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Abstract 
Design of output tracking controllers for nonlinear 

nonminimum phase systems is challenging. Among exist- 
ing methods the regulation approach usually leads to large 
transient errors while the classical inversion approach re- 
sults in unbounded internal dynamics for nonminimum 
phase systems. In this paper, stable inversion is applied 
to the design of tip trajectory tracking for a single-link 
flexible-joint robot mounted on a wobbly platform. This 
new type of tracking controller achieves remarkably accu- 
rate output tracking without any transient or steady-state 
errors together with guaranteed stability of both external 
and internal signals. After development of system dy- 
namics for the robot system, this paper defines the stable 
inversion problem for such a system which is followed by 
construction of the unique inverse solution to this prob- 
lem. Then, this stable inversion approach is applied to the 
design of a tip trajectory tracking controller with only par- 
tial state measurements. Simulation study demonstrates 
the effectiveness of this approach in output tracking. 

1. Introduction 
The most elementary task that appears in modern 

robot control is to drive the end-effector of a robot arm 
to follow a given desired trajectory without any overshoot 
or residual vibration. This paper presents a closed-loop 
tracking control law using a nominal control input gen- 
erated by stable inversion as a feed-forward signal and a 
stabilizing signal from a feedback stabilizer. The design 
should avoid the transient error phenomenon and the un- 
stable internal dynamics which are the fundamental limi- 
tations of the nonlinear regulation approach and the clas- 
sical inversion approach. Therefore, a stable and remark- 
ably accurate output tracking will be achieved. 

There has been considerable work in the area of output 
tracking controller design. For nonlinear systems there 
are basically two approaches. The first is the classical 
inversion approach that controls the transient behavior 
precisely by using stabilizing feedback together with feed- 
forward signals generated by an inverse system. The clas- 
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sical inversion was first studied by Brockett and Mesarovic 
[l]. Later, Silverman developed an easy-to-follow step-by- 
step procedure for the inversion of a class of linear multi- 
variable systems [2]. These linear results were extended to 
nonlinear real-analytic systems by Hirschorn [3] and Singh 
[4]. For a given desired output and a fixed initial condi- 
tion, all these inversion algorithms produce causal inverses 
that are unbounded for nonminimum phase systems. 

Another is the nonlinear regulation approach recently 
developed by Isidori and Byrnes [5]. This approach also 
uses the structure of feed-forward plus feedback and it pro- 
vides asymptotic output tracking for a class of reference 
trajectories generated by a given autonomous exosystem. 
The feed-forward signals are calculated by solving a set of 
nonlinear partial differential equations of the same order 
as the forward system dynamics. Besides the numerical 
tractability of nonlinear PDEs, a major concern is the 
possibly large transient error that is not controlled in this 
approach. 

The approach to output tracking by stable inversion 
avoids difficulties in both regulation and classical inver- 
sion while preserves advantages of both, and is applied to 
achieve tip trajectory tracking for a flexible-joint robot in 
this paper. The remainder of this paper is organized as 
follows. The system dynamics of a single-link flexible-joint 
robot mounted on a wobbly platform is developed in sec- 
tion 2 using the Lagrange’s method. In section 3, following 
the general framework of stable inversion in [6], a stable 
inversion problem for this system is defined which is fol- 
lowed by construction of the inverse solution to this prob- 
lem. In section 4 we apply this stable inversion approach 
to design a tip trajectory tracking controller. Simulation 
study demonstrates the effectiveness of this approach in 
achieving excellent output tracking. A conclusion is finally 
given in section 5. 

2. System Dynamics 
Consider a flexible-joint robot mounted on a wobbly 

platform (see Figure 1). It is assumed that there is no mo- 
tion in the vertical direction. Thus, only the motion in the 
horizontal plane will be considered and modeled. There 
is a total of five degrees of freedom in the model: linear 
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displacement (z,, y!) and angular displacement 0, of the 
platform, angular displacement 0,. of the rotor of the mo- 
tor, angular displacement 8, of the link. The three angles 
e,, Or, and 81 are measured with respect to  the X-axis 

My, + mr[il cos81 - 8; sine,] + b l& + k l y ,  = 0 

IiGi - mr[Xp sin Or - y, cos Oil + b3[8i - 8,] 
+k3[e, - e,.] - mril [i, cos e, + jl, sin e,] = o 

I,-&. - b3[& - e,.] - k g [ B i  - e,.] + b4[8r - e,] = U 

Y 

Y , - - -  

Figure 1: Flexible-joint robot on wobbly platform 

as shown in Figure 1. We assume that the point (x,, y,) 
is the center of mass of both the platform and the rotor. 
We also assume that the platform is subject to  linear and 
angular restoring forces proportional to its deviation from 
an initial position, and the link is subject to  an angular 
restoring force proportional to its deviation (6, - e,.) from 
alignment with the rotor. All motions are also assumed 
to subject to viscous friction forces proportional to their 
velocities respectively. 

