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Abstract—Dynamic element matching (DEM) is capable of pro-
viding good average linearity performance in matching critical
circuits in the presence of major component mismatch, but the ap-
proach has received minimal industrial adoption outside of Σ−∆
structures because of challenges associated with implementation of
a required randomizer and because of the time-local nonstation-
arity. This paper presents a DEM approach to analog-to-digital
converter (ADC) testing in which low-precision DEM digital-
to-analog converters (DACs) are used to generate stimulus signals
for ADCs under test. It is shown that in a testing environment,
this approach provides very high precision test results, and time-
local nonstationarity is of no concern. In addition to traditional
random DEM techniques, a deterministic DEM (DDEM) strategy
that eliminates the need for a randomizer is introduced. The
performance of the DDEM method is established mathematically
and validated with detailed simulation results. Furthermore, the
DDEM method requires far fewer samples to achieve the same
level of average linearity than the random DEM approach. It is
demonstrated that both the random DEM and DDEM methods
can be used to accurately test ADCs with linearity that far exceeds
that of the DAC used as a signal generator. This technique of using
imprecise excitations and DEM to test much more accurate ADCs
offers potential for use in both production test and built-in self-test
environments where high linearity test sources are difficult to
implement.

Index Terms—Analog-to-digital converter (ADC) testing,
built-in self-test (BIST), dynamic element matching (DEM),
integral nonlinearity (INL) testing.

I. INTRODUCTION

THE International Technology Roadmap for Semiconduc-
tors (ITRS) [1] recognizes analog-to-digital converters

(ADCs) as the world’s largest volume mixed-signal circuits.
With the increasing complexity of mixed-signal circuits and
the growing market opportunities for low-cost mixed-signal
integrated circuits (ICs), testing of analog and mixed-signal
circuits in general and ADCs in particular has become a
challenging and costly process [2]. Long test times and the
large investments required for the commercial mixed-signal
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testers needed to test high-performance parts with existing test
flows have created a large demand for alternative cost-effective
testing strategies. Built-in self-test (BIST) structures for analog
and mixed-signal circuits are widely recognized as a potential
testing alternative for not only reducing costs associated with
using production testers but also providing a capability to test
deeply embedded systems on a chip (SOCs). BIST approaches
can also provide value added and performance enhancement
if incorporated with self-calibration functionality [3]. There
have been numerous attempts to provide BIST solutions for
ADCs, and most approaches in the literature [4]–[11] have
concentrated on duplicating the operation or performance of a
standard tester on-chip. To date, these methods have received
little industrial adoption. With no practical BIST solution to this
and related analog and mixed-signal problems on the horizon,
the authors of the 2001 ITRS stated that designs for test
and BIST for analog and mixed-signal circuits are essentially
unsolved [1].

In the conventional approach to testing ADCs, a highly
accurate signal is used to stimulate the device under test (DUT).
This stimulus input is typically generated by a digital-to-analog
converter (DAC) with substantially higher precision than that
of the DUT. In duplicating the production testing strategy, most
BIST approaches in the literature also require signal generators
that have substantially higher resolution and linearity than the
DUT. This presents a major design challenge because such
high-performance signal generators invariably require more
design effort and more silicon area than the ADC to be tested.

A new approach to accurately testing an ADC in a production
or BIST environment with dramatically reduced accuracy re-
quirements on the test signal generator was recently introduced
[3], [12]–[14]. With this approach, signal-processing tech-
niques are used to accurately extract performance characteris-
tics of the DUT that are embedded in output test data generated
with low-accuracy signal generators. In [3], a test algorithm was
developed that takes advantage of inherent redundancy in two
nonlinear input signals to accurately test ADCs. In [12], a test
algorithm incorporated information about the spatial frequency
separation of the nonlinear input spectrum from that of the
DUT to characterize an ADC to accuracies that far exceed
the linearity of the stimulus. The mathematics behind linearity
testing of ADCs using nonlinear test signals unknown to the
test algorithm is presented in [13], where a nonlinear stationary
excitation and a level-shifted version of the nonlinear excitation
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Fig. 1. Three-bit flash ADC.

are used as inputs to the DUT. Simulations and experimental
results were used to validate this approach [13], [14].

In this paper, we will present an alternative approach to
testing ADCs using low-accuracy DACs along with dynamic
element matching (DEM) techniques to achieve very high
accuracy in the testing of an ADC. By a low-accuracy DAC,
we mean a DAC implemented on-chip within a small die area
requiring low design effort. Such a DAC serves as a very low
cost signal source, but at the same time, it will have low linearity
and low precision. In the rest of the paper, we will use these
terms interchangeably when describing such a DAC. In contrast
to the referenced work on using nonlinear sources along with
specialized signal-processing algorithms to characterize the
DUT, the approach presented here can utilize existing code-
density-based algorithms for processing test data generated at
the output of the ADC under test.

A discussion of how the ADC to be tested is modeled and
how the integral nonlinearity (INL) is calculated is given in
Section II. The concepts of DEM are discussed in Section III.
Details of using both random DEM and DDEM for test signal
generation are presented in Section IV. In Section V, simulation
results for using DDEM for testing high-resolution ADCs are
discussed. A mathematical formulation of signal generation
for ADC testing using the DDEM approach is provided in
Section VI.

II. ADC MODEL AND INL CALCULATION

Although the proposed DEM methods for generating stimu-
lus signals can be used to test any type of ADCs, this paper will
focus on flash ADC testing. This focus will be followed because
we believe that linearity testing of a flash ADC is modestly
more challenging than testing of other ADC types due to the
random nature of all transition voltages (breakpoints) of the
flash ADC. Extension of the concept to other ADC architectures
is straightforward.

