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Abstract 
Precision motion control is a fundamental control prob- 
lem that  has encountered numerous applications such as 
machining, manufacturing, microelectronics, instrumen- 
tation, testing, etc. I t  is recognized that  velocity ripple 
is a major factor affecting the precision of motion control 
systems. This paper studies the adaptive rejection of ve- 
locity ripple caused by the periodic errors in a inductosyn 
transducer. After a mathematical modeling of the trans- 
ducer, two adaptive control schemes are presented that 
compensate the transducer errors. The  closed loop adap- 
tive systems are shown to be exponentially stable in both 
cases. Numerical simulations demonstrate significant re- 
duction in the power spectra of velocity ripple. 

1 Introduction 
Precision Mot.ion Control Systems have been used in 

numerous industrial areas for years. One of the typical ap- 
plications can be found in the feed control of machine tools 
of the manufacturing industry, where accurate, smooth 
position and speed control are required for contour accu- 
racy and small surface roughness of the products. Another 
important application which motivated this work is in the 
motion simulators and testing equipment for the calibra- 
tion of inertial guidance systems and components. These 
simulators and testing equipment are required to  provide 
high-performance motion control with position resolution 
of 0.0001 degree or better. 

In the development of the precision motion control sys- 
tems, various disturbances should be carefully taken into 
account. During the past years, many studies were done 
0 1 1  t,he mechanical problems such as friction and backlash. 
Periodic ripple also has been found to be a major problem 
in precision motion control. These ripples can be caused 
by motors and motion transducers. In [l], Bolton et a1 in- 
vestigat,ed DC brushless motors which exhibit harmonic 
t.orque ripples. In [2], Chen and Paden studied step mo- 
tors and indicated the damage from torque ripples t,o a 
robot. motion control. In [3], Liu and Li studied velocity 
ripples from a multipole motion transducer in a speed con- 
trol system and demonstrated experimental results. It, is 
evident. t.liat. t,hese periodic disturbances must be reduced 
o w r  R freqiiency range to avoid escita.tion of mechanical 
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resonance or degradation of accuracy. 
There are several methods to deal with ripple problems 

in the motion control systems. Improving components 
such as motion transducers and drivers is one method, and 
using high servo gain and an integrator to  partially reduce 
the effect of disturbance is another. In recent years, the 
motion control problem has regained a lot of new interest 
due t o  the development of nonlinear, adaptive control and 
application of microprocessors in the control areas. In [4], 
a nonlinear adaptive state feedback was studied for the 
induction motor control. In [2], adaptive cont.ro1 of torque 
ripples was studied for step motor control and a dramat.ic 
32 dB reduction of torque ripple was obtained. 

In this paper, we study the adaptive rejection of velocity 
ripples from a position transducer in a high-performance 
motion control system. In the next section, a brief de- 
scription of the phase-locked motion control system and 
the model of our motor control system with an inductosyn 
transducer are given. Then a PID servo control and t,lie 
error equation used for adaptive controller design are pre- 
sented. Two adaptive controllers are designed using the 
corrupted transducer output feedback. Finally nunieri- 
cal simulation results are given, demonstrating significant. 
reduction of velocity ripples. 

2 System Description 

2.1 Description of A PLMCS 

Figure 1 shows the functional block diagram of a 
phase-locked motion control system (PLMCS) developed 
for motion simulators. The system consists of a motor, a 
transducer (inductosyn) system, a coninland syst.ern and 
a servo controller. The command system is based on a 
specific microcomputer and generates a set of pulse and 
frequency signals(P, and F,) that  are called iiiotion com- 
mands. Another set of pulse and frequency signals are 
generated by the transducer system reflecting the motion 
output of the system. The phase error between phase 
command and system feedback is compared by t.he phase 
det.ector(P.D.) and then used to drive the niot.or through 
the servo controller aiid current amplifier. 

Jn the ideal situation, the output,s of t.he mot,io!i cont,rol 
syst.em, mgular posit.ion 0 a.nd angular ve1ocit.y 0 ,  can be 
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Figure 1: Block diagra.ni of Basic PLMCS 

espressed as 

where p f  is the number of pole-pairs of the inductosyn; 
iY, is the resolution constant. In a well designed phase- 
locked inot,ion control system, N ,  can be managed in the 
range 1000-10000 resulting in average speed accuracy in 
1-l0ppm. 

