient condition for robust stability of a large class of PID
regulated mechanical systems is derived. Question (2) is
answered in section 3 by a new procedure for designing a sta-
bilizing controller. In addition it is shown that a controller
designed based on an inertia matrix larger than all others in the
family stabilizes the entire class. This is generalized to a new
matrix Kharitonov theorem with all bounding matrices having
the same shape. A two-link planar manipulator example is
given in section 4 to illustrate the results. In section 5, we
show via a counterexample that our result cannot be further
extended to other types of bounding matrices. Our conclu-
sions are made in section 6.

2. Application of Kharitonov’s Theorem

Kharitonov’s theorem [4] provides a powerful criterion
for the strict Hurwitz property of a family of polynomials with
coefficients lying within given intervals. This well-known the-
orem states that the strict Hurwitz property of the entire family
is equivalent to the strict Hurwitz property of four specially
constructed vertex polynomials. This number can be reduced
for polynomials of degree less than six [5, 6].

Here we apply the simplification of Kharitonov’s theo-
rem for third order polynomials to find a robust stability con-
dition for PID controlled robot manipulators. It is of interest
to ascertain whether or not the stability of the family of poly-
nomials can be determined by checking only some extremal
polynomials. The specialization of Kharitonov’s theorem to
third order interval polynomials tests the stability of the whole
family with just one vertex polynomial [6].

We now extend these ideas to our mechanical system
(3). The characteristic equation of (3) is easily computed to be

2(s) = det[M(6,)s> + Kps®* + Kps + K;]. 4)



Let A be a root of y(s) for the fixed 8, € ©. Then there exists
an associated "mode shape" v with unit 2-norm satisfying

[M(6)A° + KpA2 + KpAlv = 0. (5)

Multiplying this equation on the left by the conjugate trans-
pose of v, v , yields a polynomial in A with real coefficients

asA° + a, A2+ ajA+ay =10 (6)

where
a =V'M(6d)v, a,=v Kpv, a =F'va, ap=v K;v. (7)
Observe that
a3 € [Apm(M), A (M)] & [a3,a5]
ay € [Agin(KD), Amex(Ep)] & [32,3,]
a; € [Apn(Kp), Anux(Kp)] & [a1,a]
ay € [Apin(Kp), Amax(K1)] & [0, 3p). 3)

Equation (6) is therefore an interval polynomial. The
stability of this interval polynomials can be verified by check-
ing just one of the Kharitonov polynomials. According to [6],
equation (6) is Hurwitz if the following polynomial is Hur-
witz,

2(A)=a34° + gy A* + g1 A + 4, (9)

The test can be further simplified by using the Routh-Hurwitz
stability test which requires

(I) Eu:"ﬁ, ds :-‘-"O, &3 >0
(i7) 81a; — dods > 0. (10)

Conditions (i) is satisfied if K; , Kp , and M are posi-
tive definite. Therefore, under the assumption of symmetric
positive definite gains, the closed-loop system given by equa-
tion (4) is stable if

Anax(M) Anax (K1) < Agin(KD) Ain(Kp). (11)

The assumption of symmetric positive definite gains can
be justified by the design procedure described in the next sec-
tion. Note that this is only a sufficient condition, but this con-
dition is tight for some practical numerical experiments. Nev-
ertheless, conservatism in the condition of (11) can be reduced
by using a scaling technique before applying the test, that is,
(4) 1s stable if

Amin(QK DO ) Arnin(OK pQ") > Arnax(OM 0" Arnax (QK Q") (12)

for some nonsingular Q. This is true because pre- and post-
multiplying the matrices in equation (4) by a non-singular
matrix does not affect the stability of the characteristic polyno-
mial. For example, with

e bbb [ 1 0 ]
DS e 0G0 0

(4) is clearly stable, but (11) fails. However, with Q = M~'2,
(12) is satisfied. In practice, if (11) fails, a good initial choice
of O is to simultaneously diagonalize two of the four matrices,
making one the identity.

M=KD=KP=

ey

3. Controller Synthesis

In this section we describe a simple procedure of choos-
ing PID gains and show that a controller design based on an
upper bounding inertia matrix stabilizes the entire class of
inertias. Since the roots of the characteristic equation (4)
(with M replaced by M) remain unchanged if the matrix poly-

nomial is pre- and post-multiplied by #*/* AQ, we have
x2(s) =det[Is’ + Kps* + Kps + K] (13)

where
Kp=QKpQ, Kp =Q0KpQ, K} =Q0K;0.

Since the transformed inertia matrix is the identity
matrix, the design can be treated as a set of n decoupled PID
controller designs which can be accomplished by, say, pole
placement. We choose the primed gain matrices to be scalar
multiples of the identity matrix:

Kp=kiI , Kp =k, I , Ki=kIl
The controller gains used for implementation are therefore
Kp=kdﬂ, Kp=kpl‘?, K;=kPH
A surprising fact is summarized in the following theorem.