The angle of the link relative to  the platform, 61 - 
e,, is defined as the system's output while U ,  the torque 
generated by the motor, is the control input. The system 
with parameters listed in Table 1 is utilized as the physical 
model in this paper. 

total mass of L, R, and P 
mass of L 
distance from L-center to (z,, y,) 
moment of inertia of L w/ (z,, y,) 
moment of inertia of R w/ (z,, y,) 
moment of inertia of P w/  (z,, y,) 
linear spring const btwn P and B 
angular spring const btwn P and B 
spring const btwn L and R 
linear friction coef btwn P and B 
angular friction coef btwn P and B 
friction coef btwn L and R 
friction coef btwn P and R 

Table 1: Details of the flexible-joint robot Model 

To apply the Lagrange's method, the kinetic energy of 
the whole system containing three bodies (platform, rotor 
and link) is firstly found as follows: 

1 
T = s M [ i i  + yg] + mrel[-& sin 0, + y, cos e,] 

(1) 
1 1 1 .  +-rib," + -I 6 2  + - I  2 P e 2  P .  2 2" 

Secondly, the total potential energy stored in all the 

~ 

1855 

Y = h($) ,  (6) 
where h($)  := 8, -0, , and the inertia matrix M I ,  centrifu- 
gal/Coriolis term H ,  damping matrix M2, stiffness matrix 
M3, and torque distribution matrix D can all be directly 
derived accordingly. 

3. Stable Inversion Problem 
The forward dynamics (5)-(6) of our robot system can 

be written in a state-space form: 

{ $ - d . M ; ' [ H + h f 2 4 + M 3 $ ]  +hl;'DU, ( 7 )  

Y = h(4) .  (8) 

It is noticed from this form that this SISO nonlinear sys- 
tem is affine in its control input. Furthermore, the left 
hand sides of both dynamics and output equations are 
smooth on ($, 4). Thus, it fits into the general framework 
of the stable inversion problem developed in [6]. Following 
the procedure in that framework, we define the stable in- 
version problem for this robot system as follows: given any 
smooth reference output trajectory yd with a compact sup- 
port on [ t o , t f ] ,  f ind Q bounded input w ( t )  and Q bounded 
state trajectory ($d,?,bd)  such that they approach zero as 
time tends to plus or minus infinity and map to the exact 



desired output trajectory Y d  through the forward dynamics 

Here the pair, U d  and ( ~ d ,  ? I d ) ,  is referred to as the sta- 
ble inverse solution for a given reference output Y d .  It is 
called stable inverse because of the boundedness and con- 
vergence of the inverse solution. Besides, ( $ d ,  $ d )  is called 
the desired state trajectory and ?& the nominal control in- 
put. Later on in this paper, they will be incorporated into 
a tracking controller which achieves stable and accurate 
output trajectory tracking. 

In order to solve the problem to find the stable inverse 
pair, we again follow the procedure in the stable inversion 
framework in [6]. Firstly, we compute the time-derivatives 
of the output until the input appears explicitly: 

(7)- (8) * 

Y = 113 - 4 5 ,  

5 = a($ ,  11) + -U, 4J 

(9) 

(10) 
1 

where the expression of a($,  $) can be obtained after some 
algebra from the forward dynamics. It is clear from the 
above equation (10) that this system has a well-defined 
relative degree two. Secondly, a coordinate transforma- 
tion is made to the forward dynamics. In addition to the 
output and its first derivative, we also choose all the flex- 
ible modes of the system 7 = ( z p ,  up, 81 - 8, ,e,) together 
with their first derivatives as the new set of coordinates 
whose linear independence can be verified easily. It turns 
out that the transformation is linear and can be written 
as follows: - -  

{ 

where the transformation matrix is given by 

' M Z ~  - mr[li, + sin(6, + Y d )  

+mr[f$ + & j ] 2 C O S ( 8 p  -k Y d )  + b l i p  -k h Z p  = 0 

Myp + mr[ip + i d ]  cos(ep + Y d )  

