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Parasitic Pole Approximation Techn iques 
for Active F ilte r Design 

RANDALL L. GEIGER, MEMBER, IEEE 

Abstmei-A method of approximating the parasitic poles of active 

filters employing one, two, or three operational amplifier(s) 8 presented. 

‘hese approximations are good for both a single-pole and two-pole model 

of the o&rational amplifier and are useful for determhhg filter stability. 
I I I I I I 

The approximation expressions are sufficiently shple that they may be 

included In the active filter desiga process. Vi c RC NETWORK 

StabWty criteria for active filters employing two-pole operational 

amplifiers are stated in terms of the parasitic pole approXlmati0Ds obtabed 

using the simpler single-pole model of the operational amplifier. l%e 

necessity of lacluding the more accwate two-pole model of an operational 

ampluier in some applications is discwsed. Detailed comparisons Of the 

actual and approximate parasitic poles in two examples are made. 1 : 

I. INTRODUCTION 
Fig. I. General three op amp active filter. 

J 

I T IS A well-known fact that the frequency response of 
an operational amplifier (op amp) affects the perfor- 

mance of active filters employing these devices. The 
frequency dependent gain of the op amp causes both a 
perturbation in the desired poles of the active filter from 
their nominal position and the introduction of parasitic 
poles in the active transfer function. It has also been 
observed by many filter designers that the performance is 
affected to the extent that some active filters that look 
promising when designed assuming the op amp’s are ideal 
either perform poorly in the laboratory when actual op 
amp’s are used or are actually unstable. This degradation 
in performance and/or possible instability can often be 
attributed primarily to the movement of the desired poles 
and zeros from their ideal position [l]-[3]. 

Much attention has been devoted to the design of active 
filters which are less sensitive to the parameters of the op 
amp’s [4]-[8]. This has often been achieved by incorporat- 
ing an accurate model of the op amp itself [7], [8] into the 
design process. The desired poles in these designs exhibit 
a  reduced dependence upon the parameters of the op 
amp’s. 

Some designs in which the desired poles are very nearly 
located at the ideal position are, however, experimentally 
observed to be unstable. This is often a result of the fact 
that the parasitic poles lie in the right half of the s-plane. 
Such instabilities are often characterized in the laboratory 
by a high frequency approximately sinusoidal oscillation 
which may vary in amplitude from a few millivolts to 
several volts depending upon the circuit topology and 
particular op amp used. 
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This paper is concerned with obtaining approximate 
expressions for the location of the parasitic transfer function 
poles of active filters employing one, two, and three opera- 
tional amplifiers. The expressions derived herein ap- 
proximate the parasitic poles for both single-pole and 
two-pole models of the op amp’s. By incorporating stabil- 
ity considerations obtainable from these parasitic pole 
approximations into the design process itself, some prom- 
ising configurations that have in the past been observed to 
be unstable may be modified slightly to obtain a practical 
usable filter. 

The magnitude of the parasitic pole approximation 
problem can be appreciated by realizing that an active 
filter employing three op amp’s, each modeled by a two- 
pole model, whidh is designed to realize a second-order 
transfer function actually has an eighth-order denomina- 
tor polynomial that must be factored to obtain the two 
desired poles and the six parasitic poles. 

Although the frequency response of the op amp is 
usually (and often quite successfully) approximated by a 
single-pole transfer function, it is shown by example that a  
two-pole model may be more useful for determining sta- 
bility. In this example a filter is given which has all poles 
in the left half-plane when a single-pole model of the op 
amp is used but which has a pair of parasitic poles in the 
right half-plane when a two-pole model is employed. The 
predicted instability is in agreement with observed labora- 
tory results. 

II. POLE-DEFINING EQUATION FOR ACTIVE FILTERS 

The most general active filter employing three op amp’s 
is shown in Fig. 11 The op amp’s are all assumed to have 
infinite input impedance, infinite common-mode rejection 
ratio and zero-output impedance. The transfer function& 
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TABLE 1 
POLE-DWINING EQUATIONS FOR Acrrw FILTE& EMPLOYING up 

TOTHRl3EOPhP'S 

3 2 (vi) D, 2(s,~) - D,(S) + rs(l+Qrs)PIW + T*s*(~+W*P~LS) + r3s3(l+Ens)3~p(~) - 0 

this filter may be expressed as [7] 

v, -= 
v;: 

N2 4 N23 

N"+A,+A,+A2A, 

(1) 
where all N’s and D’s are polynomials in s dependent 
only upon the passive RC network and A,, A,, and d, are 
gains of the op amp’s and are ideally infinite. Do is the 
desired denominator polynomial and D, is the characteris- 
tic polynomial of the passive RC network. 

