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Active F ilters w ith Zero Amplifier Sensitiv ity 
RANDALL L. GEIGER, MEMBER, IEEE, AND ARAM BUDAK, MEMBER, IEEE 

Abstmct-A general charscterizatIon of second-order active-RC filters 
employing one, two, and three operational amplifiers is given. When 
certain amdltlons are me& it is SlKnvn that the deslred poles can he 
rembed lnsemdtlve to first- and stxondader changes in the the con- 
stants of the operational 8mpllflem. Several novel clrcults posse&q this 
zero pole-semltlvlty property, as well as zero o,, and Q  sensitivfty proper- 
tbqluepI-esentedand- Expeslmental verffiion of the results 
and cmnpmhns to other jmpuh seumd-order active-RC realizalions beat 
outtlleslgulflcantlysuperlorperfolmauc4? of these filteJ?3. 

INTRODUCTION 

I 
N RECENT YEARS, a great deal of attention has 
been directed to designing active-K second-order 

filters that have low sensitivities with respect to the active 
element. It is well known that the poles are displaced from 
their nominal positions because of the finite value of the 
gain-bandwidth product of the operational amplifier, 
hereafter designated by GB. In some circuits GB also 
affects the zeros. Although the dependence of the transfer 
function on GB has been extensively studied for a large 
number of filter circuits, no comprehensive discussion has 
been presented to discuss the effects of GB in a general 
way. Indeed, even for specific circuits, no consistent 
method for evaluating performance has been used. 

In Part I of this paper, a general characterization of 
active-K filters employing one, two, and three opera- 
tional amplifier(s) (OA) is presented. It is demonstrated 
that it is possible to obtain zero pole sensitivities with 
respect to the operational amplifier for circuits employing 
two OA’s. Zero pole sensitivity for each desired pole is 
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sufficient to guarantee zero w,,, Q , and transfer-function- 
magnitude sensitivities. 

In Part II, circuits that possess the zero-sensitivity prop- 
erty derived in Part I are given. Expressions are then 
obtained that predict how the complex poles move when 
incremental changes in the operational amplifier are con- 
sidered. Also, a novel two-input amplifier with a different 
gain function for each input is introduced and its useful- 
ness in active filter design is discussed. 

In Part III, a method of comparing the performance of 
high-Q filters due to incremental as well as infinitesimal 
changes in the characteristics of the OA is presented. 
Here, the superior frequency response of zero-sensitivity 
filters is clearly demonstrated. Furthermore, the location 
of the parasitic poles (the additional poles introduced by 
the nonideal OA’s) is also investigated to determine 
whether they cause instability. 

PART &-&NERAL CHARACTERIZATION 

It is assumed that the OA has infinite input and zero 
output impedance, infinite common-mode rejection ratio, 
and that it is characterized by a single pole which is, for 
all practical purposes, at the origin (see [l] and [3]). The 
OA gain function is thus 

A(+~=; (1) 
where GB is the gain-bandwidth product in radians per 
second. The reciprocal of GB is designated by 7 and is 
called the time constant of the OA. The OA can be 
rendered ideal by making GB infinite or 7 zero. 

Refer now to Fig. 1 where three OA’s are used in 
conjunction with the RC network to realize a given trans- 
fer function. The equations for the three dependent vari- 
ables are 
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Fig. 1. General three-OA active RC filter. 

Vl - = V,T,q + v*/,T,,+ v3Ty3+ CT,, 
Al 
v2 - = v,T2’,+ v2T2’2+ v,T,,+ qTTi 

A2 

v3 
- = vlT3’1+ v2T3’2+ v&,3+ KTyi 
A3 
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A= T,,,(T,,T,,- TT3T3r2) 

+ ~d’A,T,,- T,,2T3,3) 

, + 7X7,2T2’3- T,,37%2) 

+ $(T,.,T,.,- T2’2T3’3) 
1 

+$&Tyl- T,,, TYJ 
2 

+ $( Wm - T,Jx) 
3 

+$&m”)+ $#2.2) 
1 3 

+-&w-j-&. (6) 
1 2 3 

(2) Since the various transfer functions used in (5) and (6) 
are associated with the same passive RC network, they all 
have a common denominator (characteristic) polynomial 

where for (Y E { 1’,2’,3’} and x E { 1,2,3,i} the transfer which in factored form is given by 
function T,, is defined in the usual sense as D&-(s) = H(s + a&s + oL2)’ * . (7) 

