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Design o f Active F ilte rs Independent o f 
F irst- and Second-Order Operational 

Amplifie r T ime Constant Effects 
RANDALL L. GEIGER, MEMBER, IEEE, AND ARAM BUDAK, MEMBER, IEEE 

Abstract- A practical method of designing active filters in which the 
transfer function is independent of both first- and second-order operational 
amplifier time constant effects is presented. Neither matched operational 
amplifiers nor a tuning procedure dependent on an active parameter is 
required. The active portion of these filters is universal and readily 
integrable since it is comprised of conventional operational amplifiers and 
resistors. The method can be used to design a filter with any realizable 
transfer function of any order. 

Several new filters obtained from this method are introduced and 
evaluated both theoretically and experimentally. These configurations con- 
tain popular passive structures and the new universal active circuits. The 
significant improvements in filter performance of these new filters is 
demonstrated in this evaluation. 

I. INTRODUCTION 

T HE response of most active filters emp loying opera- 
tional amp lifiers (OP AMP’s) that. are designed to 

operate at high frequencies and/or high Q’s changes sig- 
nificantly if the OP AMP’s used in the design are replaced 
with devices of the same type but with slightly different 
characteristics. These changes in the response of the active 
filter are a  result of the departure of the magn itude and  
phase characteristics of the OP AMP’s themselves from the 
ideal values. 

During the last few years, research efforts in active filter 
design have been  directed towards topological configura- 
tions that are less dependent  upon  the parameters of the 
OP AMP’s than were previous designs. A host of active 
filters have appeared in the literature [l]-[7], many of 
which perform better than the designs of ten years earlier. 

Recently several configurations have appeared in the 
literature in which the authors claimed to have actually 
eliminated first-order OP AMP time  constant effects in 
some relevant characteristics (e.g., transfer function, pole 
locations, amp lifier gain, etc.) of the filter. These designs 
can be  separated into two disjoint groups based upon  the 
filter performance characteristics. 

In one  of these groups [8]-[l l] the first-order time  
constant effects are eliminated in the structures proposed 
by forcing cancellation of the appropriate first derivatives. 
This cancellation is obtained at the expense of requiring 
either matched OP AMP’s or an  active-parameter- 
dependent  tuning procedure. The  current practicality of 

Manuscript received September 18, 1979;  revised February 6,, 198  1. 
R. L. Geiger is with the Department of Electrical Engineermg, Texas 

A&M University, College Station, TX 77843.  
A. Budak is with the Department of Electrical Engineering, Colorado 

State University, Fort Collins, CO 80523.  

emp loying designs requiring matched OP AMP’s for proper 
operation must be  addressed since the OP AMP time  
constants of mono lithic OP AMP’s are typically matched 
only to within a  few percent due  to lim itations in the 
present technology whereas the matching of discrete OP 
AMP’s is generally much worse. Currently designs requir- 
ing a  cumbersome act ive-parameter-dependent tuning pro- 
cedure (which is tantamount to predistortion) don’t readily 
lend themselves to low-cost high-volume production and  
the performance of such designs is generally adversely 
affected by changes in temperature or supply voltage as 
well as aging. This approach has been  extended [l l] to 
force the simultaneous cancellation of first- and  second- 
order time  constant effects. In these configurations it is 
even more crucial that OP AMP matching or tuning take 
place to justify the increased circuit complexity since the 
magnitude of the uncompensated effects of the second- 
order terms will typically be  small compared to that of the 
residual first-order terms if perfect cancellation of the 
first-order derivatives does not take place. 

In the other group [l], [3], [7] the first-order time  con- 
stant effects are eliminated by actually forcing the ap- 
propriate first derivatives to vanish. These designs, which 
are based upon  the active sensitivity function [l], are 
termed zero-active-sensitivity filters and  require neither 
matched OP AMP’s nor an  act ive-parameter-dependent 
tuning procedure. 

Ge iger and  Budak [l] also presented criteria necessary to 
eliminate second-order as well as first-order time  constant 
effects without requiring matched OP AMPS. No practical 
filters presented in the literature to date, which require no  
OP AMP matching or act ive-parameter-dependent tuning, 
are independent of both first- and  second-order time  con- 
stant effects. 