At this point, for the convenience of reduced notational 
complexity, the assumption of identical op amp’s will be 
made. Thus for A, =A,=A,= A, the pole-defining equa- 
tion (the denominator of (1)) may be expressed as 

PI(S) D&,A)=D,+-+- - P2(s) + DpW 
A2 A3 =o (2) 

where P,(s)=D,+D,+D, and P,(s)=D,,+D,,+D,. 
The following development can readily be modified to 

handle the more general nonidentical op amp situation 
except where otherwise noted by considering the actual 
denominator of (1) instead of the simplified expression of 
(2) as the pole-defining equation. 

The pole-defining equations in the two identical op amp 
and single op amp cases may similarly be expressed, 
respectively, as 

PI(S) + D,(s) =. D2(s, A)=Do(s)+ A - 
A2 

(3) 

D,(s) 
DI(s,A)=Do(s)+~=o. (4) 

The gain function of the single-pole model of the op 
amp is assumed to be of the form [l] 

where 7 is the reciprocal of the gain-bandwidth product of 
the op amp. The gain function of the two-pole model of 
the op amp is assumed to be of the form 

A(s)= 
1 

TS( 1+87s) (6) 

where r is again the reciprocal of the gain-bandwidth 
product and 8 is a parameter of the op amp that de- 
termines the location of the second pole. When 8= 0, the 
two-pole model reduces to the single-pole model. 

The pole-defining equations (2)-(4) when the single-pole 
model and two-pole model of the op amp is employed are 
listed in Table I. 

III. APPROXIMATE ROOT EXFWSSIONS 

If the op amp’s are assumed to be ideal, then r=O and 
the pole-defining equations listed in Table I all reduce to 
Do(s)=O. The roots of D,(s) are referred to as the “de- 
sired roots.” In practice, however, r is small but not zero. 
As a consequence, there wilI be a small movement of the 
desired roots as well as the existence of additional roots 
which are, in general, strongly dependent upon r. These 
additional roots are termed “parasitic roots.” In most good 
designs, the movement of the desired roots from their 
ideal position due to the nonzero op amp time constants is 
small. Approximations of the desired roots and the associ- 



GEIGER: PARASITIC POLE APPROXIMATION TJXHNIQUES 

TABLE II 
APPROXIMATE POLE-DEFINING EQUATIONS 

795 

ated stability problem can be found in the literature 
[l]-[5], [7], [8], [lo], [ 111. The emphasis here is placed 
upon approximating the parasitic roots. 

Approximate Root Equations with Single-Pole Model of the 
OP Amp 

Let the degree of the passive RC network be nP. Then 
the polynomials Q,(s), P,(s), P2(s), and D,(s) in the 
pole-defining equations of Table I are of degrees n,, n,, 
n2, and nP, respectively, where no, n ,, and n2 are less than 
or equal to nP and where the highest order coefficient of 
D, is assumed to be equal to unity. 

The following assumption will now be made. 
Assumption 1: Assume r is so small that Do(s) is a 

factor of the pole-defining equations (i), (iii), and (v) of 
Table I. 

Although D,-,(s) is in general not a  factor of the pole- 
defining equations, the actual location of the desired poles 
are very near to the roots of De(s) for small values of r 
since the roots of the pole defining equation are analytic 
functions of r [ 121. W ith this assumption, the pole-defining 
equations (i), (iii), and (v) of Table I can be approximated 
by equations (i’), (iii’) and (v’) of Table II, where 

D,,(s)= 5 d,,s’. 
i=O 

A reasonable choice of the “a” coefficients in (i’) can 
be made by equating the coefficients of the highest nP-n,, 
+2 powers of s on both sides of “z” in (i’). Equating 
these coefficients results in a set of linear equations in the 
“a ” variables which can readily be solved. The “a ” 
coefficients in (iii’) and (v’) are determined in a similar 
manner. If r is sufficiently small, it is often the case that 
each of these linear equations is essentially dependent 

upon only a single “a ” variable making the solution very 
simple. 