Tu=; , forkE{1,2,3,i}-{x}. (3) 
where H is a constant and O<a, <cu, <. . ’ . In cases 
where pole-zero cancellation is possible in the expression 

x v,=o for T,j, qTi is not in lowest terms; for instance, if lJri were 

Let V, represent the output of the circuit as indicated in a constant (Hi,, say) then, the transfer function Tfj-would 

Fig. 1. Then the transfer function of the circuit is given by 
be written as 

Tl’i - Tl’2 - TV3 

1 
TTi -- TT2 - Tr3 

A* 

T,,=Hi$-+. 
RC 

vo 
vi= 

where 

T3’i - T3’2 
1 -_ 

A, T3’3 

1 -- A, ‘1’1 - TV2 - T,,3 

- Tz, j- - T2t2 
A2 

- TT3 

- TYl - T3’2 
1 -- 

A, T3’3 

A, = - T,fi( Tz2Ty3 - TT3 Ty2) 
- Tzi( T,r3 T3t2 - T,f2T,,) 

- T3’i( Tl’2 T2’3 - Tl’3 T2’2) 

- +T,.3T3<i- T,riTy3) 

- 2 ( T,T2 T2/i - T,fi T2,2) 

Al =- 
A 

A. Filters with One Operational Amplifier 
In Fig. 1 let A, and A, be zero, thereby grounding the 

V, and V, outputs and let the RC network be second 

(4) 
order. From (5) and (6) the transfer function becomes 

\ I 
v, - T,,i - N,fi -= 

DRC 
(9) 

N,,, - - 
Al 

where the symbols N represent the numerator polynomials 
associated with the transfer functions T. For a second- 
order system with complex poles and for A, = l/sri, (9) 
becomes 

v, -= +(a2s2+a,s+ao) 
vi s2+s~ +w;+.w~D&) 

(10) 

Q 
where 

DRC(S) = ff(s + Q&S + (~2) (11) 

and ao,a,,u2 are constants determined by Nifi. 
The zeros of V,/v are not affected by the time con- 

(5) stant of the OA. The poles, however, are functions of 7i 
and are, therefore, displaced from their nominal (7i =0) 
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positions. Let p. designate the desired upper half-plane 
pole. The Maclaurin’s series expansion of this pole about 
its nominal position 

d 1 ’ po=-$+juo 1-g 

is 

p(~,) =pO+ s r, +higher order terms. (12) 
“71 17,-o 

The merit of the pole derivative with respect to the active 
element parameter rt in calculating infinitesimal changes 
in the pole location is immediately apparent from (12). 
Using the characteristic equation obtained from (lo), 
ap/ar can be evaluated as follows: 

2p+ a0 aP 
, 5 a7, +PD,c(P) 

+ 71 D,,(P) +P 
1. 

aD$p) 2p-J. 
I 

(14) 
1 

For rr =0, (14) simplifies to 

gi,,_,= - [ 2pprS]DdPo). (15) 

(16) 
Now let A, = l/m, and A, = 1/m2. For systems using a 
second-order RC network, (16) becomes 

vo 7 _ tNI’iN2’2 - Nlt2NTi) 

D - sr2Nl, 
RC 

= W,452 - K,N,,l) 

D + 4%2) + ~72(Nl,,) + s27172DRC 
RC 

(17) 

where DRC = H(s + a,)(s + (YJ. 
The first OA affects only the poles whereas the second 

OA affects the poles and the zeros. To make the zeros 
independent of A,, it is required that Nri = 0; that is, in 
Fig. 1 the RC structure must not couple the input signal to 
port a while V, and V, are held at zero. With this 
constraint, (17) becomes 

N,p2N,, 

VO D RC 
-= 

vi W,4&- N,dh,) 
(18) 

