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Abstract—Linearity testing of analog-to-digital converters
(ADCs) can be very challenging because it requires a signal gen-
erator substantially more linear than the ADC under test. This
paper introduces the stimulus error identification and removal
(SEIR) method for accurately testing ADC linearity using signal
generators that may be significantly less linear than the device
under test. In the SEIR approach, two imprecise nonlinear but
functionally related excitations are applied to the ADC input to
obtain two sets of ADC output data. The SEIR algorithm then uses
the redundant information from the two sets of data to accurately
identify the nonlinearity errors in the stimuli. The algorithm then
removes the stimulus error from the ADC output data, allowing
the ADC nonlinearity to be accurately measured. For a high reso-
lution ADC, the total computation time of the SEIR algorithm is
significantly less than the data acquisition time and therefore does
not contribute to testing time. The new approach was experimen-
tally validated on production test hardware with a commercial
16-bit successive approximation ADC. Integral nonlinearity test
results that are well within the device specification of +2 least
significant bits were obtained by using 7-bit linear input signals.
This approach provides an enabling technology for cost-effective
full-code testing of high precision ADCs in production test and
for potential cost-effective chip-level implementation of a built-in
self-test capability.

Index Terms—Analog-to-digital converters (ADCs), integral
nonlinearity (INL), linearity test, stimulus error identification and
removal (SEIR).

1. BACKGROUND

HE “histogram method” is a standard approach for

quasi-static linearity testing of analog-to-digital con-
verters (ADCs) [1]-[3]. However, during the past decade,
linearity testing of ADCs has not received much research atten-
tion for several reasons. As long as best practices are followed,
modern mixed-signal automated test equipment (ATE) can be
used to make quasi-static linearity testing of ADCs a fairly
straightforward production task for low-to-medium resolution
ADCs [4]. High-precision delta-sigma ADCs are inherently
sufficiently linear and do not require linearity testing. In the
communications circuit area, high-speed pipelined ADCs are
widely used and are usually production tested with high-fre-
quency input signals [2], whereas quasi-static linearity testing
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is primarily used for debugging [5] or calibration [6]. Probably
the biggest reason, however, can be attributed to the challenges
associated with generating highly linear or spectrally pure test
signals with no major technological breakthroughs occurring
in this area in the past decade.

Nevertheless, quasi-static linearity testing remains a test
challenge for the production of certain classes of high per-
formance ADCs, and the increasing downward production
cost pressures are making the convenient use of expensive
mixed-signal ATEs for testing low and medium resolution
ADCs more difficult to justify. In this paper, emphasis will be
placed on the more challenging task of quasi-static linearity
testing of high performance ADCs with little mention of the
low and medium resolution devices, but application of the
concepts introduced here for the production testing of low
and medium resolution devices is straightforward and in some
applications may provide a more cost-effective test flow for
low and medium resolution devices that does not require time
on expensive mixed signal ATEs.

In a high performance ADC, specifications like 16-bit or
higher resolution, 1 MSPS or higher conversion rate, little or
no output latency, and an input signal frequency exceeding
the ADCs Nyquist rate are common. Recent examples include
16-bit 1.25 MSPS and 18-bit 500 KSPS successive approx-
imation register (SAR) ADCs and a 16-bit 5 MSPS multibit
delta-sigma ADC [7]. These ADCs employ techniques such
as precision laser trimming or dynamic element matching to
achieve high linearity at relatively high sampling speeds. These
high performance ADCs are typically used in medical applica-
tions including ultrasound and computer aided tomography as
well as precision industrial process control and ATEs that serve
the testing industry.

To better appreciate the challenges in quasi-static linearity
testing of high precision ADCs, the performance requirements
on the signal sources used to generate the input to the ADC
under test will be reviewed. Conventional wisdom dictates that
signal sources must be significantly more linear than the ADC
under test. Usually, an acceptable test procedure would provide
test accuracy to within 10% of the device specification. An ADC
with a 2 least significant bit (LSB) maximum linearity error
specification would require test accuracy to be well within +0.2
LSB. Considering that one LSB is around 76 ©V for a 16-bit
ADC with a 5 V supply, source linearity of better than 15.2 uV
(0.2 LSB) is required and providing this degree of source lin-
earity is an extremely challenging task. The task is even more
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challenging when testing an 18-bit ADC. Some applications dic-
tate that all codes of the ADC be tested in production, resulting
in long test times that often run several minutes on an expen-
sive mixed signal ATE. The long test time is usually required
to average out the effects of input noise in the test environ-
ment. However, requiring the source to remain stationary (low
drift) during such long tests presents another challenge for lin-
earity testing. Source architectures used in ATE equipment that
provide good linearity, like the delta-sigma structures, are not
known for good drift performance, and vice versa. In addition,
linear sources often have slow settling characteristics, and the
source settling often dominates acquisition and test time. Prac-
tical test solutions for future high precision ADCs require a re-
laxation of the performance requirements on the signal source,
an apparent paradoxical expectation.