From test data,  however, we have observed obvious pe- 
riodic variational components, the velocity-ripple, in the 
angular speed output of the syst,em rela.tive to the aver- 
age speed. They are much greater than the average error. 
By further analysis and experiments, we have found that 
they are from the periodic errors of the transducer sys- 
tem. These errors are due to  the deviations of transducer 
circuits and the field interference as well a s  the structure 
error in the transducer system. 

2.2 The Inductosyn Transducer 
The  motor and transducer are typically modeled to- 

gether. Due to the fact that  a high gain current current 
amplifier is used, a simplified model for the motor can be 
used in order to  focus our attention on the transducer. 
Therefore, the motor dynamics are taken to  be 

J 

where I i ,  is the normalized torque constant, and U,,, is 
the control voltage. 

An inductosyn is a highly accurate multipole position 
transducer. A rotary inductosyn consists of a disk-like 
rotor and a stator with printed windings. The single- 
phase field current in the rotor and two-phase outputs in 
the stator can be described by 

(3) 

where U; = [ u ; , , u ; ~ , u , ~ ]  is the terminal voltage in the 
rotor and stat.or windings; itd = [i,, -ia,  -ib] the field 
current. and the stator output current respectively. Iiad 

i t t l c l  / < / , d  f i r ( '  i t l 1 l l ) l i t  I I ( I I >  cotlst,itllt s ;111(1 A',(/. / , j , /  t 111. ri,.+i>- 
t attcv atitl itrtluct.ilttcv tirat,rices o f  witidiiigb. L,.,, /, ~ I Y .  I l i t ,  

rlenicwts 01' I,,,), reprwwt.iilg tlie tiiut.ii;tl-irtcIii~~ iiiico be.- 
t.ween t lit, rot.or aird stator. Ilere the ittdttc1,ive react.aricc's 
relat.ed t.0 i, a.ud ib ca.ii be negkct,ed due lo ils properlics. 
To derivc t.hc out,put equation of our intliictosyii systetri. 
we denote 

W O  angular frequency of t.he e!iergiziug signal; 
wP fundamental frequency ytB, up 5 (0.1 - 0.2)qI :  
A,,, phase deviation of transducer circuits; 
A ,  magnitude deviation of the circuits; 
ha, 66 electrical interference in transducer outputs; 
P error parameter vector of transducer output; 
Q sum of angular errors in transducer; 
we periodic error vector related to p t ;  
8, actual angular output of transducer. 
Let the input voltage of the transducer in the rotor be 

expressed by a complex variable uir = I iure jWot  . By 
computing using equations (3) and (4), we have 

ir  = I(i,ejwot 
Uia = K,aeJWot{ jwos in(p t8)  + ptecOs(pt8)) 
U ; B  = Ii',be'wof{jwocos(pt8) - pt8s in(p t8) }  

( 5 )  

Here I& is the exciting magnitude of U,,; ICsa and KSb 
are the magnitude coefficients of the t w o  output,s in the 
stator computed from I(ad, K b d  and I<,,,.. To obtain the 
measurement of system output 8, let uTa = juia and 
uab = u;b + ui', through the transducer circuit system. 
Considering the phase, magnitude deviation and field in- 
terference introduced, from Equation(5) we have the ex- 
pression of u:a and uab as 

= (1 + Ak)KsbejWof  j ( jwos inpt8  + pt8cospt8 + 6,)ej** 
uob = K S b  jA,ej(wot+Pt@) = K,bj l ( ieej(wof+Pte+a)  

where A,  is the error entry due to Ak, Alp and & , b .  Dis- 
regarding higher order terms, A ,  and a can be expressed 

A , = a , + j b , ;  a = %  

++(WO + u p )  + baCos(ptB) + bbs in(p te)  

as 

a e  = WO + u p  + (WO - w ~ ) ( & c o s ( ~ P ~ ~ )  2 - % ~ i ~ . ( 2 p t 8 ) )  

be  = (WO - ~ p ) ( % s h ( 2 p l 8 )  - + C O S ( ~ P ~ ~ ) )  

