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Abstract 
This work introduces an efficient code-density linearity 
testing algorithm for ADCs that can achieve high accuracy 
within short test time. The proposed algorithm uses 
Kalman filtering to suppress the effect of errors in the 
histogram counts based on characteristics of input noise 
and circuit mismatches. Appropriate versions of the 
algorithm for ADCs of flash and pipelined architectures 
are introduced respectively. Simulation results show that 
this approach can reduce the INLk estimation error by over 
50% and achieve desired accuracy with a much smaller 
number of samples as compared to the conventional 
algorithm. Simulation and experimental results show that 
the proposed algorithm can significantly shorten the 
linearity test time by a factor of 10 or higher. Therefore, it 
can enable test and help maintain the quality of high-
performance ADCs, and reduce the production test time 
and cost for medium and low resolution ADCs. 

I. Introduction 
Integral nonlinearity (INL) and differential nonlinearity 
(DNL) are two critical specifications on static performance 
of analog-to-digital converters (ADCs). Accurate INL and 
DNL test results can indicate the quality of an ADC and 
provide information of nonideality in design and 
manufacture, so they are always tested for ADC products 
on the market. The test cost of INL and DNL is a big 
concern of ADC manufacturers for the following reasons. 
First is that the test cost itself is high. Nowadays the 
analog test cost of a mixed-signal device can take a 
significant portion of its total production cost and this ratio 
is expected to become even higher in the future [11]. Cut 
off the test cost can significantly reduce the total 
production cost. The second reason is that the ADC has a 
high volume. It is one of the world’s largest volume analog 
and mixed-signal (AMS) integrated circuit products [1]. 
Test cost reduction of INL and DNL has essential meaning 
to manufacturers as the multiplication effect of the large 
volume is considered. Furthermore, for current and 
upcoming high-resolution ADCs, time for full-code INL 
and DNL test, which is directly related to the cost, is 
prohibitively long because of the large number of variables 
to be accurately measured. Reduced-code test methods are 
often adopted for high-resolution parts, but they do not 
provide complete characterization of the ADC under test. 
There is lack of a full-code linearity test strategy with a 
sufficiently low cost for production test of high-resolution 
ADCs. Because of these reasons, a testing algorithm that 
can achieve a desired level of accuracy in a short period of 
time is very useful and important, especially for ADCs of 

16-bit and up resolutions that have a large number of 
transition levels to be tested with very high accuracy on a 
test facility. 

The code-density test method [2, 3] is widely adopted for 
testing ADCs’ static linearity in the industry, because its 
implementation is straightforward and its computational 
complexity is low. The conventional code-density method 
requires input signals with better linearity than the 
resolution of the ADC under test and a significant amount 
of samples to average out the noise effect for accurate 
measurement results. The requirement on the input signal’s 
linearity has been studied and new methods using 
nonlinear signals are proposed [6], but not many 
approaches are proposed for improving efficiency of the 
code-density test method as authors are aware of. A 
maximum likelihood estimator (MLE) method related to 
the code-density test was studied in [5], but its 
computational complexity is high and not suitable for 
high-resolution ADCs.  

This work introduces a modified code-density algorithm 
that uses the Kalman filter to reduce the effect of errors on 
the histogram data. Simulation and experimental results 
show that the proposed algorithm can achieve the same 
level of accuracy as that of the conventional code-density 
algorithm but using a significantly smaller number of 
samples, which means shorter test time and lower test cost. 
The additional computations introduced by the modified 
algorithm is very few and negligible with current days’ 
computing power. The new method can be used to enable 
testing of high-resolution ADCs with better coverage and 
reduce the time and cost of testing medium-resolution 
ADCs. 

The rest part of the paper is organized as follows. Section 
II will briefly review the code-density test method and 
discuss its estimation errors in details. Section III describes 
the modified algorithms using Kalman filtering to improve 
the test accuracy for flash and pipeline ADCs. Simulation 
results are presented in Section IV, and experimental 
results are given in Section V. 