The architecture for the flash ADC that will be used to rep-
resent the DUT is the basic structure depicted (for 3-bit resolu-
tion) in Fig. 1. Not shown is a thermometer to binary converter
that converts the thermometer-coded output of the comparators
to a binary output. When an unknown input voltage is presented
to the ADC, the ADC outputs a binary code that is equal to the

Fig. 2. Nonideal ADC transfer curve and its fit line.

number of comparators triggered. The relationship between the
ADC output code and the input voltage is referred to as the
ADC’s transfer curve as shown by the staircase curve in Fig. 2.
In an ideal flash ADC, the tap voltages in the resistor string are
uniformly spaced, and the comparators have no offset voltages,
resulting in uniformly spaced transition voltages. In this case,
the staircase curve will have all the step edges lying perfectly
on a straight line, and one would have a perfectly linear ADC.

In an actual ADC, the transition voltages will differ from
their ideal values due to both resistor mismatches and com-
parator offsets as a result of process variations. Although the
effect of process variations may appear random from batch
to batch, from wafer to wafer, from die to die, or even from
one local area to another on the same die, their total effect to
the ADC’s transfer curve is fixed once the ADC is fabricated.
This effect causes the step edges in the transfer curve to move
away from the straight line, resulting in a nonlinear transfer
curve. This transfer curve nonlinearity is termed the ADC’s
static nonlinearity and is characterized, in part, by the INL and
differential nonlinearity (DNL) performance specifications of
an ADC. The effects of the random components of the transition
voltages can be seen in a typical transfer characteristics of an
ADC shown in Fig. 2 for VREF = 2 V.
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There are several alternative but similar definitions of the
INL of an ADC. Some authors [15] define an INL function
as a continuous function of the ADC input voltage INL(Vin).
Others define an INL function from a discrete sequence denoted
as INLk determined by the transition points of the ADC, and
others define an INL function from a discrete sequence of
output code densities obtained by exciting the ADC with a
known test signal such as a ramp or sinusoid. In all cases, the
INL is defined to be the maximum magnitude of either the
continuous or discrete INL functions, and in all cases, there
is usually not much difference in the INL obtained from any
of the three definitions. In this paper, we follow what is most
commonly used by test engineers in industry in defining the
INL. Specifically, the transition point Tk will be first estimated
from code density outputs of the DUT generated from a char-
acterized input signal. The INLk of an ADC is defined relative
to a fit line to the actual transfer characteristics. The fit line
is usually the endpoint fit line and is depicted in Fig. 2. If we
define n to be the resolution of the ADC and let N = 2n, an
ideal n-bit ADC will have N − 1 uniformly spaced transition
points. If there are no missing codes in the ADC output, the
nonideal ADC will have transition points at T1, T2, . . . , TN−1.
The N − 1 uniformly spaced points on the endpoint fit line are
denoted by T1, T2, . . . , TN−1 and are related to the actual first
and last transition points by the expression

Tk = T1 +
TN−1 − T1

N − 2
(k − 1), k = 1, 2, . . . , N − 1.

(1)

The pairwise difference between the actual transition points
and the fit-line transition points is defined as INLk and is
expressed in LSBs as

INLk =
Tk − Tk

1LSB
=

Tk − T1

TN−1 − T1
(N − 2) − (k − 1)

k = 1, 2, . . . , N − 1. (2)

Since the fit line is the endpoint fit line, INL1 =
INLN−1 = 0.

A linear ramp is widely used in industry as the input signal,
and the numbers of occurrences of each output are tallied into
corresponding code bins. Notationally, Hk is the number of
occurrences of code k, and the accumulated code density to
code k, Hck is given by the expression

Hck =
k∑

i=1

Hi. (3)

Since Vin is proportional to time and the sampling intervals
are constant, the total number of accumulated samples for a
linear ramp input is linearly proportional to Vin. Thus, the
transition voltages can be estimated from the corresponding
code densities and from these estimates, an estimate of INLk

as given in (2) can be expressed as

INLk
∼= INLk =

Hk − H1

HN−1 − H1
(N − 2) − (k − 1)

k = 1, 2, . . . , N − 1. (4)

Tests using INLk as the measured value of INLk are often
termed histogram-based tests, and the histogram-based method
is widely used to test ADCs. For the code density estimate INLk

to provide a good estimate of INLk, it is imperative that the
linearity of the input ramp be a decade or more better than
that desired of the ADC under test because any nonlinearity in
the input signal will be directly translated into INLk estimation
errors with the histogram method. Thus, if the ramp is generated
using a DAC, the DAC must have resolution and linearity
that are at least 3 bits higher than the targeted resolution and
linearity of the DUT. This is a major challenge in production
testing of high-resolution ADCs and an even greater challenge
for BIST solutions of both medium- and high-resolution ADCs.

The DEM histogram-based testing method discussed in this
paper overcomes this challenge by allowing the use of low-
linearity DACs for high-accuracy testing of ADCs. With the
DEM approach, the same signal-processing algorithms used in
the histogram method are used to “measure” the ADC linearity
performance. This is possible because the histogram data gen-
erated with DEM DACs is, in an appropriate statistical sense,
nearly identical to the histogram data that would be generated
if an ideal linear ramp were used to test the ADC.

III. DEM

The performance of most useful DAC architectures is depen-
dent upon the matching properties of a set of critical circuit
elements. Depending on the architecture, these elements might
be resistors, capacitors, or transistors. Element-matching errors
are inevitable due to inherent process variations. Special layout
techniques are widely used to reduce these errors, but layout
alone cannot provide the matching performance needed for
obtaining an acceptable yield in many applications. Increases
in area, special processes, and/or laser trimming can be used to
further reduce the effects of matching errors, but these methods
generally come at the expense of significant cost increases, thus
limiting where these approaches are economically viable.