+%(WO + u p )  - hasin(pt8) - hbcoS(p,B) 

Since 

I ~ ( W O  + W p ) I  >> I A ~ ( W O  + u p )  - A k ( W 0  - w ~ ) c o s ( ~ P ~ )  
-Alp(Wo - w p ) s i n ( 2 p t )  + 6a~~~(p,8) + 6bSin.(pt8)1 

we have the expression of output error of the transducer 
system as 

Here vectors P and we are in the forms of 
Q = P+we (6) 
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Then t,he actual a.ngu1a.r output 0, of t.he induct,osyn, 
in elect.rica1 phase, can be written as 

Bp = p,B + P T w ,  (8 1 
Hence the torque mot.or with a inductosyn transducer 

is described by equations (2) and (8) together. Further- 
more, it. clearly indicates t.he existence of periodic errors 
in the syst,ein output,. These errors cause velocity-ripple 
when the system is commanded t o  operate at a constant 
speed 8. The  parameters represented by P are some un- 
certain constants for each speed 8 and the shape structure 
represented by we depends on angular position 0. 

3 Servo Controller 
To ensure the servo and tracking performances of the 

motion system, here a PID servo controller ..with input 
feed forward is used. We denote by e,, 8, and Or the input 
trajectory: angular position, speed and acceleration; ea = 
0, - Bp the nominal output error; e, = Or - ptO the true 
output error; K;, K p  and Kd the parameters of our PID 
controller. Then the controller is described as 

(9) 
er + [Kdeb 4- Kpeb + Ki Jet&] U, = 

Pt Knl 
Substituting equation(9) into equation(2) and using the 
denotation of e , , b ,  the error equation becomes 

e ,  + Kdeb + Kpeb + K; ebdt = 0 (10) J 
where K ; ,  Kd > 0; KdKp > K;. Notice tha t  eg = 0,.-8p = 
e ,  - P T w ,  includes the periodic error of the transducer. 
To reject the velocity-ripple caused by the transducer 
error, a compensation signal which is adjusted by an  
adaptive controller will be added at the input of PID 
controller. Since the constant component in the trans- 
ducer error does not contribute to the velocity-ripple: the 
compensation signal can be determined as U, = P'w, 
where wT = [sin(p,0), cos(p,l), sin(Zp,B), cos(2ptB)] and 
P E R4. Let e p  = e b  + P'w and P = P - P .  From 
equation( l o ) ,  we have 

e p  + K d e p  + Kpep  + K; epdt = 6 ,  (11) 

By denoting Gp(s )  = s J + K d s l + K , s + K , ,  we have Laplace 
form of (11) as e p ( s )  = Gp(s) i ic (s ) ,  where C, = h w  
is the residual ripple. Our -purpose then is to design an  
adaptive controller forcing P and e, - 0. Although the 
compensation signal can be added into other places of the 
system, we have found that they will be equivalent for the 
design of the adaptive controller. 

J 
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4 Adaptive Controller 
Convent ionally the velocity-ripple is dealt with by 

careful adjustments of the transdiicer system. Indeed, this 

process can be very cost.ly. In this sectmion. atlapt.ive re- 
ject,ion will be st,uclied. Since t.he h u e  system error t, is 
uiiavailable in the syst,eni, Lyapunov approach can not. bc, 
direct.ly used for the control design as can be done in the 
mot,or control case. We will discuss t,wo design methods. 

4.1 Augmented Error Method 
4.1.1 Adaptive Controller Design 

Choose a filter L(s)  and the augmented error e, as 

L(s)  = s3 + as2 + 6s + , e ,  = e p  + e ,  
s3 

Since P E R4 is constant, e,, can be written as 

e ,  = G ~ ( S ) L ( S ) [ F L - ~ ( S ) W  - L-' (s )P+w]  (12) 

Then e, can be expressed as 

where wl = L-'(s)w and L-'(s)  is stable. By denoting 5 
as the internal variables, we have the sate space realization 
of (13) 