II. Code-Density Test for ADC Linearity 
This section provides some background information on 
ADC linearity specifications and the code-density test 
method with discussions on its performance. 

A. ADC Linearity Specifications 

Terminologies used in this paper will follow [4] with 
modifications in indexing for simplicity of formulation. An 
ideally linear ADC is expected to have its transition levels 
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evenly spaced over the input range. The differential 
nonlinearity for code k of an n-bit ADC is the relative error 
in the k-th code bin width and can be written as 

 )(1)2(
02

1 LSB
TT

TT
NDNL

N

kk
k −

−
−−=

−

− , (1) 

where N=2n; Tk , k=0, 1,…, N–2 , is the k-th transition level 
of the ADC between code k and k+1; and the unit of DNLk 
is called a least significant bit (LSB) and equal to the 
averaged code bin width 
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The integral nonlinearity for code k is 
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Equations (1) and (3) show that the offset and gain of 
transition levels do not affect values of DNLk and INLk. 
INL and DNL of the ADC are defined as 

 }2,...,2,1|,max{| −== NkDNLDNL k  (4) 

and }2,...,1,0|,max{| −== NkINLINL k , (5) 

respectively. They indicate the maximum deviations of an 
ADC from its ideally linear counterpart. From (1) and (3) 
we can also see that  

 kkk DNLINLINL += −1 . (6) 

To test linearity performance of an ADC, its transition 
levels are usually measured in a relative sense and used to 
calculate INL and DNL based on equations above. Other 
static parameters such as the offset voltage and gain error 
are measured separately. 

B. Code-Density Test of ADC Linearity 

The code-density method uses a linear ramp or sinusoidal 
signal as a stimulus to the ADC under test. We assume our 
test signal is an ideal ramp in following discussions, but 
the developed algorithms, analyses and conclusions can be 
applied to the sine wave test as well. 

The ADC takes samples yi on the stimulus signal at a 
constant rate and generates output codes ci = k if Tk-1 < yi ≤ 
Tk. The number of occurrences of code k is recorded as a 
histogram count Hk. This count can be used as an estimate 
of the k-th code bin width, since a larger bin will naturally 
contain more samples and the two quantities are 
proportional to each other if the samples are evenly spaced 
on the voltage axis, as in the linear ramp test situation. The 
code-density method estimates DNLk and INLk as 
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respectively, where 
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is the averaged histogram count. 

By comparing to definitions in (1) and (3), (7) and (8) are 
equivalent to estimating transition levels of the ADC under 
test as 
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where Ns is the total number of samples, and vki is a 
characteristic function such that 
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The estimated Tk is proportional to the number of samples 
that give out an output code smaller than or equal to k. 

C. Estimation Error in Code-Density Method 

Because of the noise in the signal generator and ADC 
circuitries, the sampled voltage is deviated from the 
stimulus signal as 

 iii nxy += , (12) 

where xi is the ideal ramp signal level at the i-th sampling 
instance and ni is an additive noise. The output code ci and 
consequently vki become random variables as well. It is 
usually assumed that ni is white and takes a normal 
distribution N(0, σ 2), so the probability for the i-th output 
code being smaller than or equal to k, notated as pki, can be 
calculated as 
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where Φ(x) is the cumulative distribution function (CDF) 
of the standard normal distribution N(0, 1). Further 
discussions on the above modeling and calculation can be 
found in [5] and its references. 

As noting that vki has a Bernoulli distribution [6] and 
independent from each other with respect to i by our 
assumption, the mean and variance of the estimator in (10) 
can be written out as [7] 
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where qki=1–pki.  