In this paper  a  method of designing active filters is 
introduced in which both the first and  second derivatives 
of the transfer function with respect to the OP AMP time  
constants vanish. This is achieved by imposing constraints 
on  the gain of the amp lifiers to eliminate both first- and  
second-order time  constant effects in any filter emp loying 
these amp lifiers. Using these constraints the new amp lifiers 
are synthesized. Since the emphasis is placed on  the design 
of the amp lifier rather than the filter itself, the ensuing 
amp lifiers are universal and  may be  used in many filter 
structures. In addition, these universal amp lifiers emp loy 
only conventional OP AMP’s and  resistors and  hence are 
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readily integrable. These amplifiers require neither matched 
OP AMP’s nor an active-parameter-dependent tuning pro- 
cedure. 

Three bandpass configurations employing the proposed 
amplifiers are introduced. A performance evaluation of 
these filters confirms the reduced OP AMP dependence of 
the new designs over that of existing state of the art filters. 
Experimental results presented agree favorably with the 
theoretical development of the new filters. 

The proposed amplifiers can be used to design active 
filters with any realizable pole-zero assignment. The results 
presented for the bandpass situation are representative of 
the general case. 

II. ACTIVE FILTERS WITH ZERO FIRST AND SECOND 
DERIVATIVES 

The voltage transfer function of a general active filter 
employing a single amplifier with gain A(s), infinite input 
impedance, zero output impedance, and filter output coin- 
cident with that of the amplifier can be expressed function- 
ally as 

where T, and T2 are transfer functions of a passive RC 
network. 

Assume the A(s) amplifier is constructed from resistors 
and n (n> 1) internally compensated OP AMP’s which are 
ideal except for a frequency dependent gain given by the 
expression [ 121 

where the OP AMP time constant ri is the reciprocal of the 
gain- bandwidth product of the i th OP AMP and is ideally 
zero. The OP AMP time constants are nol assumed to be 
identical. 

It follows from a Maclaurin series expansion in the n 
variables 7, * . . 7n that first- and second-order time constant 
effects in the filter transfer function T(s) are eliminated if 
T(S) satisfies 

aT(s) =O, 
ari foriE{1,2;**,n} (3) 

r*=r2= *--rn=o, 
and 

a2T(.s) =o, 
aria5 fori,jE(1,2;..,n}. 

r,=r2= ---rn=O, 
(4 

It should be emphasized that A(s) does not necessarily 
represent an OP AMP gain and may be ideally either finite 
or infinite. It should also be emphasized that it is not 
necessary that the A(s) amplifier be stable by itself since 
rather the stability of the resulting active filter is of inter- 
est: 

first and second partial derivatives of (1) with respect to 
the OP AMP time constants that (3) and (4) are satisfied 
provided 

! )I 
=o, -- 

a’i A(!sJ r,=r2= ...rn=O, 
iE{1,2;..,n} (5) 

and 

=o, 
i,jE{1,2;.*,n}. 

r =,,= . . .rn=o, 1 
(6) 

The realization of A(s) with a m inimum number of OP 
AMP’s to satisfy (5) and (6) will now be. addressed by 
considering sequentially the cases n = 1, n = 2, and n = 3. 

Case I: Single OP AMP Internal to the A(s) Amplifier 
It was shown in [l] that all first-order pole derivatives 

with respect to r can not be forced to vanish in any active 
RC filter with complex conjugate poles employing a single 
OP AMP. This result extends readily to imply that 

aw #O 
i37 r=O 

in any active RC filter with complex-conjugate poles. Thus 
(5) can not be satisfied with a single OP AMP. 

Case 2: Two OP AMP’s Internal to the A(s) Amplifier 
Examples of amplifiers were given in [7] which satisfied 

(5). It can, however, be readily shown that it is not possible 
with just two OP AMP’s to design amplifiers with zero first 
derivatives in which 

a2 - - 
ar,ar2 24 ,“=r2=o. ( )I 

Case 3: Three OP AMPS Internal to the A(s) Amplifier 
Assuming the amplifier output coincident with that of 

one of the OP AMP’s it can be shown that all first- and 
second-order derivatives of T(s) with respect to all OP 
AMP time constants will vanish provided A(s) is expressi- 
ble in the form 

A(s)= 1 
[ a0 +sr,a, +sr3a3 +s2r2r3a2, 1 

k- a, +sr,a, +sr,a, +s2r2r3a2, +s3r,r2r3 
KO 

[ 1 
(7) 

where the u’s are real constants with magnitudes less than 
or equal to unity and tKo is the dc gain of the A(s) 
amplifier and may be either finite or infinite. 