The DEM approach [16], [17], introduced by Van De
Plassche in 1976, is based upon dynamically rearranging
matching critical elements so that, in a statistical time-average
sense, the circuit performs as if the elements were matched.
In some applications, good statistical time-average matching
performance provides the same system performance as would
be obtained if actual matching were achieved, and in others,
the local nonstationarity inherent with DEM is totally unac-
ceptable. Standard linearity performance specifications such
as INL and DNL are often defined in the context of a static
transfer characteristic of a device but measured by taking a
large number of samples and using various signal-processing
algorithms to extract these linearity specifications from a large
set of measurement data. This approach to measuring key
performance specifications can mask the local nonstationarity
inherent with DEM structures.

The DEM method was used by Jensen and Galton [18], [19]
to improve linearity performance of DACs. In particu-
lar, they showed that DEM can appreciably improve the
spurious-free dynamic range (SFDR) performance of moder-
ately low-linearity DACs [18]. The improvement in linearity
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Fig. 3. (a) Three-bit current mode thermometer-coded DEM DAC. (b) DEM switching signals generator.

specifications is attributable to the randomizing effect provided
by DEM, which spreads errors in the DAC over a wide fre-
quency spectrum. Although this approach provides a significant
improvement in a linearity specification if a large number of
output samples is used to characterize the DAC, DEM does not
reduce the errors in individual DAC output voltage samples,
nor does it reduce the errors in the average values if a short
observation time window is used. These instantaneous or short
time-average errors are termed time-local errors of the DAC,
and they significantly limit the applications of DEM. Other
researchers [20]–[27] have used DEM in ∆−Σ converters, and
the high oversampling ratio inherent in these structures can
either partially or totally remove the limitations associated with
the time-local errors. Most of these algorithms are input data-
dependent and are based upon variants of a “first use–next use”
algorithm. A first use–next use algorithm tries to use all or most
elements before reusing them, and when reuse occurs, those
used next will be the ones that were previously used first, much
like the data flow in and out of a first-in first-out (FIFO) memory
structure. Included in these data-dependant first use–next use
(DDFN) algorithms are what some authors term individual level
averaging (ILA) [20], data weighted averaging (DWA) [21], and
some variations [22]–[25] of these approaches.

Although there are limitations of where DEM-based DACs
with a good “linearity specification” can be used because
the actual nonlinearity is not removed, the improved linearity
specification provided by DEM can be exploited if DEM DACs
are used to generate stimulus signals for ADC testing. This ap-
proach is particularly attractive for BIST applications because
a DEM test signal generator can be realized with a not-so-
accurate DAC, thus dramatically reducing the silicon area and
design overhead needed for including BIST circuitry on chip.

In this paper, two types of component switching sequences
are used to improve the effective linearity of a DAC used to
test an ADC. One is a standard DEM approach, and the other
uses a deterministic switching sequence to derive a desired
mean performance of a DAC. We will call the latter approach a
deterministic DEM (DDEM) approach. To distinguish between
the random and deterministic switching sequences used for
DEM, we will use the term “random DEM” when particu-
lar emphasis on the random nature of a switching sequence
is needed.

In the DEM approaches discussed in this paper, the DEM
DAC may have nominally more physical bits of resolution than
the ADC under test, or it may have comparable resolution but
the inherent linearity requirements of the DAC will be several
bits less than that of the DUT. Although the DEM approach
can be used for testing several performance parameters of an
ADC, in this work, we will restrict the focus to testing the INL
performance of an ADC.

IV. DEM DACS FOR ADC TESTING

A current-steering thermometer-coded DAC is shown in
Fig. 3(a). Ideally, all current sources are of the same value and
all switches are matched. If the operational amplifier (op amp)
has sufficiently high gain or is sufficiently linear, the output of
the DAC will be linearly related to the digital input code if a
simple binary to thermometer n : 2n decoder is used to drive the
switches. If there is mismatch in the current sources, however,
there will be a nonlinear relationship between the digital input
code and the resultant analog output of the DAC. The current-
steering DAC of Fig. 3(a) can be converted to a DEM DAC if a
randomizer (sometimes termed a scrambler) is placed between
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Fig. 4. Two-bit current-steering DAC example.

the n : 2n encoder and the switches of the DAC, as shown in
Fig. 3(b). With an ideal randomizer, every time any input code
k is presented to the randomizer, it will randomly select and turn
on k switches. In this way, the expected value of the output cur-
rent will be proportional to k for all input codes. If the op amp
introduces no nonlinearities, the expected output of the DAC is
linearly related to the input code, and thus, if a sufficiently large
number of samples are used to measure linearity properties
of the DAC such as INL, total harmonic distortion (THD), or
SFDR, the DEM DAC will have measured properties that agree
with those of a truly linear DAC, but individual outputs of the
DAC or outputs over short time intervals of the DAC can be
far from linear. If the intrinsic nonlinearity of the DAC is m
bits lower than the physical resolution of the DAC, short-term
deviations from a linear fit line can be in excess of 2m bits,
and short-term differential nonlinearities can be even larger.
This short-term nonstationarity is an unavoidable and inherent
limitation of DEM DACs and limits where they can be used.
Even in applications where the nonstationarity is not a problem,
the issue of the randomizer does present some challenges,
and a major portion of the research on using DEM has been
focused on the randomizer. If the randomizer does not provide
a purely random output, spectral tones will appear in the DAC
output, and these tones are unacceptable in many applications.
Invariably two issues must be simultaneously addressed when
designing the randomizer. One is the randomness of the output,
and the other is the hardware complexity needed to select
the switches identified by the randomizer. It is these tradeoffs
that most researchers have focused on. Short-length determin-
istic switching sequences are particularly attractive because
the hardware requirements for implementing these switching
sequences can be very small, but the spectral tone problem can
be severe, and most short-length and even intermediate-length
deterministic switching sequences will not provide an output
on a chip that is average linear. Some deterministic switching
sequences do, however, exist that are perfectly average linear,

and some short-length deterministic switching sequences do
exist that are nearly average linear, and when a DDEM DAC
is used to test an ADC, the concept of tones plays no role on
INL testing. Furthermore, with the appropriate deterministic
switching sequences, the performance of the DDEM DAC can
be much better than that of a random DEM DAC.