W ith r small, the equations of Table II of the form 
flp-“,,+j 

2  a,(T.s)‘=O, j= 1,2,3 
i=O 

(7) 

are the equations that can be solved to approximate the 
parasitic roots when the single-pole model of the op amp 
is used. 

For existing active filters, it is most often the case that 
n,,=np so that the order of the equation that determines 
the parasitic roots is equal to the number of op amp’s in 
the circuit. If one or two op amp’s are used, the expres- 
sions for the parasitic roots are particularly simple. 

Several alternative methods for obtaining the parasitic 
roots are discussed by Heinlein and Holmes [3, p. 216- 
2261. These methods give results similar to those presented 
here. 

Approximate Root Expressions for Two-Pole Model of the 
Op Amp’s 

Two methods of obtaining the approximate parasitic 
roots when a two-pole model of the op amp is employed 
will be considered. 

The first directly parallels the single-pole model devel- 
opment provided equations (ii), (iv), and (vi) of Table I 
are used in place of (i), (iii), and (v) in the preceding 
derivation. If the number of op amp’s is very large, the 
order of the equation corresponding to (7) is rather high. 

The second method, which is generally more tractable, 
extracts the two-pole model parasitic roots directly from 
those obtained by applying the much simpler single-pole 
model. This method is not, however, readily extendable to 
the nonidentical op amp situation. 
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The following development of the second method is 
dependent upon the assumption: 

Assumptiqn 2: lim,, a .#O for all “a ” coefficients of , 
(7). 

This assumption roughly says that the “a ” coefficients 
are independent of r for small r. This assumption is 
satisfied in most stable existing filters. 

With this assumption and for small values of r it 
follows that (7) may be written in factored form as 

np-no+j 
fl (TS-pi)=O, j= 1,2,3 (8) 

i=l 

, where for all &pi is not a function of 7. The parasitic poles 
obtained with the single-pole model are thus located at 
s=pJr, i= 1; -. , nP-no+j. 

At this point, observe that the use of the two-pole 
model of the op amp of (6) actually involves making the 
transformation 

TS+m( 1+ 87s) (9) 
in the pole-defining equations (i), (iii), and (v) of Table I. 
Since the 7s term appears only in the second part of the 
product in the pole-defining equations of Table II, it 
follows that a factored form of the pole-defining equation 
for active filters using the two-pole approximation of the 
op amp’s can readily be obtained by replacing 7s by 
rs(1 +&rs) in (8). The parasitic poles can thus be de- 
termined from a knowledge of the single-pole parasitic 
poles from the expression 

np-no+j 
iF, (TS[ 1+&s] -pi)=O, j= 1,2,3. (10) 

The parasitic poles obtained from this expression are thus 
located at 

(11) 
This equation can be used to approximate all parasitic 
poles with a two-pole model of the op amp once the 
parasitic poles with the single-pole model have been either 
determined or approximated. 

In the case that pi is a complex number, 
pi= -a+jJ3 (12) 

p,? is also a root of (10). In this case it can readily be 
shown that the four second-order model roots obtainable 
from the first-order-model roots pi and pf are given by the 
expression 

by the parasitic pole locations. In the single-pole model 
case the parasitic roots themselves if solved for or the 
Routh-Hurwitz criterion can be used to determine stabil- 
ity. If a two-pole model of an op amp is necessary the 
stability question can be answered based solely upon the 
location of the more readily determined single-pole model 
parasitic roots provided the op amp’s are identical. This is 
formalized in the following claim. 

Claim: If-r is sufficiently small so that (7) is a good 
approximation of the pole-defining equation of the para- 
sitic roots for the single-pole model of the op amp, then 
the filter will be stable if a two-pole model of the op amp 
is employed when the following equation is satisfied for 
each single-pole model parasitic root pi = - (Y + jp. 

epQa. (14) 
This claim follows from (13) with some routine algebraic 
manipulations by requiring that the real part of all com- 
plex-conjugate poles be negative. 