Using (3) and (8), we can further show that the INLk 
estimation error is equal to the transition level estimation 
error expressed in LSB as 

 )(/)ˆ(ˆ LSBQTTINLLNIe kkkkk −=−= , (16) 
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if the two terminal transition levels TN-2 and T0 are 
specifically measured with high accuracy, which is usually 
done for offset and gain error measurements. We don’t 
have a closed-form expression of (14), but it can be 
numerically verified that this mean is very close to Tk. 
Therefore the estimated INLk is unbiased with E{ek}=0. 
The estimated value has a variance 
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where A is a constant, σ is expressed in LSB, and Ds is 
called the sampling density, defined as the average number 
of hits of an ADC output code in the test and equal to Ns/N. 
The second equality comes from (15) and is a good 
approximation for k not close to 0 or N–1. The value of A 
can be numerically calculated as about 0.6.  

Equation (17) gives an analytical relationship between 
testing accuracy of the code-density method and two 
critical parameters. It can be intuitively interpreted that the 
test will be accurate if the noise is small and the number of 
samples is large. As we can see that (7), (8) and (10) are 
very straightforward estimations based on the histogram 
counts, the performance of the code-density method is not 
optimal and can be improved by some sophisticated 
approaches. 

III. ADC Linearity Test with Kalman 
Filtering 
The Kalman filter estimates values of the state variables of 
a dynamic system from noisy measurements of the 
variables. It can give optimal linear estimation, in the sense 
of minimum Mean Square Error (MSE), for signals under 
Gaussian noise. It is one of the most powerful tools in 
adaptive control and has extremely wide applications in 
various disciplines. The ADC linearity test problem can be 
put in such a way that we can straightforwardly apply the 
existing theory of Kalman filtering and make significant 
improvement to testing accuracy. The flowchart of the 

proposed method is shown in Fig. 1. Hk, kLNI ˆ  and kLNI
~

 

are the histogram count, estimated INLk in (8), and the 
optimal estimation of INLk using the Kalman filter, 
respectively. 

Code-Density 
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Conventional 
INLk
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START

END
 

Fig. 1. Flowchart of ADC testing with Kalman filtering. 

A. Problem Formulation 

Writing (6) and (16) together, we get INLk of the ADC 
under test in the following form 

 ;1 kkk DNLINLINL += −  (18a) 

 .ˆ
kkk eINLLNI +=  (18b) 

INLk can be viewed as a state variable of the dynamic 
system described by (18a), and we have a noisy 

measurement of it using the code-density method, kLNI ˆ  in 

(18b). Kalman filtering can be applied on (18) to find the 
optimal estimation of INLk, k=0, 1, …, N–2, based on the 
code-density test result under the following two conditions 
that 

1) DNLk is a Gaussian random variable of zero mean 
satisfying 

 kllk CDNLDNLE δ⋅=}{ , (19) 

where δkl equals 1 only if k=l and equals to 0 otherwise; 
and 

2) ek is Gaussian with zero mean and satisfies 

 kllk ReeE δ⋅=}{ . (20) 

The condition on ek is generally true based on Section II. 
The assumption on DNLk could be violated, and we will 
discuss appropriate modifications to it later. We further 
assume DNLk and ek are independent which is reasonable 
under realistic situations. 

B. INLk Test for Flash ADCs with Kalman Filtering 

As a complete understanding of the Kalman filter requires 
much background information outside the scope of this 
paper, we will not provide derivation and proof details of 
the general Kalman filter algorithm. Interested readers are 
refereed to [12] for rigorous descriptions and more 
references. We will provide detailed recursive estimation 
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steps so that the algorithm can be practically implemented 
after reading this paper. Some necessary discussions and 
comments are given as well. 

The first condition on DNLk is not always true for different 
types of ADCs, but it is a good description of ADCs with a 
flash architecture [9]. In a flash ADC, mismatch errors of 
the resistors and offset errors of comparators contribute to 
DNLk. These errors are usually due to random process 
variations and managed to be uncorrelated using some 
well-known design techniques, such as common-centroid 
layout. Therefore DNLk’s are independent of each other in 
a flash ADC, and the variance C is the summation of the 
mismatch error variance and offset error variance.  