2' = A,? + bPTwl 

e ,  = P w I  + 6'2 (14) 

and the transfer function 

(15) G,(s)L(s)  = d + h T ( s Z  - A,)-'b 

Here d = 1. Hence consider a Lyapunov Function candi- 
date 

I/ = r i g ?  + F r - l P  (16) 

with B > 0 and r > 0. Differentiating V along the solu- 
tions of the error equation( 14) yields 

V = ?'(A:B + BA,)? + 2PTw12'Bb+ 2PTr- 'P.  (17) 

From equation(23), t.he update law should be 
. .  - "  

P = P = --e,rwl 

Since A, is Hurwitz and L(s)  can always be selected 
such that G(s)L(s)  is strictly positive real(SPR), the well- 
known MKY Lemma [5] will yield a matrix B = B' > 0, a 
scalar v > 0 and a vector q for a given matrix D = DT > 0; 
such that 

(18) 

A ; B  + BAZ = -qqT - vD; Bb - h = zkd& 

Then can be written as 

V = -uZTDZ - ( ? q F  fipTw~)? (19) 

Since V > 0 and $' 5 0 for all 4 and P, immediately the 
system presented by equations (14) and (18) is stable in  
the sense of Lyapunov. 
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-4.1.2 Fiirt,lic:r Aiialysis of Tlic? Stab i l i t y  

Siiiw I' is positivv tlvfitiitr ii.nd i- is iioril)ositivr. we 
Iiavc I ' rioiiiiicrcwsing. 'l'llwefore. I ~( !) - coiist.:int, as 
I -  .s i d  \ - (U )  >_ \ ' ( f )  2 0 Vf > 0, ine;ill_ing that. 
\ ' ( !)  E /,k,. Froiii tyuat,ion (16). bot.11 ? atid f' E L,. 
s incc  t)  > o aiid 1I- l  > U. 

Nest. we wa.nt. 1.0 use Ba.rl)alat's Lemma [GI t.o est.ablish 
corivc'rgence of the augiiient.ed error. To do t.liis, let's de- 
note L,,, = IIL-'llco, since L- ' (s)  is s_tahle. Then we 
have IIiiqII 5 L , n ~ ~ ( l , l ~ l , l ) ~ ~ .  The-n P E L ,  implies 
P7 iul E L,. Therefore t = A,? + bP'u,l E L,. Further- 
inore, since t,he system is stable and 0, E L,,O E L,. 

/ o  1 0  0 )  

\ , - l t i 1  E L,. Also P = -re,wI = .rr(Prwl + hrr)wl E 
L,. With all these, we finally have V = -2v.2Dt-2(ZTqf 
& ! P r w l ) ( ~ ' q  f aP WI f P'2i)l) E L,, which ensures 
that V is uniformly continuous. This plus V ( t )  - con- 
stant as 2 ---+ CO leads to  the conclusion_that V - 0 as 
f - oc . Therefore, i 'D5 + (E' f &!Pry)' - 0 as 
t - CO. Both Z'DZ - 0 and ET f f i P ' w 1  - 0 as 
f - 00. Then we have P T w l r e c  - 0 as t - CO. 

I n  order to establish the convergence of the tracking 
error e,,, the argument follows like this: By the swap- 
ping Lemma [6], the auxiliary error e, is of the form 
e, = H ( s ) P  where H ( s )  is a suitable, stable operator. 
Since e ,  - 0 as t - CO, equation (18) leads to  P - 0 
as 1 - 00. Therefore e, - 0 as t - CO. This imme- 
diately leads to e,, = e, - e, - 0 as t - CO. 

Moreover, for our adaptive control system, we can 
achieve stronger stability results: the exponential con- 
vergence of tracking error and parameters. This is ob- 
tained by establishing persistence of excitation(PE) of 
the regressor W I  and by ensuring that Gp(s)L(s) is SPR. 
Since tli: system is stable, we can easily ensure that 
OM 2 IO1 2 em > 0 by proper choice of the reference 
trajectory. This is an easy task, since in practice the mo- 
tor will be rotating at a nearly constant speed. Then by 
the P E  Lemma of [ 2 ] ,  w will be PE; and therefore W I  is 
P E  since W I  = L-'(s)w and L-' is stable. To ensure that 
Gp(s)L(s) is SPR, one can show that if we choose a, b, c 
such that d i ' d  > b + ICp; b K P  > C K d  + a K i ;  c > 0 ,  then 
Re[Gp(jw)L(jw)] > 0 V u  E R. Since the relative degree 
of Gp(s)L(s) is zero, the above guarantees that Gp(s)L(s) 
is S P R  [5 ] .  Then using the standard results of stable a d a p  
tive systems [7], we conclude 2 and P + 0 exponentially 
as 2 - CO; So does e, and e,.The velocity-ripple will be 
rejected as p r w  - 0. 

