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Abstract 

In this paper, the systematic mismatch error in integrated circuits due to gradient effects 

is modeled and analyzed. Three layout strategies with improved matching performance 

are reviewed and summarized. The hexagonal tessellation pattern can cancel quadratic 

gradient errors with only 3 units for each device and has high area-efficiency when 

extended. Both the Nth-order circular symmetry patterns and Nth-order central symmetry 

patterns can cancel up to Nth-order gradient effects between two devices using 2N unit 

cells for each one. Among these three techniques, the central symmetry patterns have the 

best-reported matching performance for Manhattan structures; the circular-symmetry 

patterns have the best theoretical matching performance; and the hexagonal tessellation 

pattern has high density and high structural stability. The Nth-order central symmetry 

technique is compatible to all IC fabrication processes requiring no special design rules. 

Simulation results of these proposed techniques show better matching characteristics than 

other existing layout techniques under nonlinear gradient effects. Specifically, two pairs 

of P-poly resistors using 2nd and 3rd-order central symmetry patterns were fabricated and 

tested. Less than 0.04% mismatch and less than 0.002% mismatch were achieved for the 

2nd and the 3rd-order structures, respectively. 
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I. INTRODUCTION 

In VLSI circuits, mismatch errors are the difference between two or more device 

parameters that are desired to be identical. Matching accuracy, to some extent, dominates 

the performance of analog and mixed-signal integrated circuits. For example, matching of 

sampling capacitors in switched-capacitor (SC) circuits directly affects the performance 

of pipelined/cyclic ADCs and SC filters. Matching characteristics of current mirrors play 

a key role in many applications [1, 2]. In modern communications circuits such as 

quadrature modulators, I/Q matching directly affects the image-rejection ratio, which is a 

key performance index. Matching in a differential amplifier limits reduction of even-

order harmonics, especially the 2nd order harmonic. Layout techniques to handle 

mismatch errors become more important to high-performance circuits design, since even 

a small amount of mismatch may easily hurt the performance of a precision circuit.  

Over the years, great efforts have been made to the study of mismatch and layout 

strategies [3-6]. Previous studies show that the causes of mismatch can be categorized as 

systematic and random variations. The random variations are usually modeled by zero 

mean Gaussian distribution and tradeoffs can be made between area and matching 

accuracy [4]. The systematic variations are process dependent and usually modeled as 

spatial gradients in device parameters. The mismatch due to systematic variations may be 

at the same level of that of random variations [7]. If the random mismatch is reduced by 

increasing the area, the systematic mismatch becomes dominant. Furthermore, increasing 

area actually make the gradient effect more significant. Since mismatch due to systematic 

variations can cause performance degradation, it should be carefully handled and 

minimized.  



Despite the widely recognized importance of matching, existing design and layout 

strategies dealing with the systematic mismatch are quite limited. Putting unit cells 

closely to each other reduces the gradient effect, but does not cancel it. The widely used 

common centroid layout pattern can only compensate for linear gradient [8]. Although 

the fully differential structure is robust to even-order harmonics, 2nd order gradients can 

introduce 3rd-order harmonics that fully differential structure cannot reduce. This error 

limits the dynamic range of some precision circuits. In this paper, three layout techniques 

capable of canceling mismatch errors due to high-order gradient effects are introduced.  

The Nth-order circular symmetry [6] and Nth-order central symmetry patterns [9] can 

cancel mismatch errors introduced by linear to Nth-order gradient effects, when each 

device uses 2N unit cells. The hexagonal tessellation pattern [6] can cancel quadratic 

gradient effect with only 3 units for each device and has high area-efficiency. Among 

these three layout techniques, central symmetry patterns have the best matching 

performance for Manhattan structures; circular-symmetry patterns have the best 

theoretical matching performance; and the hexagonal tessellation pattern has high density 

and high structural stability with its honeycomb structure. The Nth-order central symmetry 

technique is compatible to all IC fabrication processes requiring no special design rules. 

These properties are proven by theoretical derivation and their matching performance is 

evaluated using MATLAB simulation. 

The rest of the paper is organized as follows.  In Section II, a general mathematical model 

of gradient effects is given. Section III describes three layout strategies and shows how 

they can cancel nonlinear gradient effects. Section IV gives the simulation results of the 

proposed layout strategies and some measurement results. 