The relative performance of a DDEM DAC and a ran-
dom DEM DAC can be illustrated. Consider a 2-bit current-
steering DAC with current sources of values I0 = 0, I1 = 0.5,
I2 = 1.35, and I3 = 0.7. The outputs of this DAC along with an
endpoint fit line are shown in Fig. 4(a). The current sources in
this example are far from matched, and a significant INL should
be apparent from Fig. 4(a). Consider now the deterministic
switching sequence comprised of exactly three samples per
code where for code “00,” I0 is selected three times; where
for code “01,” I1, I2, and I3 are all selected exactly once;
where for code “10,” I1 + I2, I1 + I3, and I2 + I3 are each
selected once; and where for code “11,” I1 + I2 + I3 is selected
three times. These samples are shown by the diamonds in
Fig. 4(b). It should be apparent that all of the intermediate
samples deviate substantially from the fit line. The average of
the three samples is also shown in the figure. These averages
are all exactly on the fit line. Thus, this deterministic switching
sequence provides precisely average linear performance. If the
deterministic switching sequence length were decreased to two
or increased to four, the average for the switching sequence
would be far from average linear. This precisely average linear
property is not dependent upon the values of the current source,
and as will be seen later, this precisely average linear property is
particularly attractive when using a DDEM DAC to do linearity
testing of an ADC.

Consider now a random DEM switching sequence in which
p individual current sources are randomly selected and in which
p pairs of current sources are randomly selected for the inputs
for codes 01 and 10. The endpoint codes 00 and 11 are of no
concern. A simulation for p = 100 was run, and the average
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Fig. 5. Cyclic DDEM switching of a 4-bit DAC. (a) First output sample when k = 5. (b) Second output sample when k = 5. (c) Third output sample when
k = 5. (d) Fourth output sample when k = 5.

value for code 01 was 0.908, and the average value for code
10 was 1.676. These averages deviate by −.058 and +.024,
respectively, from the fit line. Thus, even with 100 samples,
the average values deviate from the fit line in contrast to the
deterministic switching sequence of length 3, where the average
values were precisely on the fit line. This simple example
should support the premise that some deterministic switching
sequences can be guaranteed to be precisely on the fit line,
that some deterministic switching sequences will deviate sig-
nificantly from the fit line, and that to get close to the fit line
in the average sense, a large number of random samples will be
required.

A. Natural DDEM Switching Sequence

Consider now the testing of an m-bit ADC with an n-bit
DAC. Assume p samples per DAC code are used to generate test
signals for the ADC. This would correspond to nc = p2n−m

samples per ADC code. The simple three-element deterministic
switching sequence used for the 2-bit example can be extended
to any number of bits while still maintaining perfectly linear
average performance. We will refer to this as the natural DDEM
switching sequence. Implementation of the natural DDEM
switching sequence will require 2n − 1 excitations for each
DAC input code and correspondingly provide, on the average,
2n−m(2n − 1) ADC outputs per ADC output code. For exam-
ple, testing a 10-bit ADC with a 13-bit DDEM DAC would
require 8184 samples/code, and testing a 16-bit ADC with a
19-bit DAC would require 524 280 samples/ADC output code.
This high average number of samples per ADC output code
is unacceptably high. An alternative deterministic switching
sequence will now be described that provides good average
linearity performance with a reduced number of samples per
ADC output code.

B. Cyclic DDEM Switching Sequence

For convenience, one more current source element has been
added to the DAC in Fig. 3; thus, the DAC now has totally
N = 2n current sources. The integer q is defined by the ex-
pression q = N/p, where it is assumed that p, the number of
samples per DAC input code, is selected so that q is an integer.

All current sources are arranged conceptually and sequen-
tially around a circle to visualize a wrapping effect whereby the
N th current source is adjacent to the first current source. The

physical layout of the current sources does not need to have any
geometric association with this cyclic visualization.

1) Define p index current sources by the sequence
I1, I1+q, I1+2q, . . . , I1+(p−1)q . These p current sources
are uniformly spaced around the circle.

2) For each input code k, 0 ≤ k ≤ N , the DAC generates
p output voltages. Each output voltage is obtained by
switching k current sources consecutively starting with
one of the p index current sources. Thus, the dth sample
(1 ≤ d ≤ p) is obtained by switching k current sources
starting with I1+(d−1)q and continuing around the circle
in the clockwise direction until exactly k current sources
have been selected.

This is termed the cyclic DDEM switching sequence. It may
appear to be similar to some of the DDFN approaches that are in
use, but, in contrast to the DDFN approaches, the cyclic DDEM
switching sequence is not data-dependent and is completely
deterministic.

Fig. 5 illustrates the cyclic DDEM switching sequence for
a 4-bit DAC when the input code is k = 5. In this example,
n = 4, N = 16, p = 4, and q = 4.

Although the cyclic switching sequence does not provide
perfectly linear average performance for the DAC output, we
will show later that this sequence performs quite well when
used for testing of ADCs. At this point, a comparison between
the cyclic DDEM switching sequence and the random DEM
switching sequence can be made from a hardware implemen-
tation viewpoint. It can be shown that the logic needed to
implement the cyclic DDEM approach is much simpler than
that needed for the random DEM switching sequence. No
scrambler is needed in the cyclic DDEM approach and because
the index current source values are shifted by a fixed amount,
a shift register can be used to drive the switches that select the
current sources.

Although the cyclic DDEM switching sequence results in a
significant reduction in the number of samples per ADC output
code when compared with what is obtained for the natural
DDEM switching approach, it must be recognized that the
number of current sources and switches is still large when n
is large. Some preliminary results focusing on reducing the
required number of current sources with DDEM switching
sequences can be found in [28]. In the remainder of this paper,
we will focus on the performance potential for the DDEM
approach for testing of ADCs and on a comparison of the
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DDEM approach with the random DEM approach in the same
test environment.