II. INTRODUCTION

In this paper, a new approach for ADC testing is developed
that relaxes the requirement on source linearity. If the source is
allowed to be nonlinear with no stringent requirements on the
specific linearity characteristics and no need for prior knowl-
edge on the characteristics of the nonlinearity, the design re-
quirements for the source will be dramatically reduced. Such
sources can be designed to have better drift characteristics and
to work faster, properties which are key to improving accu-
racy and reducing ADC test time. Furthermore, such nonlinear
sources can be placed on the device interface board (DIB) to
reduce requirements and cost of the ATE or even incorporated
on chip with a small die area to facilitate use in a design for
test (DFT) or a built-in self-test (BIST) environment. Recent re-
search using the concept of using nonlinear excitations for ADC
testing can be found in [8], [9], [11]-[13], and [15]-[17]. As a
proof of concept, two different approaches were discussed in the
authors’ previous work [8]. One of these approaches was sen-
sitive to device noise, making applications to precision ADCs
difficult. The second included an algorithm that requires a ma-
trix inversion with computational complexity proportional to the
cube of the total number of ADC output codes, which is not
computationally effective for high-resolution ADCs. With both
algorithms, low-spatial-frequency nonlinearities in the signal
source, a property that can be readily attained, were assumed.
An application of one of these algorithms to testing 10-bit ADCs
is reported in [9]. Ten-bit resolution appeared to be a practical
performance limit on the specific algorithm used in the previous
work.

This paper presents the stimulus error identification and
removal (SEIR) method for accurate and robust testing of
ADC quasi-static linearity performance. The SEIR approach
uses two imprecise nonlinear signals, one shifted with respect
to the other by a constant voltage offset, to excite the ADC
and obtain two sets of ADC outputs. By matching the signal
levels corresponding to the same ADC transition level, a set of
equations involving only the stimulus error components is es-
tablished. This separates the signal source nonlinearity from the
nonlinearity inherent in the ADC under test. By parameterizing
the signal source nonlinearity using a set of basis functions,
a set of equations linear in the parameterization coefficients
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are obtained. Standard least square (LS) methods can then be
used to accurately identify the coefficients and thus identify
the nonlinearity errors in the stimuli. The SEIR algorithm
subsequently removes the stimulus error from the ADC output
data, allowing the ADC nonlinearity to be accurately measured.
Both simulation results and experimental test results obtained
from commercially available ADCs are presented. Experimental
results confirm the fact that the identification and removal of
the effects of input nonlinearity can be performed as a digital
signal-processing task during production by a tester computer
with reasonably short time. Production test hardware typically
used for high performance 16-bit SAR ADCs, which is a real
challenge in the analog and mixed-signal linearity testing area,
has been used to verify the method. Full code testing results
from this new method are successfully correlated with those ob-
tained in an industry laboratory using state of the art production
test equipment for mixed-signal circuits. The test time required
for implementation of the proposed testing approach is short,
making it viable for use in a production test environment.

III. ADC LINEARITY TESTING USING NONIDEAL STIMULI

In this section, a mathematical formulation of the SEIR algo-
rithm will be presented. First, the modeling of an ADC based
on transition levels [18] and the nonlinear input signals along
with the definition of transition times are presented. This is fol-
lowed by a discussion on integral nonlinearity testing. Finally,
a mathematical formulation that is used to estimate and remove
the effects of input nonlinearity is given and a new ADC charac-
terization approach using nonlinear input signals is described.

A. ADC and Input Nonlinearity Modeling

Let us consider an n-bit ADC with N = 2" output codes.
The static input—output characteristic of such a device can be
modeled as

07 ‘TSTO
D(x): k, T 1<z <Tp,k=1,2...N -2 (1)
N—l./ TN_2<$

where D is the digital output code, x is the analog input voltage,
and Ty, k =0,1,..., N — 2 are transition levels of the ADC. If
the input signal voltage is less than T}, the output digital code
will be less than or equal to £. If the input signal voltage is larger
then T}, the output digital code will be greater than k. Although
the transition levels are generally indexed from 1 to N—1, we
use indexes 0 to N —2 to number them in this paper. This will
make it a bit easier for us to give definitions of some other terms
later. The choice of indexes does not change the meaning of the
transition levels. Equation (1) is valid under the assumption that
the ADC is monotonic and has no missing codes. This assump-
tion is justifiable for most commercial ADCs.

Linearity testing of an ADC corresponds to investigating how
linearly transition levels of an ADC are distributed. An ide-
ally linear ADC with the same terminal transition levels T and
T'n—o has transition levels uniformly spaced between Ty and
Txn_o with a constant voltage increment of Q = (Ty_2 —
To)/(IN —2). This increment is called an LSB. Transition levels
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of the ideally linear ADC are called terminal-based ideal transi-
tion levels and denoted as Ij,. They can be expressed as

Ty_2—"Ty

I, =T
k o+ N —2

k, k=0,1...N—2. 2)

Equation (2) is called a terminal-based fit line. It represents
a straight line connecting the terminal transition levels of the
ADC. For linearity testing, true transition levels of an ADC will
be compared to the corresponding terminal-based ideal transi-
tion levels. The terminal-based integral nonlinearity for code &
(INLy) is defined to be the difference between the true and ter-
minal-based ideal transition levels. Expressing INL in LSB, we
obtain

T, —I,  Tu—Tp

INL, = =
g Q Tn_2—Tpo

(N — 2) — k(LSB)
k=1,2....,N—3. (3

The overall terminal-based INL is then defined by the expres-
sion

INL = ml?x{|INLk|} . 4)

A larger value of terminal-based INL indicates that an ADC has
higher nonlinearity. For simplicity the word “terminal-based”
will not be carried in the following part of this paper, but all
the nonlinear parameters INL and INLj used in this paper are
based on the terminal transition levels and the corresponding
terminal-based ideal transition levels.