II. GRADIENT MODELING 

A two dimensional polynomial function ( , )p x y  can be used to model a parameter at the 

point ( , )x y . A parameter that has linear gradient can be modeled as 

 CyxGyxp += ),(),( 11 ,          (1) 

where ( , )x y  is the coordinate of the point of interest, C is a constant, and 

 ygxgyxG 1,00,11 ),( +=    (2) 

is the linear gradient component of p. 0,1g and 1,0g are the linear gradient coefficients. 

Equation (1) can be easily extended to higher-order cases. Generally, a parameter that has 

up to nth-order gradient components can be modeled as 
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is the jth-order component. kjkg −, ’s are the jth-order coefficients. 

Now consider one of the unit cells composing a device, the parameter of the unit cell is the 

integral of the parameter value over the area of the unit cell. Since the area of the unit cell 

is usually small, the gradient effect over the unit cell is negligible and the parameter of the 

unit cell can be approximated by the parameter at a particular point P in the unit cell. 

Using the location of this point as the location of the unit cell, for a device composed of m 

unit cells located at (x1,y1)…(xm,ym), we can get the device’s parameter as 
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where n is the highest order of the gradient effect. For two devices A and B, ideal 

matching is achieved if the mismatch error 

 0),( =−=Ω BA PPBA . (6) 

Substituting x with (x-x0+x0) and y with (y-y0+y0) in (3), we get 
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which can be rewritten as 
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Defining the 1st item to be I1 and expending it gives 
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Equation (9) can be rewritten as 
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where �k,l is the coefficient of (x-x0)k(y-y0)l assuming x0 and y0  constant. Notice that the 

order of the 2nd term in (8) and the 2nd term in (10) are both no greater than (n-1). That 

means (8) can be expressed in the form of  
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has the same form as Gi(x, y), but with different coefficients. And C’ is a constant. 

Equation (11) shows that the center of nth order gradient can be moved from (0,0) where 

Gn(x, y)=0 to arbitrarily any point (x0, y0) so that Gn(x-x0, y-y0)=0, and this will only 

introduce lower order gradient components. 

III. THREE LAYOUT TECHNIQUES CANCELLING HIGH-ORDER NONLINEAR GRADIENT 

3.1 Nth-order central symmetry pattern 

The central symmetrical layout pattern is for 1-1 matching between two devices. A 

description of the pattern is as follows: 

i)  The 1st order form of the pattern is just any common centroid pattern. Such as shown in 

Fig. 1(a) and (b). Common centroid layout pattern ensures the cancellation of linear (1st 

order) gradient error. 

ii) The nth (n>1) order central symmetrical pattern can be defined in terms of the (n-1)st 

order pattern. The nth order pattern is composed of two n-1st order patterns symmetrical to 

a center Cn. There are two cases according to n’s parity: 

a) If n is odd, the unit cells of each device is central symmetrical around Cn. That means 

for each unit cell of device A at point P, there is another unit cell of device A at point P’ 

and the middle point of segment PP’ is exactly the symmetrical center Cn. 



b) If n is even, the unit cells of the two devices in one of the n-1st order patterns should be 

interchanged so that the position of device A’s unit cells are central symmetrical to device 

B’s unit cells around Cn. That means for each unit cell of device A at point P, there is an 

unit cell of device B at point P’ and the middle point of segment PP’ is exactly the 

symmetrical center Cn. Fig. 2 and Fig. 3 show some high order (n>=2) central symmetrical 

layout patterns. 

The following analysis will show how the central symmetrical layout pattern can cancel 

nonlinear gradient effect. Suppose both device A and device B has m unit cells. 

i) If  n=1, the parameter only has linear gradient effect. According to (5), the parameter of 

device A is 
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Similarly, the parameter of device B is 
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Fig. 1 Examples of 1st order central symmetrical pattern 
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Fig. 2 Examples of 2nd order central symmetrical pattern 
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Fig. 3 Examples of 3rd order central symmetrical pattern 

The centroid of a device composed of m unit cells located at (xi, yi), i=1,2,…,m are defined 

as (xc, yc) where 
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From (13) ~ (16), it is not difficult to derive that (6) holds if and only if xcA=xcB and 

ycA=ycB. This is why common centroid layout pattern can cancel linear gradient effect.  

