
96 IEEE TRANSACTIONS O N  CIRCUITS AND SYSTEMS, VOL. CAS-29, NO. 2, FEBRUARY 1982 

1975, he has been a Professor of Electrical Engineering at the Technical 
University Munich, Munich, West Germany. His research interests are in 
computer-aided design of electronic circuits and systems, with particular 
emphasis on circuit optimization, layout synthesis, and fault diagnosis. 

Dr. Antreich is a member of the NTG (Nachrichtentechnische Gesel- 
Ischaft, Germany, the German Association of Communication Engineers). 
He received the NTG prize paper award in 1976. He was chairman of the 
NTG Circuit and System Group from 1972 to 1974. Since 1979, he has 
been member of the executive board of the NTG. 

+ 

Rudolf K. Koblitz was born in Worms, Germany 
on September 12, 1950. He received the Dipl. 
Ing. degree from the Technical University 
Darmstadt, Darmstadt, Germany, in 1976. 

Since May 1976 he has been with the Depart- 
ment of Electrical Engineering, Technical Uni- 
versity of Munich, Munich, Germany, working in 
the field of CAD, statistical design, and design 
centering of integrated circuits. 

Mr. Koblitz is a member of the German 
Nachrichtentechnische Gesellschaft (NTG). He 
paper award from the German Nachrichtentech- 

Operational Amplifier Gain-Bandwidth 
Product Effects on the Performance of . 

Switched-Capacitor Networks 
RANDALL L. GEIGER, MEMBER, IEEE, AND EDGAR SANCHEZ-SINENCIO, MEMBER, IEEE 

Abstract -A method of analyzing switched-capacitor (SC) filters which 
incorporates a single-pole model of the operational amplifiers (op amp’s) is 
presented. Closed-form algebraic expressions for filter transfer functions in 
the z-domain are obtained which are computationally more efficient than 
time-domain methods. The necessity for including a frequency dependent 
model of the op amp rather than the common finite gain model in doing a 
performance analysis, especially when considering stability, is emphasized. 

To illustrate the method of analysis, an analog integrator, an analog 
second-order bandpass filter, and their SC counterparts are considered. 
The s-domain performance of the analog circuits’ is compared with the 
z  -domain performance of the sampled-data configurations to show how the 
finite gain-bandwidth product (GB) of the op amp’s affects the respective 
topologies. These comparisons show that the effects of switching rates and 
switching arrangements on filter performance are strongly dependent upon 
the GB product of the op amps. These comparisons also emphasize the fact 
that it is not sufficient to investigate the effect of the operational amplifiers 
on the performance of an analog filter to predict the performance of a SC 
filter derived from the analog configuration. 

I. INTRODUCTION 

T HE EFFECTS of the finite gain-bandwidth product 
(GB) of the operational amplifier (op amp) on the 

performance of active filters has received considerable at- 
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'A continuous-time circuit is referred to as an analog circuit. A samp- 
led-data circuit is a switched-capacitor circuit here. 

tention [l]-[5]. The effects of GB on the performance of 
analog sampled data filters employing op amp’s and 
switched capacitors (SC) are investigated here. 

Several authors have recently presented systematic anal- 
ysis procedures for obtaining closed-form expressions for 
the z-domain transfer functions of SC filters [7]-[ 111. The 
op amp’s have either been assumed to be ideal or to have a 
finite frequency independent gain in these analyses. Gener-  
ally one of these two assumptions was standard when 
analyzing active RC filters up until the early 1970’s at 
which time it was generally agreed that a frequency inde- 
pendent model of the op amp was inadequate. Since that 
time, the single-pole model of the op amp [2] has received 
widespread acceptance. One would suspect that it is equally 
important to include at least a single-pole model of the op 
amp when analyzing analog sampled-data filters. Such a 
model has been employed by Martin and Sedra [12] to. 
analyze a SC integrator but their extension to second- and 
higher order networks is only possible for a special restric- 
tive class of filter structures. Temes [ 131 has also used the 
single-pole model in the analysis of first-order networks. 

A simple macromodel of an op amp employing two 
resistors, two capacitors, and three ideal op amp’s is used 
which has input, output,. and-. gain characteristics of an 
ideal op amp except for a single-pole at the origin. With 
the use of this macromodel, the influence of GB on SC 
filters can be determined. 

The effects of the operational amplifier GB products on 
the transfer functions of two SC integrators are investi- 
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Fig. 1. A simple op amp macromodel.  (a) ‘Single-pole op amp. (b) 
Macromodel of op amp. 

gated in the z-domain. A continuous time  second-order 
state variable filter is then transformed into a  sampled-data 
filter by replacing the integrators by ones similar to the two 
sampled data integrators just mentioned. Root locus plots 
in the s-domain for the analog filter and  in the z-domain 
for the sampled data filters as a  function of GB are 
presented and  compared.  These root locus plots show both 
the desired and  parasitic pole loci. It is concluded from 
these plots that stability of the analog filter does not 
guarantee stability of the derived sampled-data filter when 
the op  amp effects are included even when stable mapp ings 
(mappings which are stable when the op  amp’s are ideal) 
are used (i.e., Bilinear Mapp ing). A comparison of the 
frequency response of the two second-order sampled-data 
filters is made  with that of the continuous time  filter from 
which they were derived which shows explicitly the com- 
bined effects of both the desired and  parasitic poles and  
zeros. 