The approximations presented thus far and ultimately 
the stability criterion have relied upon the fact that 7 is 
sufficiently small. At this point the statement should be 
made that if a circuit is stable with sufficiently small 
values of r, then it will often be stable for values of r in 
which the approximations of Table II can not be justified 
provided the op amp’s are identical. This can be estab- 
lished by showing that the parasitic pole movement as a 
function of increasing r for parasitic poles with a nonzero 
imaginary part is approximately in a constant Q manner 
towards the origin of the s-plane. This fact will now be 
derived for the single-pole model case directly from As- 
sumptions 1 and 2. 

Assume r is sufficiently small that the approximate 
parasitic pole-defining equation (7) is justified and assume 
that the “a” coefficients in (7) are not dependent upon 7. 
Let pk be any parasitic root. Thus (7) may be written in 
fhe form 

Il.--no+ 1 

i=O 

Since the “a” coefficients are independent of 7, it follows 
that 

3Pk -Pk -=- 
ar 7 * 

(16) 

Thus the change in pk from its value at r=r, where 7, is 
sufficiently small that (7) is justifiable to its position 

dl - 8&x+ 168%‘+ 16e2p2 
2 

dl - 8f?o + 1602az + 16e2p2 
2 

(13) 

IV. STABILITYCONSIDERATIONS r2=r, +k may be approximated by 

Since it is assumed in these approximations that r is 
sufficiently small that the desired roots are essentially at Apkc+ .&=-Pk&. (17) 
the ideal locations, the filter stability will be determined 7-7, 71 
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Fig. 2. Biquadratic bandpass filters. 

This shows that the movement as a function of r of V. EXAMPLE 

parasitic poles with a nonzero imaginary part is towards 
the origin in a constant Q manner as claimed above. 

The locations of the poles of the two second-order 

The above derivation extends readily in the case that 
bandpass active filters of Fig. 2  will now be approximated 

the two-pole model of the op amp is employed. 
and a comparison made of the approximate pole locations 

It can be concluded that filter stability related to the 
with the actual computer generated poles. The first circuit 

position of the parasitic poles with either a single-pole or 
is a  form of the popular state-variable filter [I 11. The 

two-pole model of the op amp can be approximated by 
second is of interest because it is an example of a  promis- 

investigating the position of the parasitic poles obtained 
ing filter that appears stable when a single-pole model of 

by considering the op amp’s to have a single-pole model 
the op amp is employed but which is actually unstable 

with r sufficiently small so that the approximations of 
because of a  right half-plane parasitic pole that appears 

Table II are justifiable. 
when the typical second pole of an op amp such as the 

The assumption of identical op amp’s is necessary to 
741 is included in the analysis. 

obtain reasonably simple expressions for the approximate 
An analysis will now be made of the approximate pole 

1 
parasitic poles in the general single-pole model case and is 

ocations for the state-variable filter of Fig. 2(a). The 

crucial for determining the parasitic poles with a two-pole 
analysis of the remaining configuration is straightforward, 

model of the op amp directly from those obtained with 
h ence only the results will be stated. 

the single-pole model via (11). It is, however, reasonable 
When a single-pole model of the op amp is employed, 

to expect that a  filter which is predicted to be unstable 
the pole-defining equation for the circuit of Fig. 2(a) is 

when identical op amp’s are used will not be useful if D3,(sn, 
unmatched op amp’s are employed. It is also reasonable 

A)=s,+~+,+~~s~(4s~+s~(3+;)+~) 

to expect that the approximations listed above will be 
quite good as long as the parameters of the op amp’s do 
not differ greatly. 

+T;s;(~s;+s,[ 9+ ;] +2+ ;) 

No mention has been made to this point about how 
small r should be to make the parasitic-pole approxima- 

+2+;( s;+sj 3+ ;] +2+ ;) 

tions previously derived. The answer to this question 
depends in part upon the required accuracy of the ap- 
proximations. Based upon a few examples it appears that 
the approximations derived above will probably be quite 

--(sjf+ 2 + l)[ a3(7,s,)3+a2(7,s,)2 

+alhn)+ao]. (18) 
good if for a  particular value of r the real and imaginary 
parts of the approximate desired-pole locations obtainable The normalizations s,=s/w,, and rn =rwo have been made 
from the references previously cited differ by at most a to eliminate the w. dependence from these equations thus 
few percent from their ideal r=O value. making the analysis simpler. By equating the coefficients 
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TABLE III TABLEIV 
C~M~ARI~~N OF APPROXIMATE AND Ex.kcr PARAsrnc Pow 