ii) Assume our proposed nth-order central symmetry layout can cancel mismatch from 

linear to the (n-1)th-order nonlinear gradient. Then if n>1, since the higher order pattern 

are constructed by duplicating lower order patterns, the number of unit cells of each 

device, m, must be an even number. Now consider the two cases according to n’s parity 

If n is odd 

Consider device A, according to the layout pattern, for a unit cell Ai at (xAi, yAi), there must 

be another unit cell Am-i at (xAm-i,yAm-i) which meets xAi-xCn=xCn-xAm-i and yAi-yCn=yCn-yAm-i. 

Then for any 0 j n≤ ≤ , 
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Choosing x0 and y0 in (11) to be xCn and yCn and substituting (11) to (5) gives 
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Since unit cells of device B have the same central symmetry property, we get 
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Equations (18) and (19) give 
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This means the mismatch due to the nth order gradient effect has been cancelled. 

 If n is even 

According to the layout pattern, for an A’s unit cell Ai at (xAi, yAi), there is a B’s unit cell 

Bi at (xBi, yBi) which meets xAi-xCn=xCn-xBi and yAi-yCn=yCn-yBi . Then 
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Choosing x0 and y0 in (11) to be xCn and yCn , and then substitute (11) to (5) gives 
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Subtracting (23) from (22) still results in (20). 



So the mismatch due to the nth order gradient effect is cancelled for any n>1. Since the nth 

order layout pattern is built from the n-1st order layout pattern, which can cancel the first 

to the (n-1)th order gradient effect, the nth order pattern should preserve this property and 

thus capable of canceling from the linear to the nth order gradient.  

Following this induction approach, it is proven that the Nth-order central symmetry layout 

technique can cancel from 1st up to nth order gradient effect. 

3.2 Nth order circular symmetry pattern 

The circular symmetry layout pattern is initially proposed for 1-1 matching between two 

devices. However, theoretical analysis suggests this layout pattern is capable for multiple 

devices’ matching. A description of the pattern is as follows (each unit cell is modeled 

with a single point): 

A desired device is composed with 2n unit cells and their centers are located on a circle 

with an arbitrary center 0 0( , )x y . The coordinates of these centers are defined in  
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n
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Fig. 4 illustrates a second order circular symmetry patterns. The following analysis will 

show how the circular symmetry layout pattern can cancel nonlinear gradient effect. 

Using the gradient model (1)-(4), the effect of gradient on a point Ai can be expressed as 

(26) and the total effect can be expressed by equation (27) 

 )sin,cos()( 00 iinin yxpAp θρθρ ++=          (26) 
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Using trigonometry theory, we can use equation (28) to represent (26) with appropriate 

coefficients. The coefficients are determined by the coefficients in equations (1)-(4). 
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Thus we can extend equation (27) to (29). 
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We will show 0=jvP  using the well known equality 0sin)2sin( =+++ θππθ k .  
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It is not apparent that equation (32) is identical to zero. However, if j is odd, it is easy to 

show 1
2
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At both cases, 0=jvP . 

Thus,  
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We call the pattern of n
i iA 2,,2,1, �= an nth-order circular symmetry pattern. One of the 

most important properties of this nth order circular symmetry pattern is rotation-

invariance. This has been shown in our derivations since 0θ  can be any value. 

Mathematically we could place multiple sets of the nth-order circular symmetry pattern in 

the same circle. Thus it is capable of achieving matching among multiple devices. 

Multiple devices’ matching property may have significant advantages in certain 

applications.  

Thus, we have demonstrated and proven a layout pattern which will sufficiently cancel 

mismatch due to linear gradient and up to the nth order nonlinear gradient. It may cancel 

some higher order nonlinear gradient too. Although the derivations are based on point-

represents, the conclusion can be applied to a region. Construction of the Nth order 

circular symmetry patter would be as following: 

a) build a unit cell 

b) place 12 +n  unit cells around a center (rotating the unit cell), the angle between 

adjacent unit cells to the center is 
n2

π
 



c) connect the alternative cells together and form two devices. As shown in Fig. 4b, A 

and B are matching up to the quadratic gradient. 