It can be shown that for low frequencies the magnitude 
and phase functions associated with A( jw) given by (7) can 
be approximated, respectively, by _ -- _ 

IA(~~)[EK, 1% 1 KOr1r2r3(a2r2 +‘3’3b4 

ai 

Under the assumption that all OP AMP’s of the filter are 
internal to the A(s) amplifier, it follows upon taking the (8) 
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Vi 
r 

\k BP+ sr2(l- 8)+ 5~38 +  S2 ‘2 *3 
vi= s3 Tl T2’3 

(b) 

Fig. 1. Zero second derivative infinite gain amplifiers. 

Note the absence of the w2 term in /A( and  the w 
term in e(w). Hence, these amp lifiers have characteristics 
that are close to the ideal gain and  phase over a  wide 
frequency range. 

III. ZERO FIRST AND SECOND DERIVATIVE 
AMPLIFIERS 

Four new amp lifiers along with their corresponding gains 
A(s) are shown in F igs. 1  and  2. Note that these gain 
expressions agree with the functional form required by (7) 
to eliminate first- and  second-order time  constant effects in 
the transfer function of any filter emp loying these amp li- 
fiers as the active devices. As can be  seen, the amp lifiers of 
F ig. 1  have ideally infinite gain whereas those of F ig. 2  
ideally realize a  finite gain. The  infinite gain amp lifiers of 
F ig. 1  are readily integrable and  universal in the sense that 
they may replace conventional OP AMP’s in many existing 
filter configurations. Those in F ig. 1  can be  obtained from 
F ig. 2  by letting K, = 00, r, = l/e, and  r2 = l//3. Further- 
more, the zero sensitivity property is unaffected if the input 
leads of any of the OP AMP’s are interchanged. For 
example, reversing the + and  - inputs on  A, in F ig. l(a) 
results only in a  sign change in front of the transfer 
function. On  the other hand, if the + and  - leads on  A, 
are reversed in F ig. 2(a), a  transfer function with right-half 
p lane poles results thus rendering the finite gain amp lifier 
by itself useless. It should be  emphasized, however, that the 
overall filter stability criterion will dictate whether the stable 
amp lifiers of F ig. 2  or the unstable amp lifiers obtained by 
reversing the + and  - inputs of any of the OP AMP’s in 
F ig. 2  are to be  used in the filter design. 

Conspicuously absent from the amp lifiers presented in 
F igs. 1  and  2  are those with a  finite negative gain. It can be  

Vi 

I 

(1;- 
vo  

l+srp p  
- ‘K, 
Vi (‘1-I) r1 ri Ko2 -- 

I+ ST2 p  -+s2 ‘2T3 p  &)+s3r,T273 0  (Ko-I) 

Vi 

1  

R,,=I 

RA~=K~-I 
- 

r15 1 
r*2 I 

+ a3  rl Tz 73  rl ‘2  (K,;IP 

@I 
Fig. 2. Zero second derivative finite gain amplifiers. 

readily shown that it is impossible to design an  inverting 
amp lifier which satisfies (7) with the infinite input imped- 
ance properties enjoyed by the circuits of F igs. 1  and  2  
with three OP AMP%. 

Consider now the finite input impedance circuit of F ig. 3  
which has the well-known transfer function 

R2 
V o- R, --- 
F  

If A(s) is the gain of the amp lifier of F ig. l(a) or l(b) one  
readily obtains, respectively, 

V, 

vi [BB+s7,(1-B)+s2i,7,]+si?,*2~3( 1+&2) 
I 
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RI Vi w .vo 
A(s) 

Fig. 3. General inverting amplifier. 

and 

~[6~+s72(1-8)+s73e+s2~2~~] 
I =- 

[Bp+s72(1-e)+s738+s27273]+s37,7273 1+2 
( i 

(A 
which are of the form required by (7) to eliminate both 
first- and second-order time constant effects in filters em- 
ploying these amplifiers. It can be seen from (10) and (11) 
that the ensuing finite input impedance inverting finite 
gain amplifiers are stable for appropriate choices of 8 and 
P. 

Equation (7) will also be satisfied if the amplifiers of 
Figs. l(a) or l(b) with + and - leads of A, interchanged 
are used for the A(s) amplifier in Fig. 3. These inverting 
finite gain amplifiers are unstable but may-well be used in 
a filter structure to obtain a stable filter. 

The amplifier topologies presented above require resistor 
divider networks to attain the zero first and second deriva- 
tives with respect to the 7’s. The sensitivities of the ensuing 
filter transfer function to these resistors will now be de- 
termined. 