' 1  

- 

4.2 Averaging Method 
In simulation, we observed the instability of the sys- 

tem when using ep as the input to  the adaptive controller 
for some output speed. This motivates tlie use of the av- 

c,r;rgiiig i i i t \ t  liotls [s] [i] t o  iiiialyzo t.lii\ l )roI)(>rti(>s of' t I i 1 .  

atlapt.ivc, syst.ern iind Iit~iice Icirtls 1.0 i i i i  altvrriativc~ Clvsigii 
of t.lle coiit.roller. 

Considering tlie paramet.cxr atlapt,at,iou iii  t Iic foriii of 
rquai.ion (18) and pret~ending t,o us(' 6,' i n  place of e , .  we 
llave . .  

(20)  

It can he verified that ep( t )  can h e  expressed as 

P = P = --ppr71. 

ep(t) = - ~ ~ ( t  - r ) P r ( r ) w ( r ) d r  + P'w ( '21)  

where Gl(s) = 1 - Gp(s )  = s3+K:+$ps+i,. To derive the 
averaging equation for ( 2 1 ) ,  we write the regression vector 
w in the Fourier form 

K d s 2 + K  s+K 

l 

w y t )  = [sin(pte), cos(pte), s in (2p te ) ,  cos(2p,e)1 (22) 

= cneiwnt  ( 2 3 )  
n = 2  

n=-Z,n+O 

where Cn are Fourier coefficients and U ,  can be written 
as 2n7rO approximately[3]. Then the averaging equation 
for parameter adaptation can be described as[8] [7] 

Pa, = -rQPa, ( 2 4 )  

where 

l T  
T o  

Q = - 1 (-w(t) Gl ( jwn)C~eJwn'  + ww')dt 

= Gp(.iwn)cnCIn 

Since w is P E  3 CReCnCLn > 0. But Gp(s) is not 
SPR. In fact, we have 

- j W 3 ( K i  - K d W 2 )  - W3(KpW - U 3 )  

( K i  - K d W 2 ) '  + ( r i , W  - U3)' 
Gp(ju)  = 

Re[Gp(+)I < 0 ( 2 5 )  

or U' < Kp, i.e., there exist eigenvalues with positive 
real parts in the system (24),for some U: < Kp. In other 
words, the phase of Gp(jw) was shifted out of the range 

Based on this fact, we rewrite the transfer function 
f;. 

Gp(jw) as 

G p ( j w )  = jIm[Gp(ju)] + Re[Gp(ju)] = ICp(ju)lejp(w' 

and let the regression vector in the parameter adaptation 
(21) be wp = Bpw, obtained by changing the phase of the 
regressor w, where 

(26) 

1. eja,i(u-) 0 0 
Bp = [ ejapl(um) 0 

Then the pretending parameter adaptation law is cor- 

0 eiapdw-) 0 
0 0 0 e j a p a ( u m )  

rected to be 
P = -e,rw, (2'7) 
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The modificd averaging equation for the parameter up- 
dat,e law of (28) can be expressed as 

P,,,. = -rap Pa,, , (28) 

where 
QF = c IC,(jw,)leJYn~”-)ClnCI, (29) 

with ql,?(w,,) = P(wn) + aPl ,2(wn) .  Then a P 1 , d w )  are 
selected such that 1q1,2(wn)l < %. By general results of 
slow adaptive system in the averaging analysis, the sys- 
tem presented by the equations (16) with the parameter 
adaptation (34) and modified phase ql,z(w,) will be ex- 
ponentially stable. Hence we have @ + O,ep + 0 and 
consequently e ,  + 0 as t + 00. 