It is worth to mention the common centroid layout and the 1st order circular symmetry 

layout pattern. With some derivations, it will be shown that the device parameter would 

be a function independent of ρ. That just confirms the 1st order circular symmetry pattern 

is a special common-centroid pattern. In other words, the common-centroid layout is an 

extended version of the first-order circular symmetry layout pattern. 
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(a)       (b) 

Fig. 4 A 2nd-order circular symmetry pattern 

3.3 Hexagonal Tessellation 

Hexagon, the basic cell of bee nest, has wide applications in communication, architecture, 

chemical engineering and so on because of its high mechanical strength, high spatial 

efficiency. We will show hexagon also is the most concise layout pattern that can cancel 

linear and quadratic gradient completely. Furthermore, we can extend hexagon to 

construct the hexagonal tessellation pattern easily without space-waste. 



Figure 5a shows a hexagon. The coordinates of the six vertexes }3,2,1,{ , =iBA ii  can 

be annotated as 

}3,2,1),sin,cos(|,{ 00 =++ iyxBA iiii θρθρ  

BAaiaii :0;:1}3,2,1,
33

2
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For a quadratic gradient (n=2 in equation 5), we can prove that the total gradient is 

not related to θ0.             
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Thus the gradient effects on both A and B are the same. Mismatch due to linear to 

quadratic gradient between A and B is cancelled. 

Fig. 5b shows a divided hexagon. There are six triangles. Assume each triangle is 

represented by its center of gravity, the six centers of gravity will form a hexagon in the 

fashion as that in Fig. 5a. Thus the As and Bs in Fig. 5b match with each other. 
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Fig. 5 Hexagonal matching pattern 

 

As shown in Fig. 6, a hexagon can be extended and filled with As and Bs in a way that 

forms a honeycomb structure. The layout pattern shown in Fig. 6 is named as hexagon 

tessellation. Because honeycomb structure is well known for its compact, high area-

efficient and low sensitive to stress, the hexagon tessellation pattern would also have 

excellent matching even under external stress and no area would be wasted. 
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Fig. 6 Hexagonal Tessellation 

 



IV. EVALUATION OF THESE THREE LAYOUT PATTERNS AND MEASUREMENT RESULTS 

To evaluate the performance of the proposed layout techniques, we did MATLAB 

simulations on some of the existing layout patterns and the proposed patterns under 

different gradient effects. The layout patterns we chose are 1st order (common centroid) ~ 

5th order central symmetrical pattern (Fig. 7 (a) ~ (e)), 2nd order circular symmetry pattern 

(Fig. 7(f)) and hexagonal (Fig. 7(g)). Same total device area is assigned for each layout 

pattern and every unit cell is a rectangle. If triangle unit cell is used, the 2nd order circular 

symmetry pattern and hexagonal tessellation pattern shown in Fig. 6 should have much 

better matching performance. Up to 5th order gradient are generated for simulation. When 

we study the effect of kth order gradient, we use kth-order polynomial terms plus constant 1.  
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 The simulation results are summarized in Table I where mismatch is defined by (38) 
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TABLE I.  SIMULATION RESULTS OF DIFFERENT LAYOUT PATTERNS 

Highest Order of Gradient 
Mismatch (%) 

1st 2nd 3rd 4th 5th 

Fig. 7 (a) 0 2.77 5.22 7.43 10.39 

Fig. 7 (b) 0 0 0.24 0.87 1.70 

Fig. 7 (c) 0 0 0 0.01 0.068 

Fig. 7 (d) 0 0 0 0 0.0023 



Highest Order of Gradient 
Mismatch (%) 

1st 2nd 3rd 4th 5th 

Fig. 7 (e) 0 0 0 0 0 

Fig. 7 (f) 0 0 0 0.026 0.18 

Fig. 7 (g) 0 0 0.26 0.50 2.24 

Fig. 4 (b) 0 0 0 0.017 0.12 

Fig. 5 (b) 0 0 0.17 0.32 1.48 

Simulation results show that for n=1,…,5, the nth order central symmetrical pattern can 

cancel up to nth order gradient effect, which is consistent with the previous analysis. 