For flash ADCs, the Kalman filter algorithm can be 
described by the following equations [8] with initial 
conditions INL0 = 0 and P[0] = 0, which are generally true 
by (3) and (8), 

 ;][][ RkPkRe +=  (21a) 

 ];[][][ 1 kRkPkK ep
−=  (21b) 

 ];[][][][]1[ kKkRkKCkPkP pep−+=+  (21c) 
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 .
~~
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kLNI
~

 in (21d) is the optimal estimation of INLk given all 

the histogram information. It is calculated from 1|
~

−kkLNI , 

the predicted value of INLk based on the histogram 
information for codes less than or equal to k–1, with 

correction introduced by the measured kLNI ˆ . The 

difference between the measured and predicted values, 

1|
~ˆ

−− kkk LNILNI , is called the measurement innovation. It 

indicates how good the prediction is but is also affected by 
the measurement error ek. Kp[k] in (21d) is the Kalman 
gain. It determines how much of the innovation should be 
used as correction to the predicted value. It can be shown 
that P[k] is the variance of the final prediction error of 

1|
~

−kkLNI . 

kLNI
~

 and 1|
~

−kkLNI  are recursively calculated using (21d) 

and (21e) for all k values from 0 to N – 2. The Kalman 
gain Kp[k] is also recursively determined from (21a) to 
(21c) and targeted to minimize the mean square error of 

the final estimation kLNI
~

. An intuitive interpretation of 

the Kalman gain is as follows. If the measurement error is 
comparatively small, consequently R small, the measured 
value is better representing the true value, and vice versa. 
So when R is small, Kp[k] is close to 1 and the final 
estimation is more close to the measured value. When R is 
large, the Kalman gain is smaller than 1 and the final 
estimation is more dominated by the predicted value. 

C. INLk Test for Pipeline ADCs with Kalman Filtering 

The DNLk usually has some repetitive patterns for ADCs 

with other architectures. One of the most widely adopted 
architectures is the pipelined structure, for which DNLk and 
DNLk+N/2 are strongly correlated. ([10] provides a very 
good description of pipeline ADCs.) Under the case of 
such ADCs, we can first identify the deterministic 
component in DNLk and make the residual part 
independent of each other. 

Taking the pipeline ADC as an example, we use the 
average of DNLk and DNLk+N/2 as an approximation of their 
deterministic component, 
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The true DNLk can be written as 

 kkk dLDNDNL +′= , (23) 

where dk is a random component of zero mean, contributed 
by the random errors in the ADC and the test errors in the 
code-density method, satisfying 

 kllk CddE δ⋅′=}{ . (24) 

The value of dk, instead of DNLk in the flash case, will be 
predicted by Kalman filtering based on the code-density 
test results. Replacing (23) into (18a), we can see that the 
Kalman filtering steps need to be modified as 

 ;][][ RkPkRe +=  (25a) 

 ];[][][ 1 kRkPkK ep
−=  (25b) 

 ];[][][][]1[ kKkRkKCkPkP pep−′+=+  (25c) 

 );
~ˆ]([

~~
1|1| −− −+= kkkpkkk LNILNIkKLNILNI  (25d) 

 .
~~

1|1 ++ ′+= kkkk LDNLNILNI  (25e) 

The major difference between (25) and (21) is in the 
prediction step. For the flash ADC, the DNLk is modeled as 
completely random with zero mean, so the best prediction 

of INLk+1 is kLNI
~

, (21e). For the pipelined ADC, the 

deterministic component should be added to get the 
prediction as in (25e), which is intuitively reasonable and 
mathematically correct. For other architectures of ADCs, 
similar variations as (25) can be found when appropriate 
circuit level models are used. 