+ q(N,,) + f i2GW + salT2(DR,> 
uRC 

The pole sensitivity is here defined to be the pole 
derivative (see Newcomb [2]). The normalization usually 
used in the sensitivity definition is not used here since the 
variable in the derivative ideally vanishes causing the 
normalization to vanish. The wo, Q , and transfer- 
function-magnitude sensitivities are likewise defined to be 
equal to the derivative of the respective functions. As (15) 
shows, the pole sensitivity depends upon the pole position 
and the characteristic polynomial of the RC network 
evaluated at the nominal pole position. Since DRc(s) be- 
comes zero only for real values of s, D,,(p,) cannot be 
zero if p. is assumed to have a nonzero imaginary part. 
Therefore, it follows for all single-OA second-order filters 
designed to realize a pair of complex conjugate poles that 
it is impossible to obtain zero pole sensitivity with respect 
to the time constant of the OA. At best one seeks realiza- 
tions which result in a low value for D,,(p,). 

B. Filters with Two Operational Amplifiers 
Setting A, 7 0 in Fig. 1 and using (5) and (6), (4) reduces 

Since the RC network is assumed to be second order, this 
equation can be expressed as 

v, a2s2 + a,s + a0 -= 
vi 

( 
s’+sz +~~)+~T,(N~~)+~T~(N,.,)+S~,T~(D~~) 

(19) 

The Maclaurin’s series expansion of the desired upper 
half-plane pole about its nominal position is 

+ higher order terms. 
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where all derivatives are evaluated at the point (0,O). 
Using the denominator polynomial of (19), the first-order 
pole derivatives can be calculated as follows: 

p2+p% Q +“$ +~71%2(~) 

+P72NldP) fp2T172DRC(d =’ 

For r, = r2 = 0 and p =po, (22) and (23) simplify to 

(21) 

(22) 

(23) 

(24) 

(25) 

It is possible to obtain RC networks that have complex 
transmission zeros. For example, the second-order 
bridged-T network has this capability [3, p. 3011. Conse- 
quently, it is possible to make 

N,,(Po) = N,,,(Po) = 0. (26) 

Therefore, it follows that in filters using two OA’s, it is 
possible to obtain first-order pole sensitivities that are 
zero. In such filters, the pole displacements are due to 
second-order. effects which can be calculated by consider- 
ing second-order derivatives. Differentiating (22) and (23) 
and evaluating the results at the nominal pole position 
while requiring the first-order pole derivatives to vanish, 
the following results are obtained after some lengthy 
algebra: 

(27) 

a% POZ 
a7,ar2 DRC(pO)' (28) 

T,‘T2”0 

Consequently, when N,,(p,) = N,,,(p,) = 0, the 
Maclaurin’s series expansion for the desired pole sim- 
plifies to 

P(v2)=Po- 
POZ 

w. DRC(POhT2 

2po+ 3 

+higher order terms. (29) 

The condition for zero first-order pole sensitivity for de 
desired pole (with nonzero imaginary part) as given by 
(26) can be obtained if N,,, and NT2 satisfy 

4 N,<,(s) =@ 
N,,(s) = 0 (30) 

b) N,,,(s) =0 

4 

(31) 

NT2(s) = 0. (32) 

In these functions H, and H, are constants. The corre- 
sponding transfer functions in each of the three cases are 

V AL= N2’i 
vi - N21 + s271r2DRC 

a2s2 + a,s + a, = 
s2+sw” 

Q 
+ Wo’ + S2T172DR, 

(33) 

- NT1 + s7,NT2 + S2?,T2DR, 

= a2s2 + a,s + a, 

s2+sw0 +w,z 
Q  

+S%,T2DRc 

(34) 

VOC NTi 
y= - NT1 +.w2Nl,, + S27,7,D,, 

a2s2 + a,s + a, = 
W O  s2+s- +w,z 
Q  1 ( 

+ m2Hl s2 + s wg + ~0’ 
Q 

+ S2TlT2D,q, 

(35) 

For identical OA’s, except for the H, and H, scale 
factors, there is no difference in the resulting characteris- 
tic polynomial when either (31) or (32) is satisfied. 
Although the set of conditions N,,,(s) = Hl(s2 + s(wo/ Q) 
+a$ and NZ2(s)= H2(s2+ s(aO/Q) +G$) also results in 
zero pole sensitivities, this case does not arise in second- 
order RC networks. 
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C. Filters with Three Operational Amplifiers 
A study of (5) shows that A, and A, affect the zeros of 