If R is a resistor in the A(s) amplifier, it follows that the 
passive sensitivities are given by 

defn aT(S) R 
sp = aR T(s) = 

R 

T2f - A[s, 
4 A(S) . t-1 

02) 
If the ideal amplifier gain is defined by 

A IDEALw=m~T,=T2= ...7”4 03) 

one can conclude from (12) that the passive sensitivity 
evaluated at the nominal values 7, = r2 = . * * = rn =O is 
given by 

IDF!..&) 

(14 

It can now be shown that the passive sensitivities evaluated 

at the nominal values for the circuits of Fig. 1 are given by 

s;;;) = 0 , i= 1,2,3,4. (15) 
For the circuits of Fig. 2 these sensitivities are 

K,-1 

p-C”) = K,2 
R.4, 

T2f-k 
0 

ST(“) 1 -g-w 
R.42 RAl 

@y) = 0 3 V i>2. 06) 
Thus in the infinite gain case these passive sensitivities 

vanish and in the finite gain case the nonzero sensitivities 
are comparable to those obtainable using a single OP AMP 
in the amplifier. 

IV. SOME NEW FILTERS WITH ZERO TRANSFER 
FUNCTION SECOND DERIVATIVES 

For the purpose of easy comparison with existing de- 
signs all new circuits presented in this paper ideally realize 
a second-order bandpass transfer function. It should be 
emphasized, however, that the following treatment can be 
readily modified to synthesize any realizable transfer func- 
tion of any order. The results given here are to be inter- 
preted as being representative of the general case. 

The circuits shown in Fig. 4 are all second-order band- 
pass configurations in which both the first and second 
derivatives of T(s) = V,/V;: with respect to the r’s of the 
OP AMP’s vanish. Many other circuit configurations exist 
which also have the same property. These three configura- 
tions have been chosen for this presentation because their 
topological structure is similar to that of some well known 
configurations and many of the passive sensitivity expres- 
sions are identical to their well-known counterparts. A 
discussion of each of these circuits follows. 

The circuit of Fig. 4(a) employs the popular bridged-T 
configuration as the selectivity determining network and 
uses the infinite gain amplifier of Fig. l(a) with the + and 
- leads of A, reversed. This configuration is similar to the 
single-OP AMP circuit employing the bridged-T feedback 
commonly encountered (see, for example, [13, p. 3011 or 
[14, p. 3801). The sensitivities to the passive parameters of 
the bridged-T network are the same for both the circuit of 
Fig. 4(a) and the single OP AMP circuits referenced above. 
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Ai= & i =  1,2.3 

c, =c2=c 

R,,= R,‘// R; 

AI =& i=l,2,3 R2=R3=R 

Cl =  C2’C R, =R/2 

c,= 2c R.+=R/a 

(b) 
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(4 

A, =  & I =  1,2,3 
8  

h,R’ 
R2 

R7= 8R5 

Y6=R7 

Rg= Rg= ZRg 

(4 

Fig. 4. Zero second derivative filters. 

Since the infinite gain amp lifier of F ig. 1  is used, the where 
passive sensitivities of the filter transfer function to the 
“0  ” and  “/I ” resistors are zero. Although the component  
spread for this circuit is quite high, it can be  reduced 
considerably by using a  “7~ ” to “T  ” transformation ([ 15, and  
p. 1441)  on  the bridging resistor R,. 

The  purpose of d iode D, and  the choice of the parame- 
ters 6  and  /3 are discussed in the following section. 

The  transfer function of this configuration is 

T(++- 
I s2 +s% +c.d; (17) 

Q 
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The circuit of Fig. 4(b) employs essentially the same 
active topology (infinite gain amplifier of Fig. l(a) with A, 
leads reversed) as the previous circuit but uses the twin-T 
rather than the bridged-T configuration as the selectivity 
determining network. For large Q this configuration thus 
has lower components spread but higher passive sensitivi- 
ties than the previous circuit. ,Single-OP AMP filters topo- 
logically similar to ‘the circuit of Fig. 4(b) which have 
identical passive sensitivities with respect to components in 
the twin-T network can be found in [15, p. 2161 or [16, p. 
591. Again, the passive transfer function sensitivities to the 
resistors in the infinite gain amplifier are all 0. 

The transfer function of this configuration is 

and 

ht4Q2. 

V. STABILITY CONSIDERATIONS 

The purpose of the small signal diodes and the choice of 
the parameters 0 and j3 are discussed in this section. 