An ideal ramp signal, as assumed in traditional linearity
testing, can be visualized as a signal that increases linearly with
time ¢, whereas a more realistic ramp signal always has some
nonlinearity that makes it deviate from a straight line. A real
ramp signal can be modeled as

x(t) = xos +mt + F (1) (5)

where z,, is a dc offset voltage, 7t is the linear part of the signal,
and F'(¢) is the nonlinear component. Defining the transition
time ¢; to be the time at which the value of the analog ramp
signal is equal to the kth transition level of the ADC, we obtain

Te = x(tr), k=0,1...,N—2. (6)

Monotonicity of the signal source is assumed in this paper,
and hence the output codes sampled before time ¢; will be al-
ways less than or equal to k. Effects of the noise in the input
signal will be discussed in Section IV. To simplify the deriva-
tion, we perform some linear operations on (5) which will not
affect the final test results. First, we denote the first transition
time to be the origin of time scale, i.e., ty = 0. Secondly, we
normalize the time intervals so that the last transition time cor-
responds to the unit time, i.e., txy_o = 1. By doing so, we have
scaled and translated the time axis to be unit free so that our al-
gorithm will look the same for all clock frequencies and will be
independent of the actual time when tests are conducted. The
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linear component 7t of the signal is defined such that the non-
linearity in the input signal is zero at both ¢ = 0 and £ = 1, that
is

F(0)=F(1)=0. @)
These operations are equivalent to choosing

Tos =To and n=Tn_o—Tp. (8)

Substituting (8) into (5), we obtain

() =T, + (Tn—o —To)t+ F(t), 0<t<1. (9
Equation (9) represents a signal whose magnitude is equivalent
to the first and last transition levels of the ADC at the normalized
times 0 and 1, respectively. With this notation, the nonlinearity
of the input signal is completely characterized by F'(t).

Assuming no prior knowledge about the general form of
F(t), we try to identify this input nonlinearity independently
during the test. As a first step, we expand F'(¢) over a complete
set of basis functions denoted by {Fj(t),j = 1,2,3,...}. By
identifying a finite number of the major coefficients of the basis
functions for this expansion, we can estimate the value of F'(t)
to an accuracy higher than the resolution of the ADC under
test. To simplify the derivation, we choose familiar and widely
used trigonometric functions on [—1, 1] to be the set of basis
functions. Applying odd extension on F'(t) to cover the interval
[—1, 1], which includes a mathematically negative time, we
obtain

0<t<1
-1<t<0. (10)

F(t) can be expanded in terms of trigonometric functions as
F(t)= Z a; sin(jnt) + Z bjcos(jmt), —-1<t<1
j=1,2... j=0,1...

(In

where a;, j = 1,2,...,and b;, j = 0,1,2,..., are the coeffi-
cients of the jth harmonic. Since the extended function is odd,
the coefficients of the cosine functions are all zero and only sine
functions are needed to express the nonlinearity. On [0, 1], F'(¢)
can thus be parameterized as

M

F(t) = Z a;sin(jnt) + e(¢).

=1

(12)

Since we are only interested in a finite accuracy expansion of
F(t), only the first M basis functions are included in (12) and
thus e(¢) is the residue of the nonlinearity that is not modeled
by the M basis functions. By completeness of the basis function
set, M can always be appropriately chosen so that the residue
is small to any desired level. F'(¢) is said to be identified if we
can determine the value of a;, 7 = 1,2,..., M. For simplicity,
we will not carry the term e(t) most of the time in the following
derivations. The effect of neglecting the term e(¢) will be ana-
lyzed in Section IV. Other choices for a set of basis functions
{F;(t),5 = 1,2,3,...} can also be used to approximate F'(¢),
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Fig. 1. Basic terminology in ADC linearity testing.

and each element of the set should vanish at¢ = O and ¢t = 1.
Formally, they will satisfy the relationships

M
F(t) = J; a;Fi(t), 0<t<1 13)

Fj(0)=Fj(1) =0, j=1,2... M.

An example of an alternative set of basis functions is the set of
polynomial functions

Fi(t) = t(t — 1)
Fy(t) = t(t — 1)(t — 0.5)

Fs(t) = t(t — 1)(t — 0.5)(t — 0.25)

Fiy(t) = t(t — 1)(t — 0.5)(t — 0.25)(t — 0.75)

(14)

Using the expanded nonlinear component, the input signal can
be written as

M
w(t) 2T+ (Tn_a = To)t+ Y a;Fi(t), 0<t <1 (15)

Jj=1

Fig. 1 illustrates the relationships between the true and ter-
minal-based fit line transition levels, the input and output of
an ADC, and the ideal and a realistic ramp signal. The hori-
zontal axis corresponds to time with transition time points la-
beled. The vertical axis corresponds to the input voltage with
transition levels labeled. The region corresponding to different
output codes are denoted as dotted areas. The output code of an
ADC will be a digital code & when time is between transition
times ¢ and ¢;, and correspondingly the input signal value is
between the transition levels T _1 = z(tx—1) and Tx, = z(t).