Vo/ K unless the follotig conditions are satisfied: 

Tl,i=0,T,,T,,=0,T,,3T,,=0. (36) 

Under these circumstances and for second-order systems 
with A,=l/m,, A2=1/m2, and A,= 1/sr3, the transfer 
function becomes 

VO a2s2 + a,s + a, -= 
vi a0 

s2+s- +oo’ +sr, 
UWb3 - N24b) + sr 

2 
(44’53 - %NN) + sr (N14%2 - N1,2%1) 

Q  D RC D 3 
RC D RC 
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It should be emphasized at this point that the zero- 
sensitivity conditions derived in this section do not 
guarantee either stability or realizability. 

PART II-&UXITS WITH ZERO POLE SENSITMTIES 

Many circuits exist that possess the zero-sensitivity 
properties derived in Part I. Three of these that are easily 
analyzed are introduced in this Section and others can be 
found in [4]. The OA related performance of these circuits 

From the discussion presented in the two-amplifier case, it 
should be clear that first-order pole-sensitivities of a de- 
sired pole are zero if 

N,,(Po)N,,(Po)-N,,(Po)N,,(Po)=O 
N,~Po)N,,(Po) - %~Po)NY,(Po) =0 
N,~,(Po)N,,(Po) -N,,z(Po)%,(Po) =O. (38) 

Furthermore, second-order pole sensitivities can also be 
made zero if in addition to (38) 

NY,(PO) = NT,(PO) = N,,,(Po) =a (39) 

When first- and second-order pole sensitivities are made 
zero, the Maclaurin’s series expansion for the desired 
upper-half-plane pole becomes 

+higher-order terms (40) 
where all derivatives are evaluated at the point (0, 0,O). 

It should be clear that zero sensitivities for the desired 
poles result in zero w. and Q  sensitivities. It can also be 
shown that the transfer-function-magnitude sensitivity is 

may be considered representative of the zero-sensitivity 
designs, however no generalizations about zero-sensitivity 
designs in general are to be made in regard to component 
spread, passive sensitivity, etc. 

Two second-order bandpass circuits with zero first- 
order pole-sensitivities are given in Fig. 2. For both 
circuits, N,,,(s) = 0 because with A, = 0, the output of OAl 
cannot excite its own input port. Moreover, for the circuit 
of Fig. 2(a), N,,(s) = 0 because with A, =0, the output of 
OA2 cannot excite its own input port. For the circuit of 
Fig. 2(b), on the other hand, NZ2(s) = - 1/2(s2 + s( l/ Q)  
+ 1). As a result, it follows from (30) and (31) that the 
first-order derivatives of the desired poles with respect to 
the time constants of the OA’s are zero for both circuits. 
Furthermore, for both circuits Nri(s)=O because with 
A,=O, the input voltage 5 does not excite the input port 
of OAl. From (17) it thus follows that the zeros of V,/ K 
are not dependent on the OA’s. 

The transfer functions of the circuits of Fig. 2(a) and 
(b) are given by 

%=( (42) 

zero when the pole-sensitivity of each desired pole is zero 
141. 

Although the development presented here is for 
second-order RC systems, it can be extended to third- 
order RC systems which can be reduced to second order 
by pole-zero cancellations. Such a development would 
apply, for example, to twin-T RC networks. The zero- 
sensitivity development also extends to third- and higher 
order systems that realize higher order transfer functions. 

As r, and r2 increase from zero, the desired poles begin to 
be displaced from their nominal positions while the 
parasitic poles move from infinity into the left half-plane. 

Using (29), the changes in the desired upper-half-plane 
pole will now be calculated. Since .DRc is the same for 
both circuits, it follows from (29) that the second-order 
and lower effects of the desired pole displacements will be 
identical for small changes in the 7s. For 7, = r2= 7, it 
follows that 
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Fig. 2. Zero-sensitivity bandpass filters. 