Furthermore, the hexagonal is the efficient layout to cancel up to 2nd order gradient. The 

2nd order circular symmetry pattern cancels up to the 3rd order gradient, instead of only 

the 1st and 2nd order gradient as mentioned in [6].In this pattern, the placement of the 

unit cells of a device is central symmetrical around the center of the circle. According to 

the analysis in section II and III, when n=3 is odd, as long as it cancels up to 2nd order 

gradient, it would also cancel the 3rd order gradient. This also implies that the (2n)th-

order circular symmetry pattern would cancel (2n+1)th-order nonlinear gradient. 

Compared with these layout techniques, the central symmetrical layout is more area 

efficient and flexible in cell placement. And it is easy to be extended to high order cases 

for cancellation of any high order gradient. 
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Fig. 7 Layout patterns used in simulation 

Our layout strategies do not make use of process information and is independent on causes 

the gradient errors. Therefore, the experimental results only depend on the actual gradient 

errors present, but they should be independent of the process used. This is important 

because process-independent matching property makes our novel layout patterns usable in 

all available process technologies.  

The proposed Nth-order central symmetry pattern has been verified on silicon. Although 

transistor or capacitor matching might be more interesting, resistors are used in our silicon 

implementation due to two main reasons. First, the measurement of transistor or capacitor 

matching is significantly more involved than the measurement of resistance. We want to 

separate measurement error from gradient-induced mismatch error. Since this paper is the 

first time the layout strategy is introduced, we wanted to make sure that we were only 



comparing the influence of layout on matching errors and measurement quality can be 

easily ensured. Second, at the time of designing the circuit prototype at Silicon Labs Inc, 

one communication circuit required more than 70dB image rejection ratio in one pair of 

resistors. This IRR requires better than 64dB matching performance in these two resistors 

[10]. More product, circuit schematic, layout and fabricated die details could not be 

disclosed due to the intellectual property concern. For these two reasons, we have selected 

resistor matching as the first vehicle to demonstrate the new layout strategies. Transistor 

matching or capacitor matching can be a future study topic. We believe that our analysis, 

simulations and measurement data clearly demonstrated the effectiveness of improving 

matching using our proposed new layout strategies.  

Based on random mismatch data on TSMC characterization reports, a specific area was 

allocated to each resistor. The proposed Nth-order central symmetry layout pattern was 

chosen. In order to reduce complexity of layout work, the 2nd-order and 3rd-order pattern 

were adopted and fabricated in 0.13 um CMOS process. For the 2nd-order pattern as shown 

in Fig. 8a, one resistor was constructed by paralleling 4 identical resistor-units. Each had 

an area of 1/8 of the total area. For the 3rd-order pattern shown in Fig. 8b, each resistor was 

constructed in a parallel-series connection combining 8 unit cells in the 3rd-order central 

symmetry pattern. Measurements of more than 100 chips show that the 2nd-order one has 

less than 0.04% systematic mismatch errors and the 3rd-order central symmetry pattern has 

less than 0.002% systematic mismatch errors. Due to company’s intellectual property 

requirement, other measurement details could not be disclosed. These measurement results 

confirmed the matching improvement using our proposed high-order nonlinear gradient 

canceling layout patterns. 
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Fig. 8 Two precisely-matched resistor pairs 

 

V. CONCLUSIONS 

This paper modeled and analyzed the systematic mismatch due to linear and nonlinear 

gradient effects. Based on the analysis, we proposed three layout techniques capable of 

canceling mismatch errors due to high-order gradient effects. The Nth-order circular 

symmetry [6] and Nth-order central symmetry patterns [9] can cancel mismatch from 

linear to the nth-order gradient between two devices by using 2n unit cells for each one; the 

hexagonal tessellation pattern [6] can cancel quadratic gradient with only 3 units for each 

device and has high area-efficiency. Among these three layout techniques, central 

symmetry patterns have the best reported matching performance for Manhattan structures; 

circular-symmetry patterns have the best theoretical matching performance; hexagonal 

tessellation pattern has high density, high structural stability with its honeycomb structure. 

The Nth-order central symmetry technique is compatible to all IC fabrication processes 

requiring no special design rules. All layout patterns have been mathematically proved and 

verified through simulation. Testing results of the proposed Nth-order central symmetry 

layout pattern confirmed our analysis and simulation.  
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