C. Random DEM and DDEM Testing of
Medium-Resolution ADCs

Simulation results showing the performance potential of
using DEM for testing medium-resolution ADCs will be pre-
sented in this section. A comparison of the ideal random
DEM and the proposed DDEM approaches will also be made.
Although we could have compared against any other existing
DEM strategies for low-resolution DACs, implementing such
strategies even in software becomes a major challenge when
the resolution of the DAC becomes high. On the other hand, an
ideal randomizer is physically impossible to implement, but it is
really easy to implement in simulation. That is why we choose
to compare against the ideal random DEM approach.

It will be assumed that the DUT is an R-string flash ADC
as described in Fig. 1 and that the signal generator used for
testing is a current-steering DAC as described in Fig. 3. The
ADC resistors will be modeled as uncorrelated random samples
from a truncated Gaussian population with a mean value of
R0 Ω and a standard deviation of 0.2R0 Ω, where R0 is
the nominal value of the resisters. Because realistic resistance
values due to random process variations typically follow a
Gaussian distribution with the tails truncated, our simulation
also uses a truncated Gaussian distribution to generate the
resistance values. Any resistance values that are outside the
−5 sigma band were discarded and regenerated. It will be
assumed that there is no offset voltage in the comparators of
the ADC because the comparator offset causes transition point
errors that can be lumped into errors in the resistor string. It will
also be assumed that the DACs nonlinearity is dominantly due
to mismatch in the current sources. To model the mismatch in
the current sources, it will be assumed that the current sources
come from uncorrelated samples of a truncated Gaussian ran-
dom variable with a mean of I0 A and a standard deviation of
0.2I0 A, where I0 is the nominal value of the current sources.
As for the resistors, the truncation in the distribution is at the
−5 sigma value in the original Gaussian distribution.

The DUT, which is an ADC with 7 bits of resolution, will
be tested with a DAC that has 10 bits of resolution. In these
simulations, it will be assumed that the output code densities of
the DUT are used to calculate the INLk from the expression

INL ∼= N−1
max
k=1

(INLk) (5)

where INLk is given by (4).
Figs. 6 and 7 show simulation results for a population of

100 ADCs tested with a single DAC for both random DEM
and the cyclic DDEM switching sequences for the DAC. One
hundred twenty-eight samples per digital input code to the DAC
were used to generate the data in Fig. 6. Eight samples per
digital input code to the DAC were used to generate the data in
Fig. 7. The DAC was selected as a sample from the population
DACs that were generated and had an INL of 10.056 LSB.
Although the simulation results presented in these figures were
based upon a single DAC from the population and a limited set

Fig. 6. Comparison of the two methods [random (R) and deterministic (D)]
for estimating INL error using 100 different ADCs and p = 128.

Fig. 7. Comparison of the two methods [random (R) and deterministic (D)]
for estimating INL error using 100 different ADCs and p = 8.

of 100 DUTs, extensive simulation had been conducted with
many different DACs from the sample population and many
different sets of ADCs. The results shown in Figs. 6 and 7
are representative of what were obtained in a large number
of simulation runs. From these figures, several important ob-
servations can be made. First, both the random DEM and the
DDEM approaches provide good estimates of the actual INL
of the DUT. Second, the fact that the cyclic DDEM switching
sequence is not perfectly average linear does not seriously
degrade the potential of the DDEM approach. Third, the cyclic
DDEM switching sequence offers substantial improvement in
testing performance over that of the random DEM approach
for a given number of samples using both DAC architectures.
Finally, the DDEM approach with p equal to 8 has performance
comparable to that of the random DEM approach with p equal
to 128. This latter result is particularly important because the
substantial reduction in the number samples will directly result
in a substantial reduction in testing time when used in either
BIST or production test environments.

It should be observed that although the DDEM approach
performs very well in the simulation, the cyclic switching
sequence is just one of many DDEM switching sequences
that can be used. The issue of optimality of the determinis-
tic switching sequence has not been addressed. It should be
emphasized that many deterministic switching sequences will
give very poor results. It may be the case, however, that other
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Fig. 8. INL estimation error distribution when testing 1000 different ADCs
with no DEM DAC.

deterministic switching sequences perform even better than the
cyclic approach considered here.

V. DDEM TESTING OF HIGH-RESOLUTION ADCS

In this section, the use of DDEM DACs for testing high-
resolution ADCs will be considered. Although random DEM
will also give good performance, the discussion in this section
will be limited to DDEM because a much smaller number of
samples will be required to obtain a given level of performance.

Using the same model as in the previous section, DACs with
18-bit resolution were used to test 16-bit ADCs using histogram
output data. The DAC current sources were generated from
uncorrelated samples of a truncated Gaussian random variable
with a mean of I0 A and a standard deviation of 0.2I0 A.
The resistors in the R-string of the ADC were generated as
uncorrelated samples from a truncated Gaussian population
with a mean value of R0 Ω and a standard deviation of
0.03R0 Ω. The DAC output range was made 2% bigger than
the ADC input voltage range to maintain good uniformity in
the input signal at both extremes of the input range. Random
noise was added to all DAC outputs to model device noise and
measurement errors. The random noise for each output was
from random uncorrelated samples of a uniformly distributed
random variable with the distribution bounded by ±3 LSBDAC.