D. Performance Analysis for Proposed Algorithm 

We use the flash ADC equations as an example to study 
how Kalman filtering can help improve test accuracy. The 
variance of the final prediction error, P[k], can be 
calculated from (21) by letting k goes to infinity so that the 
variables settle to their steady state values, notated with a 
subscript “s”, 
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Solving above equations gives the final prediction error 
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variance as 
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++= , (27) 

where the negative solution is discarded. This is the 

variance of the error between 1|
~

−kkLNI  and INLk. Ps is 

smaller than R when C is much smaller than R. This is 
usually true for flash ADCs, since the standard deviation 
of ek could be about 1 LSB or larger for median and high 
resolution ADCs while the standard deviation of DNLk is 
much less than 1 LSB. This means that even the predicted 
value of INLk can have better accuracy than the code 
density results. 

The final estimation error can be calculated as [12], 
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This variance is strictly smaller than R, which means using 
the Kalman filter can effectively improve the accuracy of 
code density testing. Note that for the case of pipeline 
ADCs, the C in (27) should be replaced with C’. 

Equations (21) and (25) show that the computational 
complexity of the Kalman filter algorithm is proportional 
to N. For each INLk value, it takes some basic operations. 
This complexity is acceptable with current data processing 
power and does not introduce any significant computation 
overhead. While the proposed algorithm can achieve the 
same performance as the conventional algorithm with 
much fewer sample and consequently shorter testing time, 
this algorithm has obvious benefits for testing high-
resolution ADCs. 

IV. Simulation Results 
Simulations have been done to validate the effectiveness of 
the proposed algorithms on various types of ADC 
architectures and with different test parameters. All results 
show that the advantage of using Kalman filtering in 
linearity test is significant. 

A. Single ADC Test 

The proposed algorithm was first compared with the 
conventional code-density algorithm for testing a 16-bit 
flash ADC. DNLk of the flash ADC has zero mean and a 
standard deviation of 0.5% LSB. The true INL is 1.39 
LSB. The input signal is an ideal ramp plus a white 
Gaussian noise with zero mean and a standard deviation of 
0.5 LSB. The average number of samples per code bin is 
32. The INLk estimation results are given in Fig. 2 and 3. 
On the top of Fig. 2, true INLk and estimated values with 
the conventional code-density algorithm are plotted. The 
estimation error is plotted on the bottom with a standard 
deviation of about 0.1 LSB. The INL is estimated as 1.68 
LSB. Fig. 3 shows the results when Kalman filtering is 
used, with true and estimated INLk on top and estimation 

error on bottom. The estimation error has a standard 
deviation 0.04 LSB. The INL is estimated as 1.50 LSB. 
Comparing Fig. 2 to Fig. 3, we can see that Kalman 
filtering significantly reduced the estimation error, by 
more than 50%, and the estimated INL is closer to the true 
value, achieved 0.1 LSB accuracy at 16-bit level. 

 
Fig. 2. INLk estimation using code-density method.  

 
Fig. 3. INLk estimation with Kalman filtering. 

 
Fig. 4. INLk estimation using code-density method. Top: True and 
estimated INLk; Bottom: INLk estimation error. 
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Fig. 5. INLk estimation with Kalman filtering. Top: True and estimated 
INLk; Bottom: INLk estimation error. 
 
A 14-bit pipeline ADC with linear errors was then tested 
using two methods in simulation. Its true INL is 2.01 LSB. 
The input noise has a standard deviation of 0.5 LSB at the 
14-bit level. The average number of samples per bin is 32. 
The operation as discussed in (23) was applied to the first 
three stages of the ADC. The results using conventional 
and Kalman filtering methods are plotted in Fig. 4 and 5, 
respectively. We can see that the INLk estimation error 
with Kalman filtering is much smaller. The standard 
deviation of the estimation error with the conventional 
method is 0.1 LSB and is reduced to 0.06 LSB when 
Kalman filtering is used. The estimated INL with Kalman 
filtering, 2.07 LSB, is also closer to the true value than the 
conventional method, 2.20 LSB. 