The diodes shown in all three circuits previously dis- 
cussed are necessary with some commercially available OP 
AMP’s to prevent a large-signal unstable mode of opera- 
tion of the filters caused by turning on the dc power 
supplies or by large noise transients. The oscillations are 
due to nonlinearities of the OP AMP’s and have been 

T(s)=+=- 
, a0 s2 +s- +a; 

Q 

08) 

where 

a= 
l-r/M {+2a 

4Q2 ’ 
alternatively Q = 7 

and 

\IiTz 
W”=RC* 

The circuit of Fig. 4(c) is similar to the circuits of 
Deliyannis [17] and Friend [18]. It inherits the passive 
sensitivities of their configuration and the reduced compo- 
nent spread they obtained by applying positive feedback to 
the popular infinite-gain bridged-T filter. The passive 
sensitivities to R, and R, are identical to those obtained in 
the Deliyannis-Friend configuration. From (16) it can be 
seen that the passive sensitivities of the filter transfer 
function to R,, R,, R,, R,, and R, are all zero. This 
configuration uses the finite gain amplifier of Fig. 2(a) with 
the + and - leads of A, reversed. Even though the 
amplifier by itself is unstable, the resulting filter is stable. 
Of course, the single-OP AMP finite gain amplifier in the 
filter of Deliyannis and Friend was also unstable by itself. 
The parameter h can be determined to optimize filter 
performance in a manner similar to that of Fleischer [5] if 
desired. The transfer function of this circuit is 

mentioned occasionally in the literature [2], [3]. Since the 
diodes conduct only (if at all) during start up of the filter, 
they need not be included in the analysis. 

The choice of the 8 and/or p parameters is not arbitrary 
as it may seem from the expression listed in the previous 
section for T(s). Although the desired poles are very close 
to what is expected in the ideal OP AMP case, the parasitic 
poles introduced by the OP AMP’s actually lie in the right 
half of the s-plane for some values of 8 and p. Recently 
Geiger [ 191 presented a means for. accurately approximat- 
ing the location of all parasitic poles of active transfer 
functions provided that rwo < 1. It can be readily con-. 
eluded from Geiger’s work that when 7wo < 1 all parasitic 
poles of the respective filter transfer functions are in the 
left half-plane provided that 

72(i -+4e, for circuit of Fig. 4(a) 
T2(i -+7,m for circuit of Fig. 4(b) . (20) 
T2e=-7,bw +e), for circuit of Fig. 4(c) 1 

Thus if a single-pole model is employed, stability is assured 
provided 0 and p are chosen to satisfy (20). Actually it is 
necessary in practice to make the inequality a little stronger 
than indicated by (20) to maintain stability when employ- 
ing practical OP AMP’s such as the 741 or 356. This ,is 

T(s)=+ 
I 

*0 s2 +s- +a; 
)[ 

1 1 +sT2p +s%,r,2 v+ 1) 
Q 

ep 

where because the gain of, these OP AMP’s generally rolls off 

Uo+- more rapidly in the l- to lo-MHz range than the -20 

hR,C dB/decade predicted by the single-pole model [ 19]- [22]. A 
more exact relationship between 0 and j3 to maintain 

e= Qh efi stability obtained by employing a two-pole model of the 

2Q-fi ’ 
alternatively Q = ~ OP AMP can also be readily obtained from the approxima- 

tion methods of [ 191. 
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*Fig 4b  4  
z 

l Fig 4c  .-0.95j 5  
4  
I 

sn-  p Ione  

I- b  
-.06 -.04 -.o 2 0.0 

REAL . 
Fig. 5. Pole locus for filters of Fig. 4. 7n  values indicated on  plot. 

TABLE I 
B ANDPVALUESFOR FILTERSOF FIG. 4  

1 determined by picking h  =  49  

VI. FILTER EVALUATION 

The  circuits of F ig. 4  with 8  and  p  values as given in 
Table I were all used to realize identical transfer functions 
(within a  magn itude scale factor) with Q= 10  and  w. =46 
kHz and  62  kHz when the OP AMP’s are ideal. In this 
evaluation all OP AMP’s are assumed identical. This as- 
sumption is not essential but rather used for convenience. 
The  value of h  = 49  was chosen for convenience in F ig. 4(c). 
It can be  seen that this value of “h” results in a  reasonable 
component  spread for Q= 10. 