On the other hand, because B is unavailable, the tra- 
jectory 0,. will be used in the regressor. We denote 
w: = [sin(&), cos(&), sin(20r), cos(28,)]. Substituting 
Or = pt0 + e ,  into wr, we have 

Prwr - P r w  = P r w r  $- PTEawr  

where E, = 

1 1 - cos(e,) sin(e,) 0 0 
1 - cos(e,) 0 0 

0 1 - cos(2ea) sin(%,) . 1 -si:ea) 0 -sin(2ea) 1 - cos(2e,) 
Since PTEawr are bounded, the parameter error k will 

converge to  a neighborhood of IIPrEawrll. In general, the 
transducer error is small. 

The total angular error of the transducer system is esti- 
mated to  be 11 arc seconds. The deviation coefficients in 
phase, magnitude and field interference are chosen as 

They are equivalent t o  about 0.36 and 0.3 electrical degree 
respectively that are used in the simulation. 

For the PID servo controller, 11’; = 22; ICp = 550; Kd = 
110 were chosen. Frequency bandwidth(-3dB) is about 
20Ht. Small overshoot was achieved. 

Figure 3 illustrates the power spect,ral density(PSD) of 
the velocity ripples caused by the periodic error of the 
transducer system without any adaptive rejection when 
0, = 2 degree per second(deg/s). 

Figure 4 to  Figure 6 show the simulation result,s of adap- 
tive ripple rejection of the augmented error design with 
Or = 2 deg/s. Figure 4 shows the rejected velocity-ripple 
spectra (PSD); Figure 5 the time history of O (deg/s); 
Figure 6 the convergence of one parameter corresponding 
to the term sin(6,) from an initial value of 0 electrical 
degree(deg). In filter L ( s ) ,  the parameters are chosen as 
a = 55, b = 275, c = 10. Notice t.hat the ripple spec- 
tra(PSD) has been reduced significantly. 

Figure 7 to  Figure 9 show the results using averaging 
analysis design method at nominal motor speed of 2 deg/s. 
Figure 7 and Figure 8 are spectra(PSD) and time history 
(deg/s); Figure 9 and Figure(l0) the convergence of two 
parameters corresponding to sin(& ) and sin(28, ) respec- 
tively. The initial values are both zeros. B(w) is com- 
pensated by a p ( w )  such t.hat qn(w)  in the range of z t t f .  
Notice again the dramatic reduction in the velocity-ripple 
spectra( PSD). 

6 Conclusion 
Figure 2: Block diagram of the adaptive system 

5 Numerical Simulation Results 
Our system is shown in Figure 2. To verify the designs 

and our analysis, both adaptive controllers are studied 
in the simulation work. The ripple spectra and param- 
eter dynamics were calculated and recorded. Based on 
an actual phase-locked motion cont.ro1 system with the 
position transducer-inductosyn developed for gyro tests, 
the following parameters are used to analyze the system 
performance in the simulation. 

J = 3149.7(g.cm.s2); 

p t  = 360; 
K t  = 0.22( I<g( f ) .m/A) ;  

iV,. = 2500; 
i i o  I= 4000 x 2 ~ (  ~ . n d / . ~ ) ;  ~ ~ ~ ~ ~ . I . ( i i , , )  = 0.2~0 ;  

Periodic ripple is one of the major errors great.ly dam- 
aging the performance of precision motion control sys- 
tems. Our work shows the generation of the velocit,y- 
ripple from a position transducer-inductosyn and the 
adaptive rejection of those ripples. Since the true out.- 
put of the system can not be avaihble i n  transducer case, 
two stable controllers are studied. In particular, the con- 
troller designed by averaging analysis is much easier to  be 
implemented by numerical control. Compensation phase 
aF can be det,ermined by the frequency response of the 
syst,em. Siinula.tion results demonstra,ted that velocity- 
ripples are reduced to significant,ly. Experimented work 
will be developed in the future. Moreover, the simplicity 
of adaptive ripple rejection may lead to significant eco- 
nomic benefit, over manual a.djnst,ment. of the transducer. 
The  cont.roller developed here may be fiirt.lier applied t.0 

ot.lier applica,t.iolis which encount.er ripple prohlenis. 
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