Apr- ‘Oz I I 2po+ $ 
DRc(PO)r2 

r2. (43) 

If the center frequency of the passband is shifted from 1 
to wo, then the normalized change is given by 

For high-Q circuits, the pole change can be approximated 
by 

z -( Q-j~)(ru0)2-Q(ruo)2. (45) 

Thus for Q  > 10 the pole moves almost straight to the 
right. Indeed, if the pole-rate-of-change at the nominal 
position is maintained, both circuits will oscillate at the 
frequency woS = w. when 

Q(rwo)2 = &. (49 

On the other hand, if w. is restricted not to exceed 1 
percent of GB, then Ap/w, < 10m4Q; consequently, even 

Fig. 3. Desired and parasitic poles for zero-sensitivity circuits of Fig. 2. 

Fig. 4. Zero-sensitivity bandpass filter employing OA cluster. 

for Q=25, the pole changes only 0.25 percent in magni- 
tude. Furthermore, it is important to note that as long as 
the filter is stable, the Q of the pole increases as GB 
decreases from infinity but the w. stays practically con- .’ 
stant. As a result, the bandwidth of the bandpass char- 
acteristic decreases but the center frequency remains prac-. 
tically the same. 

To obtain a large scale picture of pole movement, the 
desired and parasitic upper-half-plane poles are plotted in 
Fig. 3 for Q= 10 as a function of r,, =(wo/GB). It can be 
shown that regardless of the Q of the desired poles, the 
parasitic poles of circuit b have lower Q’s than those of 
circuit a. Hence, circuit b is preferable. (Actually circuit a 
can be shown to be unstable for some OA’s when the 
typical location of the second pole of the OA is included 
in the,analysis.) 

An additional zero-sensitivity second-order bandpass 
filter is shown in Fig. 4. An interesting property of this 
circuit is the fact that the two-amplifier cluster can be 
replaced with a single amplifier which has different gain 
functions for each of its two inputs. The transfer function 
is derived as follows: 

where 

(yqA++ V,TfA-)= V, (47) 

T= 2Qs (48) 
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s2+2 + 1 The four existing circuits against which the zero-sensi- 

Tf= Q  tivity design is compared are shown in Fig. 5. The first, 

s2+s 
( 1 

1+2, +l 
(49) introduced by Friend [5], uses only a single OA. The 

Q  
second, discussed by Sedra and Espinoza [6], is a two-OA 
bandpass filter. The commonly used state-variable filter, a 

A++ (50) form of which is shown in Fig. 5(c), uses three OA’s; it 
s 7172 appears in many’ texts and papers including [7]. The 

A-=-($+&). 
circuit of Fig. 5(d) which is noted for its low sensitivity 

(51) properties is due to Mikhael and Bhattacharyya [8]. The 
transfer functions of these filters are also included in Fig. 

The Vo/ 5 ratio then becomes 5. 

(52) 

It follows from a comparison of (42) and (52) that the 
performance of the bandpass filters of Fig. 2(b) and Fig. 4 
are very similar. 

Although the zero-sensitivity realizations presented here 
result in bandpass transfer-functions, any realizable bi- 
quadratic transfer-function can be obtained with zero 
sensitivity by the appropriate modifications of the passive 
RC network of Fig. 1. 

PART III--COMF’ARISONS AND EXPERIMENTAL 
RJWJLTS 

The merit of any new circuit is best established by 
comparing it with accepted existing designs. In this part, 
the zero-sensitivity second-order bandpass circuit of Fig. 
2(b) is compared with four popular existing second-order 
bandpass designs on a theoretical basis. The theoretical 
and experimental performance of the circuit of Fig. 4 is 
almost identical to that of the circuit of Fig. 2(b), so it has 
not been included in these comparisons. 

Three different criteria are used to evaluate the perfor- 
mance of these circuits with respect to the time constants 
of the OA’s. 

The first evaluation is made on the basis of the sensitiv- 
ity functions. In the case that the OA time constants are 
sufficiently small, the changes from nominal values of 
filter parameters are predictable from the infinitesimal 
changes obtained from a study of the sensitivity functions 
discussed earlier in this paper. Since the only circuit in 
this comparison that possesses zero-sensitivity properties 
is that. of Fig. 2(b), the superiority of the zero-sensitivity 
design is apparent from this comparison. 

The remaining two evaluations are made for values of 
Q  = 10 and 25 on the basis of the position of the desired 
poles and on the transfer-function-magnitude response 
using the time constants of the O&s as parameters. The 
comparisons show the actual pole positions and magni- 
tude characteristics for a given OA time constant. 
Although the assumption of equal OA time constants is 
not necessary to obtain the zero-sensitivity conditions, it 
will be assumed for convenience in these comparisons that 
all OA’s are identical. 