A pole locus as a  function of. r,, = 7wo is shown in F ig. 5  
for the desired poles of the transfer function. It can be  seen 
that appreciable pole movement  is not noticed for r,, GO.05 
for any of the new filters. Thus if an  OP AMP with GB = 1 
MHz is emp loyed, filters with center frequencies up  to 50  
kHz should perform very well. A plot of the transfer func- 
tion magn itude of these filters appears in F ig. 6. 

The  merit of the new filters is best established by a  
comparison with previous state of the art designs. A discus- 
sion of the performance of existing designs was presented 
by Ge iger and  Budak [l]. A comparison of the pole locus 
of F ig. 5  and  the transfer function magn itude of F ig. 6  with 
that presented in the previous work readily establishes the 
merit of the new designs. 

VII. EXPERIMENTAL RESULTS 

2.0 2.0 

2 

I- I.5 ; 

t 

,.. . . . . . . . . . . . Fig. 4b 

0 ----- Fig. 4c 
9 

IDEAL IDEAL 
it it __- --__-- - 3 

__- --__-- Fig. 46 Fig. 46 

I- I.5 

; 
,............s Fig. 4b 

0 ----- Fig. 4c 
9 

o.oJ:, 
.90 .95 I .oo 1.05 I.10 

W ” = al 
wg 

(4 
2.0 

w  
0 
= I.5 

r 
0 

2 / 

o.oJ I I 
.90 .95 1.00 I.05 I.10 

wn  l 2  
wo  

(b) 

q, = .lO 

(4 

All three circuits have been  analyzed experimentally with Fig. 6. Magni tude response for filters of Fig. 4. (a) 7,, =0.025. (b) 
favorable agreement of theoretical and  experimental re- Tn =0.05. (c) Tn  =O.lO. 

sults. Details of the experimental performance of the cir- 
cuit of F ig. 4(c) only are presented here. both 741  (measured GB= 1.0 MHzt 1  percent) and 356 

The  circuit of F ig. 4(c) was designed to realize bandpass (measured GB=4.15 MHz* 10  percent) type of OP AMP’s 
responses with Q  = 10  and  center frequencies off0 =46 kHz and  a  lN4148 diode for Dl. A summary of the experimen- 
and  f. =62 kHz under  the assumption of ideal OP AMP’s. tal results along with the passive component  values used in 
The  resulting filters were evaluated experimentally using this evaluation (as measured on a General Radio 1457 



756 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-28, NO. 8, AUGUST 1981 

TABLE II 
EXPERIMENTAL PERFORMANCE FOR FILTER OF FIG. 4(c) 

digital bridge) are included in Table II. 
The close agreement between theoretical and experimen- 

tal results is obvious from this comparison. The perfor- 
mance of the filter using 741’s designed for a center 
frequency of 62 kHz ( 7n = 0.063) emphasizes the usefulness 
of these filters. Notice also that changing GB by more than 
400 percent (i.e., using a 356 rather than a 741) does not 
significantly affect the filter performance and may well be 
a better indication of performance than the comparison to 
the theoretical characteristics which rely on the absolute 
accuracy of the measured component values as well as the 
absolute accuracy of the frequency counter used in the 
experimental evaluation. 

The experimental performance at frequencies other than 
those presented here can be determined quite closely from 
an examination of the theoretical root locus of Fig. 5 or the 
transfer function magnitude plots of Fig. 6. 

VIII. CONCLUSIONS 

It has been shown that it is possible to design active 
filters with zero first and second transfer function deriva- 
tives with respect to the parameters of the OP AMP’s This 
was attained by first establishing the constraints on the 
gain of amplifiers necessary to obtain these properties and 
then synthesizing amplifiers which satisfy the constraints. 
These new amplifiers are both universal and readily inte- 
grable. 

Several novel second-order bandpass circuits possessing 

these zero first and second transfer function derivative 
properties have been introduced. They employ popular 
passive structures and the new amplifiers. These circuits 
are less dependent upon the parameters of the OP AMP’s 
at low frequencies than previously existing designs. In 
addition, in the lOO-kHz range these circuits perform well 
using low-cost conventional OP AMP’s whereas the perfor- 
mance of most previously existing active filters employing 
the same operational amplifiers ‘is generally considered 
inadequate. These improvements in performance are at- 
tained without requiring either matched OP AMP’s or an 
active parameter dependent tuning procedure. Experimen- 
tal results confirmed the predicted performance of the new 
filters. 

The new amplifier can be used to synthesize a filter with 
any prescribed realizable pole-zero assignment. These filters 
have the zero first and second transfer function derivative 
property and offer performance improvements similar to 
those of the bandpass configurations presented. 
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