B. Linearity Testing for ADCs

The goal of ADC linearity testing is to identify transition
levels and determine the INL of an ADC. However, transition
levels of an ADC cannot be measured directly from the ADC
output. An alternative is to measure transition times and calcu-
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late the values of transition levels by using (6). Substituting (15)
into (6), we have

M
Ty = T+ (Tn—a—To)tr+»_ a;Fj(t), 0 <t < 1. (16)

i=1

Equation (3) can then be used to express INL;, as a function of
the associated transition time and coefficients of the nonlinear
component a;

M
INL; & (N— Q)tk +Z (lij(tk) —k,

J=1

In (17), coefficient a; is in terms of LSBs.

Transition times of an ADC can be measured by using the
traditional histogram test. Let Cy, k = 0,1,2,..., N — 1, rep-
resent the bin counts obtained in a histogram test for each code.
If the sampling period of an ADC is a constant, the time when
a sample is taken is linearly proportional to the number of sam-
ples that have been taken so far. So the number of samples can
be viewed as a measurement of time. For instance, C; samples
of code 1 will have been taken since ¢ = 0 when the output
code changes from 1 to 2, indicating that C; sampling periods
of time have elapsed. Similarly, C; 4+ C5 samples will have been
taken when the output code changes from 2 to 3. In general,
C1+ Cy + - - -+ Cy, sampling periods of time will have elapsed
since ¢ = 0 when the output code changes from k to k+1. This
leads to the following time instances:

(18)

where T is a scaling factor that scales the time period measured
in terms of the number of samples to the normalized time de-
fined earlier. Since the output code changes from N—-2to N—1
when ¢t = 1, the total number of samples taken between ¢ = 0
and t = 1 is given by

N-2
Ci+Cy+...+Cn_y=Y Ci (19)
=1
Therefore an appropriate scaling factor is given by
N-2 -1
T. = <Z Ci> . (20)
i=1

Since by definition 7}, is the last sampling instance before the
output code changes from k to k+1, we have

z(ty) < T and Ty < x(fp + T,.). 1)

Since z(t) is assumed to be a monotonically increasing function
of time, we have

ty <tp <tp+1T.. (22)

Thus estimating the kth transition time using the time instance
defined in (18) involves an uncertainty of at most one clock pe-
riod as shown in (22). The magnitude of this uncertainty can be
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reduced by increasing the number of samples taken so that T
is sufficiently small. In such a case, it is safe to assume that the
approximation error is insignificant and

k
t 2 =T, Z C; (23)
i=1
Substituting (20) into (23), we have
k
> Ci
= ]’V=_12 ) (24)
C;
1=1
Using (17), we have an estimate for INLy
R M
INL;, = (N—Z)fk+2aij(Ek)—k, k=1,2,...,N—3.
j=1
(25)

If input nonlinearity were known in a parameterized form, (24)
and (25) would relate the bin counts C}, to the INL;s of an ADC.
However, input nonlinearity is typically not known beforehand
and cannot be determined from (25). Equation (25) comprises
a set of N —3 linear equations in the N —3 INL;, values and the
M nonlinearity coefficients representing a total of N + M —3
unknowns. Thus the set of equations given in (25) are, in gen-
eral, insufficient to solve for all of the unknowns. The traditional
histogram method for determining / NLpisa special case of the
situation above for which the input signal is assumed to be ide-
ally linear so that all a; = 0 and (25) can be simplified to

INL, = (N =2t —k, k=1,2,....N=3.  (26)
The assumption is good only when the maximum input nonlin-
earity is much smaller than 1 LSB. However, if the input non-
linearity is comparable to or larger than 1 LSB, it will introduce
significant errors in the INLj estimation if (26) is used to es-
timate the INLj. The estimation error can be obtained by sub-
tracting (26) from (17) and is given as

M
INL,—INLy ==Y a; Fj (i) +d(f—tr), k=1,2,...,N-3.

j=1

’ @7)
The first term on the right-hand side of (27) is the result of input
nonlinearity and the second term comes from the errors in tran-
sition time approximation. The input nonlinearity gets included
in the estimated values of INLy. This will result in misinterpre-
tation of the true linearity performance of an ADC if neglected.
For example, if we use an input source with 10-bit linearity to
test a 16-bit ADC with a true 1-LSB INL, (26) will estimate
the ADC to have about 64-LLSB INL. The second term in (27),
d(ty, — t1,), is the effect of quantization error in the transition
time. However, with a reasonable number of samples per code,
this error is usually a small fraction of 1 LSB and much smaller
than the error caused by the input nonlinearity. The effects of
the above terms will be discussed in detail in Section I'V.
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C. ADC Linearity Testing With Multiple Nonlinear Stimuli

In (25), nonlinearities from the ADC and from the input signal
are coupled with each other and the task of identifying them si-
multaneously is not apparently doable. One possible approach
toward solving this problem is to separate and identify the input
nonlinearity first and then test the ADC linearity performance
with that knowledge. The SEIR approach involves testing the
ADC with two input signals. The two signals are otherwise iden-
tical except an unknown but fixed offset o between them. Fol-
lowing the form of (9), the two input signals can be expressed
as

z1(t) =To + (Tny—2 — To)t + F(t)
ILQ(f) :TO + (TN_2 — T())t + F(f) — (.