LOCATIONSFORA SINGLE-P• LEMODELOFTHEOPAMP 
~MPARISONOF~PROXIMATF~ANDEXACT~RASITICPOLE 

LOCATIONS FOR A TWO-POLE MODEL OF THE OP h 

ROOT LOCATIONS 

SINGLE-POLE MOOEL OF OP AMP 

-- 

EXACT APPROXIMATE 

STATE VARIABLE FILTER OF FIGURE 2a 

,001 -4,79071E-02 + j0.997347EtOO l -4.79500E-02 t j.998788EtOO 

-1.OOOlGE+03 -1.OOOOOE+03 

-l.O0291E+03 -1.00000E+03 

-5.00009EtOZ -5.OOOOOE+OZ 
_-_-_--__-_-_- 

.Ol -2.97293E-02 + j.984257E+OO * -2.95000E-02 + j.990700EtOO 

-l.o2562E+02 -1.OOOOOE+02 

-1.00403Et02 -1.OOOOOE+02 

-5.00753E+Ol -5.OOOOOE+Ol 
-. 

ZERO SENSITIVITY CIRCUIT OF FIGURE 2b 

,001 -5.OOOOOE-02 + j.998756EtOO l -5.OOOOOOE-02 *j,999687EtOO 

-4.94932E-01 + j.994975Et03 

-1.OlOlOE+03 

t  

0.0 + jl.OEt03 

-1.OE+03 
- .- _ - - - - - - - -- .- 

.Ol -5,00019E-02 +j,998760E+OO l -5.OOOOOOE-02 + j.999687EtOO 

-4.47319EtOO + j.947864E+02 0.0 + jl.OE+OZ 

-1.11054EtOZ -l.OE+OZ 

*Indicates desired root 

of the four highest powers of s the “a” coefficients of (7), 
subject to the assumption r,<l, are readily found to be 

a3-2) 
up-5 
a,-4 ’ 

i a,- 1 

(19) 

The single-pole model parasitic pole-defining equation (7) 
is thus 

2(r,~,)~+5(r,s,)~+4(r,s,)+l=O. 

The roots of this cubic polynomial are 
(20) 

s, = - 1.0/r, 
s =-1.0/r, r! 

1 

. (21) 
sn= -0.5/r, 

These approximate parasitic roots as well as the single-pole 
model approximate parasitic roots for the circuit of Fig. 
2(b) are listed in Table III for r,, = 0.001 and 0.01 and for 
Q= 10. If the gain-bandwidth product of the op amp’s are 
277~ lo6 rad/s, a typical value for the 741, then the 
r,,=O.OOl and 0.01 cases correspond to bandpass filters 
centered at 1 kHz and 10 kHz, respectively. The computer 
generated poles are also listed in the table. A comparison 
of the parasitic poles of the two circuits of Fig. 2 with the 
computer generated poles for r,=O.OOl shows that the 
approximations are excellent. The approximations are 
quite good even when r,, = 0.01. The approximate desired 
roots [2, p. 3901 are also listed in the table. 