Theorem 1: Let yo(s) = det[Ms’ + Kps* + Kps + K;] be the
characteristic equation of a PID-controlled mechanical system
with the controller gain matrices chosen based on the above
procedure. Then the characteristic equation

2(s) =det[Ms’ + Kps* + Kps + K;]

is Hurwitz for all M: M 2 M > 0, if and only if 7,(s) is Hur-
witz.

Proof: The "only if" part is trivial and the "if" part is done as
follows.  Since  det[Ms’ + kyMs* + k,Ms + k;M] =
det[(s® + ka5 + k,s + k)M] is Hurwitz by design, the
Routh-Hurwitz stability test yields the stability condition

ki < kak,.
Let A be a root of the characteristic equation
det[Ms® + kyMs* + k,Ms + k;M] = 0.
Then there exists a vector v of unit 2-norm satisfying
[MA° + k,MA2 + k,MA+ k;M]v =0 (17)
= v Mvil+ kv Mvi* + kpv'ﬂ-dvﬂ, +k;v Mv =0 (18)
v My
v*My
Since M <M, we have v "Mv <v*Mv. This together with
equation (16) gives

(14)

(15)

(16)

e

A+ kg A+ k,A+ k=0, (19)

v My
v' My
which implies the stability of (i) and the proof is complete.O

For convenience, let us say that a Hurwitz polynomial
has stability degree o if max(Re(A;)) < — o where the A;’s are
the characteristic values. Then we have the following.

Corollary 2: If y,(s) has stability degree ¢ and & 220k,,
then y(s) also has stability degree o for all M < M , wWhere
x(s) and yo(s) are as defined in the theorem.

ki < kak, (20)




Proof: This follows directly from a change of coordinates
§ — § — o and some straight forward algebra.O

Now suppose we have unmodeled structural damping
and structural stiffness in equation (1). Will our system still
be stable for all configurations? The answer is positive.

Corollary 3: Let K, =Kp, >0 be a structural damping
matrix and Kp, = Kp, 2 0 be a structural stiffness matrix.
2(s) = det[Ms® + (Kp + Kp,)s* + (Kp + Kp,)s + K;]
is Hurwitz forall M < M, Kp, 20, Kp, =0, if and only if
2o(s) =det[Ms® + Kps* + Kps + K;]
is Hurwitz where Kp = k,M, Kp = k,M,and K; = k; M.

Proof: The proof follows exactly the same lines as the proof
of the theorem, all coefficient matrices are assumed symmetric
positive definite.O

In fact, Theorem 1 can be generalized to the following
matrix Kharitonov theorem.

Theorem 4: Let
z(s)Adet[A,s” + Ap 18" 4o+ Aps + Agl,

where the coefficient matrices are all symmetric positive defi-
nite and bounded by symmetric positive definite matrices as
follow: A;2A;2A;>0 for alli. Furthermore, all the
bounding matrices have the same "shape", meaning that
A; =a;A, A; = g;A for all i and some symmetric positive def-
inite matrix A. Then y(s) is Hurwitz if and only if the follow-
ing four polynomials are Hurwitz:

21(s)adet[A,s" + A, 5" T+ A, 55" 2+ Ay s -4,
o(s)adet[A,s" + A, 15"+ A, ps P+ Ay gs™ R H - 1],
23(s)adet[A,s" + Apys" + A ps" P+ A, 55" -1,
24(5)4 det[A,s" + A, 15" + A, 5" 2 + A, 35" +-.1].

Proof: Again, the "only if" part is trivial and the "if" part is
shown as follows. Let s be a root of y(s). Then

A"+ A, " e+ Aps+ Ag
is singular, and there exits unit vector v such that
[As"+ A, 15"+ + Ays+ 49 JA™ Py = 0.

Pre-multiplying by v A~ Jeads to

a,,s"+a,,_13""l+---+als+an=ﬂ

where a;gV*A‘"mA;A"'mv. It can be easily checked that

a@; 2 a; 2 g; for all i, and the rest of the proof follows from the
scalar Kharitonov Theorem, since z;(s) reduce to the four
Kbaritonov polynomials similarly.0)

Thus result cannot be further extended to general bound-
ing matrices, as shown by a counterexample in section 5.