The center frequency of the passband has been shifted 
from 1 to w. in the zero-sensitivity circuit of Fig. 2(b) in 
the comparisons that follow. 

The desired pole loci for the four circuits of Fig. 5 and 
the zero-sensitivity circuit are shown in .Fig. 6 for Q= 10 
and Q  = 25. To eliminate the center frequency as a param- 
eter in the comparisons, the poles are plotted in the 
.s,-plane. The normalized frequency variable s, is related 
to the frequency variable s by 

S s,=-. 
a0 

(53) 

It can be seen that for the two-OA circuit of Fig. 2(b), the 
actual pole location is practically identical to the desired 
pole location for r,, = rwo G  0.01. It should be noted that 
one vertical unit on the graph represents about five hori- 
zontal units in Fig. 6(a) and ten horizontal units in Fig. 
6(b). Therefore, the magnitude of the pole movement for 
Q ’s of 10 and 25 for the zero-sensitivity circuit is about an 
order of magnitude or more smaller than that for any of 
the other circuits compared for r, =O.Ol. As r,, becomes 
smaller, the differences in the pole movement become 
even more pronounced. If the GB of an OA is 2a106 
rad/s, a typical value for the 741, then the two-OA 
zero-sensitivity circuit should perform nearly as if the OA 
is ideal for a Q  of 10 or 25 for center frequencies up to 10 
kHz. 

The complex conjugate parasitic poles of the five 
circuits under comparison are shown in Fig. 7. The 
parasitic poles of the circuits of Fig. 5(a) and Fig. 5(c) are 
on the negative real axis so do not appear in the figure. 
Although the parasitic poles for some of the circuits of 
Fig. 5 are more removed from the imaginary axis than 
those of the zero-sensitivity circuit, they are all nonethe- 
less in the left half-plane. It is seen in the transfer-func- 
tion-magnitude comparisons that the parasitic poles do 
not have any noticeable effect on the frequency response. 

The normalized transfer-function magnitudes are com- 
pared in Figs. 8 and 9 for Q  = 10 and Q  = 25, respectively. 
The magnitude has been normalized so that the resonant 
frequency gain is unity for all circuits in the comparison 
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Vi 

*2 
1 

=q 

w 

T(s) - 
28 22 + r22 s (SW0 + u$ 

s2 + * > + WE + T12S2(S + WJl + $1) + r22mo(s + OJl + $1 

+ y22*2(s2 + swJ2 + iI + .zr1 + $1 

(b) 
Fig. 5. Popular existing bandpass filters. 

when the OA’s are ideal. The normalized magnitude is r,=O.Ol, 0.025, and 0.05 and in Fig. 9 for values of 
thus obtained from the expression r,, =0.005 and 0.01. It is interesting to note that when the 

I T(N) I two-OA zero-sensitivity circuit does depart from the ideal, 
Normalized Magnitude = , T(jwo), , 7 -o . (54) the center frequency remains nearly constant. This result 

could, of course, have been predicted from Fig. 6 since the 
In Fig. 8 the magnitude response is plotted for values of desired pole movement is nearly horizontal for this circuit. 
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k 

Vi 
1 

wo ‘Rc 

Al 
1 

-Tyz 

*3 
1 

-' 

T(s) - 
so0 + T22Woz32 + T3 "JS2 + SWJ + r2'382200b + WJ 

2 
&x2+, g+ w~+y2[B+w,(2 +$]+T22s2(s +~)+r38[*2+*ulJl + ;I + +Tl~22*3b+uo[2 +;I) 

h1T3*2[*2++3+ $42+ ~]]h2T32s2[s2+swo[l+ iI+ ~l+t1T2~32*3~s2+*~p+ +~P+ $1 

l vo 

w -L,A 1 
0 RC 1 -F ,A2-+A -1, T2S 3 T3S 
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Fig. 5. (Confinwd). 

. 
The superior performance of the two-OA zero-sensitiv- 

ity circuit for small values of r,, (r,, < 0.025 for Q  = 10 and 
r,, <O.Ol for Q  =25) is apparent from the comparisons 
shown in Figs. 6, 8, and 9. For larger values of r,, the 
performance of all circuits in this comparison differs 
significantly from the ideal. 