B. Statistical Result 

Firstly, the relationship between the accuracy improvement 
of the Kalman filtering method and the number of samples 
was studied. For saving simulation time, 14-bit flash 
ADCs were used. The standard deviation of these ADCs’ 
DNLk is 0.8% of LSB. The INL of these ADCs ranges 
from 0.4 LSB to 2 LSB. Input noise has a standard 
deviation of 0.5 LSB. For each different number of 
samples, the RMS value of INLk estimation error was 
collected from 128 ADCs and the averaged values are 
plotted in Fig. 6. The Kalman filtering method can reduce 
the test error by 50% and can achieve the same accuracy 
level by using only about 1/10 of the number of samples as 
compared to the conventional code-density method. The 
mean values of INL estimation error are compared in Fig. 
7 for the two methods. We can see significant 
improvement in test results introduced by the proposed 
algorithm as well. 

 
Fig. 6. RMS value of INLk estimation error vs. number of samples. 

 
Fig. 7. Mean value of INL estimation error vs. number of samples. 
 
The relationship between the accuracy improvement and 
the input noise was investigated as well. 14-bit flash ADCs 
with same error characteristics as in the previous 
paragraph were test with 32 samples per bin on average. 
The RMS values of the INLk estimation error and the mean 
values of INL estimation error are plotted as a function of 
the standard deviation of the input noise in Fig. 8 and 9, 
respectively. Each data point is an average from 128 
ADCs. 

The INLk estimation error was obviously smaller with the 
modified Kalman filtering algorithm and the INL 
estimation error was reduced even more percentage wise. 
The proposed Kalman filtering algorithm can improve the 
test performance of the code-density method and achieve a 
high accuracy level under different noise situations with a 
reasonable number of samples. 
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Fig. 8. RMS value of INLk estimation error vs. standard deviation of input 
noise. 

 
Fig. 9. Mean value of INL estimation error vs. standard deviation of input 
noise. 

C. Discussion 

The results in Fig. 6 is in agreement with (17). When the 
sampling density was multiplied by 4, the INLk estimation 
errors can only be reduced by 2 times, see those circles in 
Fig. 6. This means increasing the number of samples and 
consequently the test time can not efficiently improve 
testing accuracy. We can achieve such improvement by 
applying a short piece of code during the data processing 
stage. Kalman filtering is very cost-effective. 

The capability of the proposed Kalman filtering algorithm 
for significantly reducing linearity test time can be seen 
from Fig. 6 and 7. For achieving 0.2 LSB accuracy in INL 
test, the Kalman filtering algorithm only requires a few 
samples while the conventional code-density needs more 
than 30 samples per code bin on average. This can save 
90% of test time and make it possible for full-code test of 
some highest-resolution ADCs.  

Analysis of (17) and Fig. 8 show that reducing noise also 
is not efficient in improving test accuracy. Reducing the 
standard deviation of the noise by a factor of 4 can only 
reduce the standard deviation of the INLk estimation error 
by a factor of 2. And the noise can not be unlimitedly 
reduced, because the kT/C noise always exists in an ADC 
and is determined by design. For ADCs with higher than 
16-bit resolutions, it is difficult to reduce the noise to less 

than the half LSB level. Fig. 8 and 9 show that the 
proposed algorithm can achieve 0.1 LSB test accuracy 
under such a noise level with a few samples per code while 
the conventional algorithm cannot even with tens of 
samples.  

V. Experimental Results 
The experiment platform was a Teradyne A580 Advanced 
Mixed Signal Tester. Linear ramps were generated by a 
20-bit multi-bit delta-sigma DAC for the code-density test. 
To avoid sudden jump in the output of the waveform 
generator, triangular waveforms were implemented with 
appropriate coding of the input to the DAC. 

Experiments were taken on 16-bit commercial ADC for 
validating the proposed algorithm with Kalman filtering. A 
typical INLk plot of the ADC used in the test is given on 
the top of Fig. 10. This result was measured with 32 
samples per code on average and will be used as a 
reference to evaluate the results from histogram data 
collected with a smaller sample density. 