(28)
(29)

The linear and nonlinear components in the two signals are the
same with the only difference being the dc offset voltage. As
described earlier for a single input case, each of the two input
signals can define a set of transition times as in (6)

T, =21 (t;”)

Ty =x9 (t;?) .

Since the two signals are used to test the same ADC, the tran-
sition levels referred to in (30) are the same as those referred to
in (31). However, the two sets of transition times are different
because of the offset change and have been denoted differently
with superscripts 1 and 2, respectively. For example, if « is pos-
itive, it will take a longer time for the second signal to reach a
transition voltage than it will take for the first signal to reach
the same transition voltage, i.e., t,(cl) < t;f). If we equate the
right-hand sides of (30) and (31) with respect to the same tran-
sition level, the ADC nonlinearity, which is embodied by the
transition levels T}, will disappear, and we will get equations
involving only the input nonlinearity. These equations can be
used to identify the input nonlinearity.

Let C’,(Cl) and C’,(Cz), k=0,1,..., N—2,be the histogram data
collected by using z; and x5 as inputs to the ADC, respectively.
Transition times can be estimated by using the bin counts as in
(24)

(30)
€1y

5 o
i ==L =1,2,...,N—2 (32)
> o
1=1 !
[k o 03”—032)”
~2) _ Li=1 ! _
i = — L k=0,1...N—2. (33)

In order for the two sets of transition times to have the same unit,
both (32) and (33) are scaled and shifted by the same scaling
factor and offset amount that are defined for the first signal, with
origin at f((]l) = 0 and unit time at 5%12 = 1. The second
signal having an offset in time is compensated in the numerator
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to resolve this issue as in (33). Similar to (25), we can then
estimate the INLj, values using the estimated transition times

M
N 1 N ~
INLy = (N = 2)i + 3 a,F, (i) — .

J=1

k=1,2,...,N—3 (34)
M
INLE =(N = 207 + > o (1) —a—k,
j=1
k=1,2,....N-3, 12 <1 (35)

Notice that in (34) and (35), we only included those INLy es-
timates for which the corresponding transition times are within
the domain of definition for the basis functions. Because of this,
the total number of equations available is N—3 in (34) and
N — 3 — «ain (35) if « > O (this is assumed below). It will
be shown that for reasonable offset values, this reduction in the
number of equations will not affect the performance of the pro-
posed method.

Equations (34) and (35) constitute the body of the SEIR al-
gorithm. As discussed earlier, we have a total of N + M —2 un-
knowns. They are N —3 INL;s, Majs, and the unknown offset
a. However, since two related input signals are used to test the
ADC, we have 2(IN — 3) — « linear equations, nearly doubling
of the number of unknowns. We are thus left with many more
equations in (34) and (35) than the number of unknowns. Since
INLgs in both equations are for the same ADC and must be
equal at the same index k, by equating the individual INTs in
(34) and (35), we obtain a set of equations involving only input
nonlinearity in a linear parameterization form

M

M
(N=2)+ a5 (i) = (N=2)iP+Y " a5 (if) ...

=1 =1

(36)
Moving all the known terms to the left-hand side and all terms
with unknowns to the right-hand side, we obtain

(N -2) (tA,(f) - fg,”) = iaj (Fj (f,(cl)) —F; (tA,(f))) +a,

LN-=3, i?<1 37

For testing high resolution ADCs, typical values of M and « (in
LSB) are much smaller than N. Thus the number of equations
in 37), N — 3 — «, is much larger than M+1, the number
of unknowns a;, j = 1,2,..., M, and . When the number
of equations is larger than the number of unknown parameters,
the system of equations comprising (37) is overconstrained and
the unknowns can be estimated by using the LS method. For
example, an ADC with more than 10-bit resolution will always
have thousands of output codes while the number of parameters
needed to model the nonlinearity in the excitation is usually less
than 20, as we will discuss later. The LS method has an attractive
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property of effectively averaging out the noise or errors in (37).
The LS solution for estimating the unknowns can be expressed
as

{a1,a9,...,ap,4}=argmin Nz_:g ((N—2) (fg)—f,(:))
k=1,#7<1
’ 2
- Z (5 () = 5 (1)) +a| | b o9

Once the input nonlinearity is identified from (38), ADC lin-
earity testing becomes a straightforward job. Substituting solu-
tions from (38) into either (34) or (35) or their combination, we
can estimate the INLj of an ADC. Using (34), for example, we
have

M
INLi = (N-2)i"+3 " 4, F (E,ﬁ”) —k, k=1,2,...,N-3.
j=1
(39)
Equation (39) shows that the linearity performance of an ADC
can be tested without being affected by input nonlinearity.