-mr[i, + yd]2sin(Op + Y d )  + b l i p  + kly, = o 
1l[8, + i d ]  j- mr[-zp sin(6, + y d )  + Y,  cos(^, + Y d ) ]  

-[e, + Y d ] [ i p  cos(ep + Y ~ )  + 6, sin(e, + yd)i 
+b3elr  + k3elT = o 

-k3olr + w, = 0 ,  
[I ,  + I,] 6p - IT&. 4- I T i d  - b3& 4- b d p  

\ 

0 1 x 5  

M + =  [ 2 1 5  0 4 x 5  M+l 1 ,  (12) 

0 4 x 5  M+2 

and 
M + i = [ O  0 1 0 -11, (13) 

1 0 0  0 0 
0 1 0  0 0 

0 0 0  0 1 
Set y i Y d .  The output of the inverse equation yields 

(15) 

and the system dynamics under the new coordinates is 
given by 

-1.40 f j22.76 -1.41 f j22.82 

Using parameters in Table 1, eigenvalues of the first ap- 
proximation at  the origin of the zero dynamics are calcu- 
lated as shown in Table 2. Hyperbolicity of the equilib- 

1 6.12 f j29.84 1 -9.91 5 j 2 7 . 4 7  1 
Table 2: Eigenvalues of zero dynamics 

rium point at  the origin can be easily seen since there is 
no eigenvalues with zero real part. It is also noticed that 
this system is nonminimum phase due to the existence 
of two unstable eigenvalues. From theory of differential 
equations [8], locally there exist a stable submanifold of 
dimension six and an unstable submanifold of dimension 
two, both of which may be expressed by wu (7, q) = 0 and 
~ ' ( 7 ,  q )  = 0 respectively. 

Let us consider the following two-point boundary 
value problem (TPBVP): 

i = P b d ,  i d ,  Yd, 7 , 4 ,  

wS(v(tO), i ( t 0 ) )  = 0 

(19) 

(20) 

subject to 

{ W " ( V ( t f ) ,  i ( t f ) )  = 0. 
The boundary condition (20) basically says that at  t = t o  
the desired state trajectory should stay inside the unstable 
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manifold while at  t = t j  the stable manifold. It has been 
shown [9] that this TPBVP locally has a unique solution 
( q d ,  ? j d )  under a mild sufficient condition on Y d :  the norm 
1 1  ( y d ( t ) , & ( t ) )  112 is not too large for all t E [to7tj]. It 
has also been shown [6] that the stable inverse pair can 
be constructed from ( q d ,  i d )  through equations (11) and 
(15): 

c - ,  

and 
u d  = I p  [id - Q ( $ d ,  'dd)] * (22) 

4. Application to Output Tracking 
In this section we are first constructing the stable in- 

verse pair through approximately solving the correspond- 
ing TPBVP (19)-(20) defined in the previous section. 
Then, a controller is designed by using the stable inverse 
solution to drive the tip of the link to track a prescribed 
reference trajectory. 

Let the desired trajectory be defined as follows with 
to = 1 and t f  = 2: 

07 t < t o ,  

2, t > t j .  
Y d  = { 2[t - to] - + sin(2nLt - to]), to < t < t j  , 

To find the stable inverse pair, i.e. the u d  and the 
( $ d ,  d d ) ,  certain algorithms [lo] have been developed to  
solve the corresponding TPBVP which include decoupling 
stable/unstable manifolds method and minimum-energy 
optimization approach. In this paper, to avoid detailed de- 
scription of any algorithm, we choose to solve the TPBVP 
simply by approximately decoupling the stable/unstable 
manifolds via a linear coordinate transformation. The ap- 
proximated solution will be used to construct the stable 
inverse provided that the tracking accuracy is satisfactory. 
Details are as follows. 

Rewrite the differential equation (19) in the TPBVP 
in the following state-space form: 

where R(O,O, 0, q,  17) = S(l (7, r j )  lz) and A,, is the linear 
part of the zero dynamics at  the origin. From elementary 
linear algebra, there exists a linear transformation (7, r j )  = 
T ( z 1 ,  z z )  which transforms equation (23) into 

(24) 
i l  = A 2 1 2 1  + & l ( Y d , Y d , C d , Z l t Z Z )  { 22 =At222 + R 2 2 ( Y d , Y d 1 Y d r Z l r Z 2 ) 1  

where both A,1 and -Ala are Hurwitz. Recall that the 
boundary condition requires that at to the ( q d ,  &) stays in 
the unstable manifold while at  t j  the stable manifold. We 

approximate the boundary condition simply by 21 ( t o )  = 0 
and z 2 ( t j )  = 0 since, roughly speaking, 21 and 22 pick 
up the stable and unstable parts of the zero dynamics 
respectively. The stable inverse pair is then obtained ap- 
proximately through the following iterative steps: 

0 I :  Set z:(t) = O for a l l t .  

0 2: Integrate the unstable part of equation (24) from 
t = t j  to t = 0 backward in time to obtain z 2 ( t ) .  

t = to to t = 3 forward in time to obtain zl(t) .  