4. An Example

In this example we use the controller design procedure
described in section 3 to examine the stability of the closed-
loop system for various inertias. Consider the two-link planar
manipulator with revolute joints and point masses at the distal
end of the links as shown in Figure 1. The dynamics of the
manipulator are given by

M@©)6+C(9,86)+G8)=F (22)
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where F =[f; f,]' is the vector of applied joint forces and

M(6) = mpy my (23)
M2 My
is the inertia matrix with
my =(my +my) lf +m, I + 2myly 1, cos(6,)
mip =my =my Iy + my 1y 1, cos(6,)
My =m, 1. (24)

C(6, 8) =[c; c,] are centrifugal and Coriolis forces with

c1==2my Iy I 8, 6,5in(8,) — myl 1,62 sin(6,)

¢y =my Iy 1, 6] sin(6,) (25)
and G(0) = [G; G,]' is the gravity force vector with
Gy =(m; + my) g 1y cos(6)) + my 1, g cos(6; + 8,)
G, =m, g I, cos(6, + 6,). (26)

Suppose the desired set point is (e, 6, ) = (0, 6,, 0),
where ¢ = I[E(r) — 8;4]dr as defined in section 1. Linearizing
about this point gives M(6,;)8 =F. Taking m;=m, =1,
I; =1, =1, the inertia matrix simplifies to
34 2cos(6,) 1+ cos(6, )_

MEI=T 1n cos(6,) 1

27)

An upper bound on the inertia matrix over a given range of 6,
can be found with the help of the following lemma.

Lemma 5: Let M, M, be symmetric positive definite matri-
ces. Let U be the transformation matrix such that
U'M\U=Z%, and U'M,U =X, are diagonal. Let & be the
d_iagﬂ'ﬂal_ matrix defined b}' (E),'; A max((zl )fl' ’ (—Z‘Q)ﬁ)' If
M =U"ZU7!, then

M,<M, M,sM (28)
Furthermore, this M is the "smallest” to satisfy (28), in the

sense that there is no other symmetric M such that

M, <M, M,<M, and M <M (29)

Proof: The proof is straight-forward and hence omitted.O

This lemma can be used to generate a numerical upper
bound on the family M(8,) by (1) discretizing the set, (2)
choosing two members and finding an upper bound on these,
(3) choosing another member and finding bound on the previ-
ous upper bound and this new member, etc.. The upper bound
generated in this way will, in general, depend on the order that
the elements are scanned, but can be used in the design proce-
dure none-the-less.

Next, we design a robust controller based on an upper
bounding inertia for the two-link manipulator. Suppose the
desired set point 6, has the property that 8, € [0, #/2]. For
this particular example an upper bound M is generated using
the above lemma just once with M, = M(6,=0) and
M; = M(6, = z/2). The upper bound is given by

(5.06 1.85
1.85 1.35]

If we place the closed-loop poles for each of the decoupled

M= 30)




systems at -1, =0.1+ j, =0.1 — j, then the required controller
gains are

” ~[1.20 0.00 - [1.21 0.00 K,_"Lm 0.00
P~10.00 1.20 "% ]0.00 1.21] 77 10.00 1.01(
Using equation (15)
6.07 2.22 6.12 2.24 8791 1.87]
Kp= 2.22 1.6270 Kp= 2.24 1.63( S & 1.87 1.36]

To check that the design is indeed stable for all
8, € [0, n/2] we compute the eigenvalues of the closed-loop
system as a function of 8, and plot the stability degree of the
system as a function of 8, (see Figure 2). Note that the sys-
tem is stable for 0< 6, < #/2 (i.e. M < M) with a stability
degree greater than the stability degree corresponding to M.
When 6, is increased beyond 7/2, increasing the inertia above
M, the stability degree decreases and the system (3) is eventu-
ally destabilized.

S. Counterexample

Following the positive results of section 3, it is natural
to conjecture that Kharitonov’s theorem may be extended to
other polynomials with symmetric matrix coefficients lying in
general matrix intervals. The answer is negative even for 3rd
order polynomials as illustrated by the following counterex-
ample. Let

5 3 5 5 (4 4]
Kp=l3 50 Kr=|s of X1=l5 12
_[6 7 1 1 503,
M“? 9/ M= 1 5/4( -l 3 4f
It is easy to check that M < M < M and that the equations
z(s)=det[Ms® + K ;5* + Kps + K], (31)
2(s) = det[Ms> + K 5% + Kps + K] (32)

are Hurwitz. But
2(s) = det[Ms® + K ;5* + Kps + K;]

is not. Hence it is not sufficient to check the extremal polyno-
mials (31) and (32). Our result is therefore very particular to
mechanical systems and our design procedure.

6. Conclusion

In this paper a simple sufficient condition for robust sta-
bility of a large class of PID-controlled mechanical systems
was denved. This adds to the works of Shiel ez al. [7] who
found the conditions for stability of second order matrix poly-
nomials. This is one of a few realistic applications of
Kharitonov’s theorem and serves as additional motivation for
pursuing results of this kind. A procedure for designing a sta-
bilizing controller is outlined and it is shown that a controller
designed based on an upper bounding matrix stabilizes all
other inertias. Furthermore, we have presented a matrix
Khantonov theorem for polynomials with interval matrix coef-
ficients with all bounding matrices having the same shape. A
counter example indicates that our matrix Kharitonov theorem
cannot be extended to general bounding matrices.
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