The lim itations of the proposed configuration as well as 
those of the other circuits in the comparison can also be 
determined from Fig. 6. The poles of the zero-sensitivity 
circuit of Fig. 2(b) move quite rapidly towards the right 

half-plane for larger values of r,,. It can be seen in this 
figure that the poles of the zero-sensitivity configuration 
enter the right half-plane for r,, = 0.07 when Q = 10 and 
r, ~0.027 when Q =25 rendering the filter unstable for 
larger values of r,,. The new configuration is thus prefer- 
able only for sufficiently small values of 7,. 

EXPERIMENTAL RESULTS 

The two-OA zero-sensitivity filter of Fig. 2(b) was 
tested using two 741-type OA’s with measured GB’s of 
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Fig. 6. Comparison of desired poles. (a) Q= 10. (b) Q  =25. 

5.4X 106+ l-percent rad/s. The bridged-T network was 
designed for a Q  of 10 and center frequency of 10 kHz. 
The following measured component values were used in 
the design: 

C,= C,= 1.23 nF 
RJR,=686 !Yi 

R,=261 k0 
R,=2.74 kS-l 
R, = 2.74 kS2. (55) 

With these component values, the theoretical and 
measured values of f0 are, respectively, 9.65 and 9.634 
kHz. The theoretical and measured values of Q  are, re- 
spectively, 9.716 and 8.978. 

CONCLUSION 

A consistent method for comparing the performance of 
active filters with respect to the parameters of the OA 
based upon the active sensitivity function has been in- 
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Fig. 7. Comparison of parasitic poles. (a) Q= 10. (b) Q-25. 

traduced. Constraints on the transfer function necessary 
to obtain zero sensitivity with respect to the parameters of 
all OA’s in a filter were subsequently developed. These 
constraints were obtained without requiring either 
matched OA’s or circuit components whose values were 
dependent upon the parameters of the OA. 

Two practical circuits that satisfy the zero-sensitivity 
constraints were introduced to show that these constraints 
can be satisfied. The performance improvements obtained 
with .these zero-sensitivity circuits were borne out by a 
detailed comparison of these circuits with popular existing 
designs. 

Additional zero-sensitivity circuits can be designed to 
satisfy more stringent component spread and passive 
sensitivity requirements. Further, any realizable transfer 
function can be realized with a zero-sensitivity active 
filter. 
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Letters to the Editor 

The x-Controlled scalar and Its Applications to 
Network Synthesis 

LIVIU GORAS 

Abstmct-‘The problem of synthesii &ear or nonlinear x~&oUed 
one-ports (dere x can he a voltnge or a current) is approadxd by 
intmdndng the hear x-controlled scalor, a s-c&r whose coeffidents of 
the tI?mmddoII matrix are pmportloIIal to some other de4drical vsriables. 
In da&r, any pammetrlc network element can be obtained. 

The power scalar [l]-[3] (active transformer [4]) is a linear 
two-port element characterized by the following transmission 
matrix: 

l-P’& O [ 1 0 Ki 

where &, KiiE R - (0). Some particular cases are the voltage 
scalar (ideal voltage converter [5]) (Ki = I), the current scalar 
(ideal current converter [S]) (& = l), the power scalar with 

the controlling variables x and x’ being applied at the third port. 
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The author is with the Department of Electronics and Computers, Poly- 
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Examples of LXCVS and LXCCS realizations are given in 
Fig. 1. The LXCPS can be obtained cascading a LXCVS with a 
LXCCS. Various other realizations are readily obtainable from 
[ 1, table III]. 

& = & (ideal power converter [6], [7]) and, of course, the ideal 
transformer (& = $ = 1). 

The linear x-controlled power scalar (LXCPS) will be defined 
as a nonlinear four-port characterized by the following transmis- 
sion matrix between ports 1 and 2: 

where x and x‘ can be currents or voltages applied at the 
remaining ports. 

The linear x-controlled voltage scalar (LXCVS) and the linear 
x-controlled current scalar (LXCCS) are nonlinear three-ports 
characterized, respectively, by the transmission matrices between 
ports 1 and 2: 