One thousand ADCs were randomly generated. These ADCs
had an average INL of 6.65 LSB with the INL for individual
ADCs ranging from 2.5 to 15.7 LSB. A single DAC from the
sample population was selected to test these 1000 ADCs. The
DAC used for the testing had an INL of 136.5 LSB (34.1 LSB
relative to that of the ADC) which corresponds to about 10 bit
DAC linearity. Fig. 8 shows the histogram of the INL estimation
errors for the 1000 different ADCs when the DAC used for
testing has no DEM, but each DAC code is input 128 times to
the ADC. It is apparent from this figure that the large INL of the
DAC causes large errors in the estimate of the INL of the ADC.
Figs. 9 and 10 show how the errors in the INL estimation are
reduced with the cyclic DDEM switching sequence for p = 32
and p = 128 DAC outputs per digital code. The maximum error
in INL estimation in this sample of 1000 ADCs is 1.12 LSB
with p = 32 DAC input codes, and this drops to 0.25 LSB for
p = 128 DAC input codes. These simulation results suggest that

Fig. 9. INL estimation error distribution when testing 1000 different ADCs
using a DDEM DAC with p = 32.

Fig. 10. INL estimation error distribution when testing 1000 different ADCs
using a DDEM DAC with p = 128.

16-bit ADCs can be tested using DDEM techniques with DACs
that are only about 10-bit linear.

The histogram plots for the 1000 samples of Figs. 9 and 10
show little about how accurately the INLk of the individual
ADCs were measured. The plot shown in Fig. 11 shows a
comparison of the INLk estimated by the DDEM algorithm
with the actual INLk for one of the ADCs. This is representative
of what was observed for other ADCs in the sample population.
The actual and estimated INLk are in close agreement for all
transition points.

The INL of the 1000 ADCs used in the previous simu-
lation were all quite large, and most, if not all, would not
pass acceptance criteria for marketable 16-bit ADCs. We thus
considered a second set of 1000 ADCs that were generated with
a smaller value for the standard deviation of the resistor string
values. The standard deviation in the R-string was reduced
so that most of the ADCs had an INL of around 0.5 LSB.
Thus, this test involves testing ADCs that would be considered
good by most manufacturers. The DAC has an INL equal to
88.1 LSB, and the DDEM was based upon p = 128 samples
per DAC input code. This original DAC is only about 11-bit
linear. Simulation results are shown in Fig. 12. It should be
apparent from this plot that there is close clustering around
the line defined by estimated INL = actual INL + 0.14 LSB.
This small testing offset error provides a modestly pessimistic
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Fig. 11. Estimated and real INLk for a given ADC using a DDEM DAC
with p = 128.

Fig. 12. Testing scheme for 1000 ADCs when using a DDEM DAC
with p = 128.

estimate of the actual INL. It is important to note, however,
that in this sample, no samples lie below the ideal test criteria
line defined by estimated INL = actual INL, indicating that the
test has not classified any parts to have an INL better than
their actual INL. If we define the test acceptance criteria to be
devices with a tested (i.e., estimated) INL of at most 0.8 LSB
INL and a reduced grade acceptance criteria, termed as “not so
good” (NSG), to be devices with tested INL of between 0.8 and
2 LSB, we obtain the classifications of parts indicated in the
same figure. We can see in Fig. 12 that although a few good
parts are tested as NSG, there are no NSG parts classified as
good ones.

We will assume that parts that have INL bigger than
2 LSB are classified as bad parts and should not be shipped to
customers. To investigate the effectiveness of the test algorithm
of screening defective parts from good parts, we added 10 parts
to the sample of size 1000 that had actual INLs near 2 LSB
and higher to the population of 1000 mostly good parts. Fig. 13
shows the results of this test. It should be noted that no bad
parts are tested as good and that no bad parts are tested as NSG.
Furthermore, no good parts were tested as bad and even no NSG
parts were tested as good. This slightly pessimistic test will

Fig. 13. Testing scheme for 1000 ADCs when using a DDEM DAC
with p = 128.

Fig. 14. INL estimation error distribution for 1000 ADC/DAC pairs
for p = 128.

occasionally move an NSG part with an INL modestly below
the bad boundary into the bad classification; it will much more
rarely move a bad part near the NSG boundary into the NSG
classification, but the probability of moving a good part into the
bad category and a bad part into the good category is very small.

The previous simulations focused on using a single DDEM
DAC to test a large number of different ADCs. This situation
would be common in a production test environment where the
excitation source could be part of an ATE system or could
be included on the device interface board (DIB) in a tester.
In a BIST environment, the DDEM DAC would ideally be
fabricated on the same piece of silicon as the DUT. As such,
each DUT would have a different DDEM DAC for testing.
To address this issue, 1000 ADC/DAC pairs with the cyclic
deterministic switching sequence were considered in which
the ADCs and the DACs were randomly and independently
selected from truncated Gaussian distributions. The standard
deviation of the resistors in the R-string was again reduced so
that most of the ADCs in the population has an INL of around
0.5 LSB. The 1000 DDEM DACs had 18-bit resolution, and the
population had an INL that was, at best, 13-bit linear. Noise was
added to each DAC output. The noise was uniformly distributed
between −3 and +3 LSB of the DAC. Simulation results for the
INL estimation are shown in Fig. 14.

From Fig. 14, it should be apparent that the testing results
for random ADC/DAC pairs are also quite good with a mean
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Fig. 15. Histogram of maximum signed INLk errors multiplied by INLk sign
for 1000 ADC/DAC pairs.

error of around 0.2 LSB. These results are comparable to what
was obtained using a single DDEM DAC to test a population
of ADCs.

The INL estimate may differ from the INLk estimate because
the maximum INL deviation will generally differ from where
the INLk estimation error attains a peak value. The INLk

difference is a better indicator of how closely the individual
transition points of the ADC can be estimated. Fig. 11 shows
how the INLk estimates related to the actual INLk for a single
ADC/DAC pair. Fig. 15 shows the maximum error in the INLk

estimates multiplied by the sign of the INLk for the 1000
ADC/DAC pairs used to generate the data of Fig. 14. In Fig. 15,
multiplication by the sign of INLk was used to reflect whether
the error was due to an overestimation or an underestimation
of the actual INLk, with a negative result corresponding to
an overestimation and a positive result corresponding to an
underestimation. From Fig. 15, it is apparent that the un-
derestimates and the overestimates are nearly equally likely
to occur.