IV. ERROR ANALYSIS

There are several sources of errors that will affect the perfor-
mance of the SEIR approach. Among them, additive noise at the
input to an ADC, the unmodeled error of the input signal nonlin-
earity as in (12), and the quantization error of transition times as
in (27) have the most significant effects on the linearity testing
results. Using the first signal as an example and considering the
effects of noise and errors, the relationship between transition
levels and the estimated transition time can be written as

Ty= T, + (T2 = To)t} + i a;F (51(61))
=1
e (i) 40 (B) +a (il - ") @0

where e(f,(cl)) is the unmodeled error, n(f,(cl)) is from the ad-

ditive noise, and d(tA,(Cl) - t,(cl)) is from the quantization error
in transition times. Without specific mention, we assume in the
following part of this section that these noise and errors will not
affect the LS estimation for a;s such that they can be assumed
to be the same as as. This is a fair assumption based on the fol-
lowing justifications. First, by definition, the unmodeled error
is orthogonal to the first M sinusoidal functions. Secondly, the
additive noise and quantization error usually change very fast
as a function of time and hence have little correlation to the first
M low frequency basis functions. Third, the LS method has the
ability to average out the effects of noise and errors. Therefore
the error between the true INL, and that calculated in (39) can
be written as

envi, =INLy = INLy =e () + 0 (i{) 4 (17 -1")
41



1194

If there is no systematic error in the measurement process, all
the errors can be assumed to be from normal distributions with
zero mean and the estimation of INL,, is unbiased
E {eINLk} ~ 0. (42)
The variance of the error in the INL; estimation can then be
determined from (41), which is the summation of the variance
of the unmodeled error, the variance of noise effects, and that of
the quantization effects
Var {eint, } = 02 + 02 + 03 (43)
The three types of error sources will be further discussed in the
following sections.

A. Effects of the Unmodeled Error in Input Signals

The magnitude of e(fg)) is dependent on the number of basis
functions used in parameterization, i.e., M, and on the nonlin-
earity of the input signal itself. This error term can be reduced to
an arbitrarily small level by increasing M. Since signal genera-
tors with low spatial frequency can be easily realized practically,
the nonlinearity in the input, though it may be large, can be pa-
rameterized with a reasonably small number of basis functions
and still guarantee that the residue error is small.

B. Effects of the Additive Noise in Input Signals

Let us assume the additive noise at the input to an ADC is sta-
tionary with zero mean and variance o2. The noise may cause
the output code to be different from its expected value thereby
changing the bin counts. Larger variance of the noise makes the
code more likely to be different from its expected value. How-
ever, with a reasonably large number of samples per code, a
change of one or two samples’ value will not have a significant
effect on the total number of samples for a code. Intuitively, the
variance of n(fg) ) should increase with the variance of the addi-
tive noise but decrease with the average number of samples per
code. By writing out the probability of a sampled voltage with
noise larger than a specific transition level, which is a Bernoulli
random variable, the variance of this random variable can be
calculated. The variance of the error from additive noise of the
transition level is the summation of variances of all different
sampled voltages weighted by the probability. The probability
of each sampled voltage is the same, but the variance is small
if a sampled voltage is far away from the transition level of in-
terest and large if it is close. With detailed statistic analysis, it
can be shown that the following general relationship is true:

g

2
=A
o, N

(44)
where N, is the average number of samples per code and A
is a constant dependent on the distribution of the noise, which
can be determined numerically. For Gaussian additive noise, A
is 0.5642. This sensitivity to noise is a fundamental problem
in conventional histogram-based ADC test methods, and the ef-
fects here are comparable to those experiences when ideal linear
ramps are used for testing.
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C. Effects of the Quantization Error in Transition Times

The quantization error of transition times is bounded by (22).
A smaller 7. means a larger average number of samples per
code, i.e., a larger Ny, which in turn leads to smaller quantiza-
tion errors. Assuming uniform distribution of the quantization
noise, the variance of the quantization error can be expressed in
terms of Ny as

1
2
74= 15 NZ (45)
The quantization error is also a problem in traditional his-
togram-based testing and comparable to that associated with
this approach.

Typically, in an all codes production test environment, N is
between 20 and 100 samples per code. The magnitude of the
additive noise determines which term of (44) and (45) is more
important to the testing result. If the standard deviation of the
additive noise is comparable to 1 LSB, the effect of the quanti-
zation error will be much smaller than that of the additive noise.
For high resolution ADCs, up to 1 LSB root mean square noise
is typical. This was the rationale behind neglecting the effect of
quantization in the earlier part of the discussion.

D. Effects of the Offset Between Two Signals

The value of the offset voltage o between the two input sig-
nals also affects the final INL estimation results. If the offset
is too small, the difference between the nonlinearity of the two
input signals at the same code level will be very small and noise
will have significant effects on the LS method. The assumption
that estimated parameters a;, 7 = 1,2,..., M are close to the
true value does not hold any more, and the numerical behavior
of the LS method is no longer reliable in that situation. On the
other hand, the offset cannot be too large either. As mentioned
earlier, the last & equations in (37) will not be used in estimating
the parameters, and hence the LS result is only optimal for part
of the input nonlinearity and not necessarily optimal for the non-
linearity on the whole interval of [0, 1]. Analysis shows that
offsets of 0.1 to 1% of full range are appropriate for the pro-
posed method. Both simulation and experimental results sup-
port this conclusion. Furthermore, the SEIR method estimates
the amount of offset, so no prior knowledge on the amount of
offset is assumed.