  
Fig. 10. INLk measurement for a 16-bit ADC. 
 
INLk of the same ADC was then tested with Ds equal to 
one sample per code and the result is plotted in the middle 
of Fig. 10, which does not track the top curve very well. 
Significant noise can be observed. The difference between 
the results using 32 samples per code and one sample per 
code is plotted on the top of Fig. 11. The difference has an 
error band of about 2 LSB. The result with 32 samples per 
code is pretty accurate. The difference mostly came from 
the one-sample-per-code result, because the additive noise 
in the system and quantization effects could not be well 
averaged out by the small number of samples. 

Kalman Filtering was applied to the one-sample-per-code 
result as discussed in Section III. The values of R and C in 
(21) were first characterized for the system and the ADC 
under test from previous measurement results. The new 
INLk is plotted on the bottom of Fig. 10. It matches with 
the 32-samples-per-code result very well. Even the small 
details are almost identical in the two plots. The difference 
between them is plotted on the bottom of Fig. 11, which 
are nearly all less than 1 LSB at the 16-bit level this time. 
By comparing the results, we conclude that the proposed 
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algorithm can reduce the linearity test error by more than 
50% with a very small sample density. 

 
Fig. 11. Estimation error in INLk test. 
 
More experiments with the same setup were done to 
further investigate the improvement introduced by Kalman 
filtering, see Fig. 12. The ADC was tested with one sample 
per code 32 times. For each run, the results estimated with 
and without Kalman filtering are compared to the 
reference result from the 32-samples-per-code test and the 
difference are taken as errors. The top of Fig. 12 shows the 
improvement in INL estimation, where the INL estimation 
errors of one-sample-per-code tests are drawn in circles 
and the estimation errors of one-sample-per-code tests with 
Kalman filtering are drawn in diamonds. It can be 
observed that the errors were reduced from about 2 LSB to 
less than 1 LSB. The bottom of Fig. 12 shows the 
improvement in the variance of INLk estimation errors for 
different runs. The variance was reduced from about 0.4 
LSB2 to 0.07 LSB2 using Kalman filtering. 

 
Fig. 12. Performance comparison: with and without Kalman Filtering. 
 
Some more performance validation was done for the 
algorithm. Two samples per code were used and the results 
are summarized in Fig. 13. As the convention in Fig. 12, 
circles represent results without Kalman filtering and 
diamonds represent results with filtering. The performance 
improvement with Kalman filtering is still obvious. 
Because of the increase in the number of samples, both the 
INL estimation errors and variances of INLk errors became 
smaller. The variance of INLk errors was reduced by a 

factor of two when the number of samples doubles, which 
is in agreement with the discussion in Section II.  

Kalman filtering can significantly reduce the errors in 
ADC test results. From the experimental results, we can 
conclude that the measured ADC specifications from 32 
samples per code and from one or two samples per code 
with Kalman filtering are very close to each other. That 
means we can dramatically reduce the test time, by a factor 
of 10 or more. Since the data processing using Kalman 
filter does not introduce any hardware overhead and a little 
computation overhead which is easy to get in nowadays 
digital technologies, it can help engineers effectively cut 
down the test cost. 

 
Fig. 13. Results with two-samples-per-code tests. 
 

VI. Conclusion 
The performance of the code-density method for ADC 
linearity testing is analyzed in this work and the 
optimization algorithm using Kalman filtering for 
improving test accuracy of the conventional method is 
introduced for flash and pipeline ADCs. Simulation and 
experimental results show that the proposed algorithms can 
effectively reduce the variance of INLk test errors when 
using the same number of samples as the conventional 
algorithm. This method can effectively reduce the test 
time, by 10 times or more, and provide accurate test results 
of ADC static linearity. The proposed algorithm provides 
an enabling solution to the problem of cost-effective test of 
high-resolution ADCs with 16-bit or higher resolutions. It 
can also significantly reduce the test cost for high-volume 
medium and low-resolution ADCs. 
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