A comparison of the results in Fig. 15 with those in Fig. 14
shows that the maximum error in the 65 534 INLk estimates for
each pair is modestly larger than the error in the INL estimates,
but all INLk estimates are close to the actual INLk.

Most existing ADC testing approaches utilize DACs that
have higher resolution than the DUT. This is generally consid-
ered necessary to avoid the introduction of significant quantiza-
tion errors. Inasmuch as the linearity of the DDEM DAC can far
exceed its resolution, the question of whether the DDEM DAC
resolution can be reduced to levels comparable to or possibly
even less than the resolution of the DUT deserves attention.
We will not provide a detailed investigation of this issue in
this paper but will consider the specific situation where the
resolution of the DDEM DAC is equal to that of the DUT.
Specifically, a 16-bit resolution DAC with 54 LSB INL was
used to test the same 1000 16-bit ADCs considered in the previ-
ous simulation results. Beyond the reduction in resolution of the
DAC, the simulation conditions are the same as before. Fig. 16
shows simulation results for the cyclic switching sequence with
p = 128. The INL error estimation is mostly less than 0.5 LSB,
and using the same test acceptance criteria as before, there are
no bad parts that have been identified as good parts. Likewise,

Fig. 16. INL estimation error distribution when testing 1000 different ADCs
using a 16-bit DDEM DAC with p = 128.

Fig. 17. INL estimation error distribution for 1000 ADC/DAC pairs
for p = 128.

no not so good parts are classified as good parts because the
INL was modestly overestimated in this simulation.

The application to a BIST environment was considered by
using 1000 DDEM DAC/ADC pairs. The DDEM DACs all
had 16-bit resolution, and the cyclic deterministic switching
sequence was used for the DDEM. As before, the ADCs
and DACs were randomly and independently selected from
truncated Gaussian distributions. The standard deviation of
the resistors in the R-string was again reduced so that most of
the ADCs in the population had an INL of around 0.5 LSB. The
1000 DDEM DACs had 16-bit resolution, and the population
had an INL that was, at best, 12-bit linear. The same simu-
lation conditions as before were used. The results are shown
in Fig. 17.

It should be noted that the testing results for random
ADC/DAC pairs shown in Fig. 17 are also quite good, with a
mean error of around 0.5 LSB, which are comparable with the
results obtained for Fig. 16.

VI. MATHEMATICAL ASSESSMENT OF DDEM
TESTING PERFORMANCE

The previous section concentrated on the simulated perfor-
mance of using DDEM DACs to test both low- and high-
resolution ADCs. In this section, we will concentrate on a
mathematical formulation of the DDEM testing concept. This
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section will formally show that the “averaged DAC” with
our DDEM approach can generate a signal that is very close
to being an ideal ramp, which means that the DC transfer
characteristics of our averaged DAC are very close to being
linear. This is done by showing that the INL of the averaged
DDEM DAC is very small. It must be stressed here that what
we are going to show is much stronger than showing that the
expected value of the averaged DAC output is on the fit line,
which is guaranteed by construction.

The mismatch in the current sources of the DAC will be
modeled by the relationship

Ij = I0(1 + εj), j = 1, . . . , N (6)

where εj , j = 1, . . . , N , are independent and identically dis-
tributed Gaussian random variables that model the mismatch
in the current sources. Beyond the current source mismatch, it
will be assumed that the DACs are ideal. The standard notation
for the distribution of εj is thus εj independent identically
distributed (i.i.d.) ∼ N(0, σ2), where the standard deviation σ
is determined by the area allocated in the design and by process
variations.

Inasmuch as one extra current source has been added to the
current source array for notational convenience, we will define
the fit line to be the line connecting the DAC output voltages
corresponding to the first and last DAC thermometer input
codes. The first input code corresponds to no current sources
being turned on, and the last code corresponds to all N current
sources being turned on. The DAC LSB is defined to be the volt-
age difference between the DAC outputs corresponding to these
two codes divided by the number of transitions, N . Inasmuch
as the DAC output voltage is assumed to be proportional to the
output current of the current source array, we will characterize
the linearity of the output current instead of the voltage in all
computations. The output current for the input code 0 is 0, and
the output current for input code k for 1 ≤ k ≤ N is given by

I(k) =
k∑

j=1

Ij = kI0 + I0

k∑
j=1

εj . (7)

From (7), it follows that the output for code N is given by

I(N) =
k∑

j=1

Ij = NI0 + I0

N∑
j=1

εj (8)

therefore, the LSB of the DAC is given by

ILSB =
I(N)
N

= I0 +
I0

N

N∑
j=1

εj . (9)

It can be observed that the random variable ILSB is Gaussian
with a N(I0, (I2

0/N)σ2) distribution. Since N is very large for
even modest resolution, the deviation of ILSB from I0 is very

small. The fit line of the DAC for each input code k is then
given by

IFIT(k) = kILSB = kI0 + I0
k

N

N∑
j=1

εj . (10)

It follows that the INLk for the DAC without using DEM is
given by the expression

INLk =

{
0, k = 0, N
I0

(∑k
j=1 εj − k

N

∑N
j=1 εj

)
, 0 < k < N . (11)

It follows from (11) that the distribution for the INLk is [29]
N(0, ((N − k)kI2

0/N)σ2), and the largest standard deviation
in INLk (in LSB) is approximately

σINLk
=

√
N

2
σ. (12)

The average deviation from the average fit line for the DDEM
DAC will now be determined. Because each code is input p
times and because it will be assumed that the first and last
input codes (codes 0 and N ) are also input p times, these codes
determine the endpoint fit line. It thus follows that the average
fit line is identical to the fit line defined in (10). The average
deviation from the average fit line at code k is defined to be the
INLk for the DDEM DAC at code k and is denoted as INLk.