In the discussion until now, it has been assumed that the two
input signals are identical except for a fixed offset. This may
become difficult to guarantee in a real testing environment. Var-
ious time varying effects such as drift in the reference voltage
could result in slight variations in the offset value. The signal
source may change from one run to another, which will in-
troduce gain error and different nonlinearity between two sig-
nals. These nonstationarity effects can be eliminated to a certain
extent by well-designed measurement procedures, if not com-
pletely eliminated. In both simulation and experimental mea-
surement results provided in this paper, the effects of reference
voltage drift are considered. Part of the problem has been solved
by interleaving the two input signals in time to excite the ADC
and collect histogram data. Simulation and experimental results
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to 8600. (c) Error in INL,, estimation.

show that by interleaving the two signals with a “common-cen-
troid” sequence, most of the nonstationary effects can be can-
celled.

V. SIMULATION RESULTS

To verify the performance of the SEIR approach, simulation
has been done on ADCs of different resolutions and structures.
Simulation results show that the SEIR approach can accurately
identify INL of an ADC by using nonlinear excitations under
various situations. Results for a 14-bit simulated ADC under
different noise levels and average numbers of samples per code
are summarized in this section. For the purpose of simulation,
the nonlinear input signal is modeled as

T1(t) = vos + 1 [t +0.04 % (£ — )] +n(t).  (46)

The maximum nonlinearity specified in (46) is 1% of the
total input range. This corresponds to 7-bit linearity of the
input signal. The offset between the first and second signals
is 128 LSBs. However, as mentioned earlier, these data are
unknown to the algorithm. In the simulation, 20 sinusoidal
basis functions were used in the parameterization of the input

signal. The reference voltage has a time-dependent drift with
a linear gradient of 100 ppm over the total test time. This is to
duplicate the effect of voltage drift in the real test environment.
The two input signals are time-interleaved during data capture.
The true INLy, of the simulated 14-bit ADC is plotted as a solid
line in Fig. 2(a). The INL of the ADC is 14.88 LSB, resulting
in a 10-bit linear device. With an additive noise of a 0.8 LSB
standard deviation and an average sample density of 32 samples
per code, the INLj estimated by the proposed approach is
plotted as a dashed line in Fig. 2(a). The true and estimated
curves, in solid and dashed lines, respectively, match very well
and are difficult to differentiate from each other. A zoomed-in
version of the two curves for codes from 8500 to 8600 is plotted
in Fig. 2(b), and we can see there are very little errors between
the solid and dashed lines. The difference between the true and
estimated INLg, which reflects the error in prediction using the
algorithm, is plotted in Fig. 2(c). The error in prediction is a
fraction of 1 LSB with the maximum error being less than 0.7
LSB. The estimated INL of the ADC is 14.74 LSB, with a 0.14
LSB error from the true INL.

For the same ADC as shown in Fig. 2, simulation under dif-
ferent combinations of the average number of samples per code
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TABLE 1
MAXIMUM ERROR IN INL; ESTIMATION FOR DIFFERENT N, o, AND M,

1% input nonlinearity, o. = 4 %, 100 ppm Vs drift

M,=20, 0=3 LSB Ny =64, Mp=20 Ny=64, =3 LSB
Ns | INLyerror (LSB) | o(LSB) | INLyerror (LSB) | Mp | INLyerror (LSB)
16 | 1.69 0.50 0.35 5 1.40
32 [ 1.13 1.00 0.49 10 |0.95
64 |0.81 2.00 0.67 20 |0.80
128 | 0.57 4.00 0.98 40 |0.82
2 T T T T T T
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Fig. 3.
estimated using the SEIR approach with nonlinear stimuli.

N, standard deviation of the noise o, and the number of basis
functions M; were performed, and the results are summarized
in Table I. For each entry of the INLy, error reported in Table I,
the simulation was repeated 16 times and the average value of
maximum INL;, errors is listed. It can be observed from Table I
that when IV, is increased by four times, the estimation error is
reduced by about 50%. When the standard deviation of the ad-
ditive noise is increased by four times, the error in estimation is
increased by two times. These statistics are in agreement with
what is predicted by (44). When the number of basis functions
M, is increased from five to 20, the estimation error is reduced
by 40% and no further improvement is seen beyond the 0.8 LSB
level, implying that the error in estimation is dominated by noise
and error effects. From simulation results it was observed that
using 20 basis functions to model the input nonlinearity is a rea-
sonable choice.

VI. TEST RESULTS FROM A 16-BIT SAR ADC

Commercially available 16-bit ADCs were tested to verify
the performance of the new method. The sample used as the

4 5 6
x10*

INL, estimation of a 16-bit SAR DAC with true INL 1.66 LSB. Top: estimated using the traditional histogram method with a linear stimulus. Bottom:

device under test (DUT) was a laser trimmed 16-bit ADC with
excellent linearity performance with typical INL of about 1.5
LSB, which is a known test challenge. The test hardware used
for the verification of the SEIR method is the same as used in
the production test of the device.