,001 

- 

.Ol 

,001 

.Ol 

ROOT LOCATIONS 

TWO-POLE MODEL OF OP AMP 

EXACT 
I 

STATE VARIABLE FILTER OF FIGURE 2$ 

-4.79065E-02 + j,997348E+OO * 

-1.OOOZOE+03 + j.998815E+03 

-1.00130Et03 + jl.O0268E+03 

-1.00001E+03 + jl,9657ZE+OO 

-2.96584E-02 + j.984355EtOO l 

-1.OOlGlE+02 + jl.O0171E+OZ 

-l.O1300E+OZ + jl.O1312E+OZ 

-l.O0040E+OZ + jl.93346E+OO 

-4.79500E-02 + j,998788E+OO 

-1.OOOOOE+03 + jl.OOOOOE+03 

-1.OOOOOE+03 t j l.OOOOOE+03 

-1.OOOOOE+03 

-1.OOOOOE+03 

-2.95000E-02 + j.990700E+OO 

-1.OOOOOE+02 + jl.OOOOOE+02 

-1.OOOOOE+02 + jl.OOOOOE+02 

-1.OOOOOE+02 

-1.OOOOOE+02 

ZERO SENSITIVITY CIRCUIT OF FIGURE 2b 

-5.OOOOOE-02 + j.99875OE+OO * 

-l.O0505E+03 + jl.O0498E+03 

-2.27222E+03 + j.799113E+03 

+2.67270E+03 + j.783093Et03 
----- 

-5.OOOZlE-02 + j.99876OEtOO * 

-l.O5488E+OZ + jl.O4701E+02 

-2.22741E+OZ + j.G06809E+OZ 

tZ.Z9011E+Ol + j,754664E+OZ 

* Indicates desired root 

-5.OOOOOE-02 + j.999687E.00 

-1.OOOOOE+03 + jl.OOOOOE+03 

-2.27202E+03 + j.786161Et03 

+2.72020E+OZ + j.786151E+03 
----_- 

-5.OOOOOE-02 + j.999687E+OO 

-1.OOOOOE+03 + j.999687EtOO 

-2.27202E+02 + j.786151E+OZ 

+2.72020E+Ol + j.786151EtOZ 
.____.__--.--.- _.._ ~._.. 

Using (1 l), the parasitic roots for the circuit of Fig. 2(a) 
when a two-pole model of the op amp with 8= 0.5 (a 
typical value for the 741) is used can be readily obtained 
from (21) to obtain the six approximate parasitic roots 

s, = ( - 1 .O * jl .0)/r, 
sn=(- l.O+jl.O)/r, 
s”= - 1.0/7, 

s, = - 1.0/r, 1 

* 
(22) 

These approximate parasitic roots as well as those for 
the circuit of Fig. 2(b) are listed in Table IV for r,,=O.OOl 
and 0.01 and Q= 10 along with the computer generated 
roots. The approximate desired roots [2, p. 1681 are also 
included. The exact and approximate parasitic roots for 
the circuits of Fig. 2 are likewise seen to be in close 
agreement when the two-pole model of the op amp is 
employed. 

The necessity of including the second pole of the op 
amp in the analysis of some active filters is borne out by 
the circuit of Fig. 2(b). It can be seen from Table III that 
if the simpler but less accurate single-pole model of the op 
amp is used an exact computer analysis indicates the filter 
is stable since all poles have a negative real part. By 
including the typical second-pole of the op amp in the 
analysis, the approximate and exact root locations listed 
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in Table IV indicate that the filter is actu-ally unstable 
because of a  right half-plane parasitic pole. This instabil- 
ity is in agreement with experimental results. The instabil- 
ity could, of course, have been predicted by considering 
the single-pole model of the op amp and using (14). 

It is interesting to note that the desired pole locations 
for this circuit are essentially unchanged from the values 
obtained by assuming the op amp’s to be ideal. This 
circuit is thus an example of an active filter in which it 
appears that the performance in the region of interest is 
essentially independent of the nonideal parameters of the 
op amp but which is actually unstable due to the presence 
of a  right half-plane pole caused by the second-poles of 
the op amp’s. 

VI. CONCLUSION 

A method of approximating the parasitic roots of active 
filters employing multiple op amp’s has been presented. 
These approximations are good for either a single-pole or 
two-pole model of the op amp when the op amp time 
constant r is sufficiently small. These approximation tech- 
niques involve solving low-order polynomials rather than 
the higher order polynomials necessary to obtain the exact 
roots. Of particular importance is the fact that for two op 
amp’s or less a closed-form expression for the parasitic 
poles in terms of the components of the circuit is usually 
possible for either a single-pole or two-pole model of the 
op amp. Such a closed-form expression should be useful 
to the filter designer in the design process itself. 

It has also been shown that since the parasitic pole 
movement is in a constant Q manner as a function of 
increasing T, stability criterion can be approximated for 
values of r at which the pole approximations can not be 
justified based upon the approximations when r is suffi- 
ciently small. 

An example has been given of a  circuit which appears 
to perform very well when a single-pole model of the op 
amp is used but which is actually unstable when a typical 
second pole is included in the model of the op amp. The 
importance of considering the second pole of the op amp 
during the design process is borne out by this example. 

Finally, comparisons of the readily obtained parasitic 
pole approximations are made with the actual computer 
generated poles for two circuits. These comparisons show _ _ 
that the approximations are quite good. 

PI 

VI 

[31 

[41 

VI 

VI 

[71 

181 

191 

W I 

1111 

W I 
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