Each of the p inputs for code k in the cyclic switching
sequence is given by

Id(k) =
k∑

j=1

I(d−1)q+j , d = 1, . . . , p. (13)

The average of the p samples for code k, which is denoted by
I(k), is given by

I(k) =
1
p

p∑
d=1

k∑
j=1

I(d−1)q+j . (14)

It follows from (6), (10), and (14) that

INLk = I(k) − IFIT(k) =
I0

p

p∑
d=1

k∑
j=1

ε(d−1)q+j − k
I0

N

N∑
j=1

εj .

(15)

From this simple expression, it can be observed that when-
ever k is a multiple of q, that is k = hq, then (15) can be
rewritten as

INLk = I(k) − IFIT(k)

=
hI0

p

N∑
j=1

εj − hq
I0

N

N∑
j=1

εj

= hI0

(
1
p
− q

N

) N∑
j=1

εj . (16)

Hence, the cyclic switching sequence was defined under
the assumption that qp = N , and it follows that the term in
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parenthesis in (16) is zero, and thus, the INLk = 0 whenever k
is a multiple of q. This implies the average value of the input for
the cyclic switching sequence is exactly on the fit line whenever
k is a multiple of q.

We will now derive an expression for the standard deviation
of the INLk when k is not necessarily a multiple of q. The two
terms on the right-hand side of (15) contain correlated random
variables; thus, the standard deviation is difficult to obtain
directly from this equation. If we express k = tq + s, then the
index k will span the linear space from 0 to N when t and s
span the linear space from 0 to p − 1 and 1 to q, respectively,
where we are again assuming that pq = N . It follows from (6)
and (14) that

INL(k) = kI0 + I0
1
p


t

p∑
d=1

q∑
j=s+1

ε(d−1)q+j

+ (t + 1)
p∑

d=1

s∑
j=1

ε(d−1)q+j


 . (17)

This can be simplified to the expression

INL(k) = kI0 + I0
1
p


t

N∑
j=1

εj +
p∑

d=1

s∑
j=1

ε(d−1)q+j


 . (18)

It thus follows from (10) and (18) that

INLk = I0
1
p


t

N∑
j=1

εj +
p∑

d=1

s∑
j=1

ε(d−1)q+j


 − I0

k

N

N∑
j=1

εj .

(19)

This can be rewritten as

INLk = I0


(

1
p
− s

N

) p∑
d=1

s∑
j=1

ε(d−1)q+j

− s

N

p∑
d=1

q∑
j=s+1

ε(d−1)q+j


 . (20)

The random variables under the two summands in (20) are
now uncorrelated, and thus, it follows that the normalized
INLk normalized to a LSB is a Gaussian random variable
characterized by

INLk

I0
∼ N(0, Aσ2) (21)

where

A =
(

1
p
− s

N

)2

ps +
( s

N

)2

p(q − s) =
s(q − s)

pq
. (22)

It can be shown from (22) that the variance of INLk reaches
a maximum value at s = q/2. Using this value for s, it follows

that the standard deviation of INLk in LSB is given by

σINLk,max =
√

q

4p
σ =

√
N

4p2
σ. (23)

A comparison of the maximum standard deviation of INLk

for the basic DAC as given in (12) with the INLk of the DDEM
DAC as given in (23) will illustrate the level of reduction
achievable with the cyclic switching sequence for the DDEM
structure. Consider n = 18, p = 27 = 128, and q = 211.
It thus follows that the maximum standard deviation of the
cyclic DDEM DAC is

√
(q/4p)σ = 2σ LSB, and that of the

basic DAC is (
√

N/2)σ = 28σ LSB. Thus, although the cyclic
DDEM DAC is not perfectly linear, it has many points that lie
exactly on the fit line, and the standard deviation of the largest
variant from the fit line is reduced by a factor of 27, as compared
with that of the basic DAC.

Inasmuch as (
√

N/2)σ is generally much larger than√
(q/4p)σ, it can be concluded that the average INL of the

DDEM DAC (INL) will be much smaller than the INL of the
basic DAC. Furthermore, because INLk for the cyclic DDEM
DAC is so small even with σ modestly large, the current sources
in the DDEM DAC can be built without using large area. For
example, if the standard deviation of the current sources is
0.1 LSB, the 18-bit DDEM DAC in the previous example will
have a maximum standard deviation of INLk of only 0.2 LSB,
and that of the corresponding INL will be somewhat smaller.

Although we will not present a statistical analysis of testing
an ADC with the cyclic switching sequence used in the DDEM
DAC, the issue of why the deviation of the average input
from the average fit line is a good metric for predicting the
performance of the DDEM DAC in a testing application
does deserve attention. The performance of these switching
sequences was validated by the computer simulations discussed
in the previous sections. Mathematically, this performance is
obtained because the individual variations of the DAC output
current among the p samples for the same DAC input code k
can be treated as zero-mean uncorrelated additive noise to the
ideal ramp presented at the input of the ADC, and such noise
does not bias the measurement of the nonlinearities of the
ADC. Furthermore, simple layout techniques are well known in
the IC design community that can ensure with high confidence
levels that the DAC mismatch errors are uncorrelated and have
zero mean.

VII. SUMMARY

In this paper, a method for testing ADCs using both random
DEM and DDEM DACs has been presented. It has been shown
that the DDEM approach offers a substantial improvement in
performance over what is attainable with random DEM struc-
tures from a computational efficiency point of view. It has been
demonstrated through both computer simulations and a mathe-
matical analysis that with the DDEM testing approach, DACs
that are substantially less accurate than the ADCs under test can
be used to generate the test signal for the ADCs. In addition to
the performance improvement, the DDEM excitations require
substantial reductions in hardware complexity when compared
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with random DEM approaches that require good randomizers.
The DDEM technique offers potential for use both in BIST and
production test environments because the linearity of the testing
signal generator is relaxed and the area required to implement
it in silicon is small.
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