A. Test Setup

Verification of the full performance of this ADC requires ex-
treme attention to test hardware design. A 12-layer handler in-
terface board is used with extensive ground, supply, and refer-
ence coverage. Extreme care is given to reduce ground loops
and to obtain proper bypassing. High performance contactors,
high precision resistors, high performance capacitors, and pre-
cision op-amps were used throughout the board. Latching relays
were used to reduce temperature gradients generating metal to
metal contact noise effects. The digital outputs were damped
and buffered properly to avoid current surges. The test platform
was a Teradyne A580 advanced mixed signal tester. The source
generating both the linear and the synthetic nonlinear excita-
tions was a 20-bit multibit delta-sigma digital-to-analog con-
verter with 2 ppm typical linearity error, 100 1V/min typical
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drift characteristics, and 2 kHz bandwidth. This source was a
typical example demonstrating that an expensive signal gener-
ator is not always good enough to provide low drift, high speed,
and good linearity all at the same time. The dc offset of the
nonlinear excitation was generated using an analog summing
circuit. In the experiment, the capture of histogram data using
nonlinear signals and identification of INLj, using the proposed
method were done on different platforms. The tester setup, in-
cluding the shape of input nonlinearity and offset between the
two signals, were not known to the identification algorithm.
Only two sets of histogram bin counts were fed to the analysis
program.

B. Test Data Collection and Analysis

The INL;, of the ADC was first tested by using the traditional
histogram method using a highly linear ramp excitation gener-
ated by the tester. Thirty-two samples per code were used to

4 5 6
Output code index x10"

INL, of a 16-bit SAR DAC with true INL 1.66 LSB. Estimated using the traditional histogram method with a nonlinear stimulus.

keep the test time reasonable. The INLj plot is given on top
in Fig. 3. We will term this the “measured” INLj. The corre-
sponding measured INL is 1.66 LSB. This measured INLj and
INL will be used as a benchmark to evaluate the performance
of the proposed algorithm. Two nonlinear signals were syntheti-
cally generated by programming the source memory with a non-
linear digital waveform. The dc offset was chosen to be 33 LSB.
The histogram was obtained with the new nonlinear input and
was analyzed using the proposed method. The estimated INLy
is plotted on the bottom of Fig. 3. The estimated INL using the
nonlinear input signals is also 1.66 LSB. From Fig. 3, we can
see that the INLgs estimated using linear and nonlinear input
signals are really close. The difference between them is shown
in Fig. 4. The error in prediction is less than 1 LSB and is an
acceptable solution as far as 16-bit converters are concerned.
The “low frequency” errors in INL; estimation, as can be
seen in Fig. 4, come from the nonstationarity of the signal
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source. The nonstationarity errors could not be completely
eliminated by the proposed algorithm since they introduce
different nonlinearities into the two ramps signals, but we tried
to minimize their effects in the experiments by interleaving the
two ramps signals. The “high frequency” residue errors come
from the additive noise in the testing system. In a previous
study on this device, the performance of all-code histogram
test was compared to the performance of a reduced code test
with a servo-loop. At each code, differences up to 0.7 LSB
were found during the comparison, giving further justification
to the premise that discrepancies indicating poor test capability
do occur at the 16-bit level. This “high frequency” noise band
can be further reduced by increasing the number of samples
per code from 32 to a larger number. The results in Figs. 3
and 4 were calculated by using the first 14 polynomial basis
functions. The INL estimation using sinusoidal basis functions
also gave similar performance. This supports the observation
that the proposed method does not rely strongly on the class of
basis functions used in the model.

For the purpose of comparison, INLj, of the ADC was also
estimated by using the traditional histogram method as in (26)
with one of the two nonlinear signals. The result is plotted in
Fig. 5. This estimation of INLj, is significantly affected by the
input nonlinearity as discussed in (27), which introduced an
error of more than 300 LSBs. The results also indirectly indi-
cate that the input signals are just nearly 8-bit linear. They are
fairly linear for the real world, but for our 16-bit precision ADC,
the amount of nonlinearity in the input is excessive. The inputs
used in these tests were synthetically generated to be represen-
tative of real-world quasi-linear analog ramp generators such as
can be generated with simple integrators.

The test time penalty of this algorithm was found to be in-
significant. The actual test time for this 16-bit ADC is 52 s,
and the postprocessing of the algorithm takes 1.2 s in Matlab to
calculate all of the INL, values from the collected bin counts.
Once coded in the tester workstation, the algorithm is expected
to complete well within 100 ms. If a fast nonlinear source were
used, the testing time performance would actually improve.

VII. CONCLUSION

The SEIR method for accurate linearity testing of ADCs
using nonlinear input signals has been introduced. Beyond
a readily satisfied restriction that the nonlinearities of the
excitation have no high spatial frequency components, no
prior knowledge about the offset or nonlinearities in the input
signals is required with this method. Using actual production
test hardware, the method was shown to be able to test a
high-performance 16-bit ADC to well within +2 LSB INL
specifications using only 7-bit linear inputs. The computation
time required to implement this method is small and should not
cause a significant degradation in test time compared to that
required with existing approaches and may offer substantial
reductions in test time in some applications. With the intro-
duction of this method and corresponding extensions, the test
hardware development paradigm could shift from one of highly
linear source development to one of low drift and high-speed
source development. The nonlinear low-drift input waveform
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and its shifted replica used in the proposed method can be
readily generated on a DIB to reduce tester requirements and
costs or on the chip to support DFT or BIST features.
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