21" = z1 and go to  step 2, otherwise step 5 .  

0 3: Integrate the stable part of equation (24) from 

0 4: If (Iz1 - zyll is greater than a given threshold, set 

0 5 :  Use linear transformation ( q d ,  ? j d )  = T ( q ,  2 2 )  to 

0 6: Construct ($d, $ d )  via equation (21) and u d  (22). 

Using only 0,. - 0, and 8,. - e,, the measurements of 
rotor position and velocity relative to the platform, con- 
troller by stable inversion is simply designed as follows: 
use ud as a feed-forward signal that is superimposed by 
a PD stabilizing feedback. The control law is therefore 
given by 

find the unique solution to TPBVP. 

U = u d  + u p  [(er - e p ) d  - (er - op)] 

+ a d  [(er - 8 p ) d  - (er - i p ) ]  7 (25) 

where up and a d  are two design parameters. Noticed that 
(0, - 6 p ) d  and (8,. - 8 p ) d  are part of the desired state 
trajectory ( $ d ,  $d). The stability analysis of this type of 
feedback control is discussed in [ll]. The forward simula- 
tion starts from t = 0.5 second from a rest initial condi- 
tion and its results using up = 30300 and U d  = 1616 are 
shown in Figure 2. It is seen the excellent tracking per- 

2.51 I 

I 
1 1.5 2 2.5 

-0.51 
0.5 

lime (sec) 

'"I I 

1 1.5 2 2.5 
- I "  

0.5 
time (sec) 

Figure 2: Simulation by Stable Inversion 

formance by this controller: no transient and steady-state 
error with stability of all signals. It is also noticed the 
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simple structure of the feedback control with only partial 
state measurements. 

As mentioned in the introduction, classical inversion 
is another approach to obtain accurate output tracking. 
However, the method is not applicable to systems with 
unstable zero dynamics such as this robot system due to 
the unboundedness of internal signals it would generate. 
In addition, it is obvious that the nonlinear regulator ap- 
proach is not applicable here either since solving its asso- 
ciated partial differential equations is, if not impossible, 
extremely difficult in this highly nonlinear robot system. 
Another restriction is that the regulator method can not 
be used to track an arbitrary smooth reference trajectory. 

It is interesting to notice that in this robot system 
the angular motion, (OP, &), of the platform is rather 
small. By neglecting this motion the system may be ap- 
proximated by a minimum phase model with its order 
reduced by two. (See [la] for a detailed description of 
this model reduction and the following control law de- 
sign.) A feedback control law can be designed directly 
through input/output linearization based on this approx- 
imated model. The control achieves output tracking with 
bounded internal signals. Simulation results by this ap- 
proximate approach are shown in Figure 3. It is noticed 

I 
1 1 5  2 2 5  

-0.5’ 
0 5  

lime (sec) 

30 

20 I 

1 2 5  1 5  
lime (sec) 

J -20 

30 
0 5  

Figure 3: Simulation by input/output linearization 

that this input/output linearization method based on the 
reduced minimum phase model also achieves output tra- 
jectory tracking with a satisfactorily small tracking error. 
It also be noticed that this method, unlike the stable in- 
version approach, requires a full-state measurement. 

5 .  Conclusion 
Stable inversion, an approach to the design of output 

tracking controller for nonlinear nonminimum phase sys- 
tems, is successfully applied to the tip trajectory tracking 
of a single-link flexible-joint robot mounted on a wobbly 
platform. The key assumptions, a well-defined relative 
degree and hyperbolicity of the fixed point of the zero dy- 
namics, in using stable inversion are both satisfied by this 

system. Simulation results demonstrate that the stable 
inversion approach is very effective for obtaining accurate 
output tracking with only partial state measurements for 
this nonminimum phase system. The approach is expected 
to perform equivalently well for other many realistic non- 
linear nonminimum phase systems. 
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