Experimental results are presented and  compared with 
the theoretically predicted performance. These show close 
agreement.  

This is followed by the presentation of a  method of 
analytically determining the op  amp GB effects in SC 
filters emp loying any number  of op  amp’s, capacitors, and  
switches. 

II. DETERMINATION OF OPERATIONAL AMPLIFIER 
GB EFFECTS IN ACTIVE NETWORKS 

All op  amp’s will be  assumed to be  ideal except for a  
f requency dependent  gain 

A(s)= F  
where GB is the gain-bandwidth product of the op  amp. 
An ideal op  amp is one  in which GB = 00. 

If the op  amp’s in the macromodel  of F ig. l(b) are ideal, 
then it follows that both circuits in F ig. 1  have identical 
gains as well as input and  output characteristics. This 
macromodel  is basically the balanced time-constant in- 
tegrator of Thomas [5] with buffered inputs and  will be  
used for the theoretical analysis. Furthermore, it is con- 
venient to adjust GB (with matched resistors) in the experi- 
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Fig. 2. Continuous time and sampled-data integrators. (a) Analog 
integration. (b) Bilinear z-transform integrator. (c) Forward z-transform 
integator. 

mental simulation of the single-pole op  amp. If the pole in 
the mode l of the op  amp is not assumed at the origin, but 
rather at w,, the macromodel  in F ig. l(b) can still be  used 
provided resistors of value = l/Cow, are placed in parallel 
with C,,, and  C,,,. The  use of the macromodel  is not 
essential for the following analysis and  experimental verifi- 
cation but is rather used for convenience. 

In SC circuits, all voltages are continuous functions of 
time  between switching but many are discontinuous and  
undef ined at the switch transitions. Throughout  this paper  
all voltages are defined at any point in time  by the right- 
hand lim it 

u(t)=E~~+u(l+E). (2) 

Sampled-data points are obtained at integral mu ltiples of T  
starting at t =O. The  clock phase +, is always assumed to 
start at the same mu ltiples of T. O ften the value of the 
voltage immediately before a  switch transition is also 
needed to analyze SC circuits. The  notation 

u(r)= klh u(t + E) (3) - 

will be  used to denote the required left-hand lim it. Obvi- 
ously v(t) = u(t- ) for all I between any two consecutive 
switch transitions due  to the linear nature of the networks 
provided the switches are assumed to be  ideal. 

An important observation about the nodal  output volt- 
age  of an  op  amp can be  made  from the macromodel  of 
F ig. l(b). Since the macromodel  is an  ideal differential 
integrator, it can be  concluded that u,(t) is continuous for 
all time  (i.e., no  jumps occur at switch transitions) with 
bounded inputs. 

A. Integrators 
Two SC integrators are shown in F ig. 2  along with the 

basic analog integrator from which both are derived. The  
first SC integrator is noted for the bilinear-z transform 
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relationship from the s-domain to the z-domain if the op 
amp’s are ideal. With ideal op amp’s the second results in 
the popular forward z-transform [ 151. 

It will be assumed that vi(t) is constant (sampled and 
held) for (n - l)T< t < nT. In general, this assumption is 
required to assure the circuit acts as a linear sampled-data 
system. 

The transfer function of these two sampled-data integra- 
tors which includes the effects of the single pole of the op 
amp will be denoted, respectively, by I,(z) and IX(z). 
Using an analysis similar to that of Temes [ 131, it follows 
that the first transfer function may be expressed as 

I,(z)= 

-2(1+z-l)(l-e~r)Z-l , 

(1-z-')( l+e"T.~z-'). 

(4 

2 1 

where a = - GBc, /c, + c2. Note that for unity gain (c2 = 
cl) the parasitic pole introduced by the op amp disappears. 
By applying the bilinear z-transform directly to the analog 
integrator transfer function in the case the op amp’s are 
ideal one obtains 

Note that this is not the limit as GB-, - cc (ah. a + - co) 
of I,(z) (they actually differ by one time delay z-l). This 
is, however, expected since for any finite gain-bandwidth 
product, GB, the op amp outputs can not jump instanta- 
neously after the clock transition so the limit will not jump 
either. 

By a similar procedure I,(z) is found to be 

I,(z)dLL 

pe4 I.- 
[ 

-$$l-eY1T~2)zp1] 

Cl l-z-’ l- c’ pe(a+al)T/2Z- 1 

c1+c2 

(6) 
where a = -GBc,/c, + c2 and a, = -GB. Again, this can 
be compared to the expression which is found in the ideal 
op amp case 

c2 -- 

Note that this is the limit as GB --f cc of 12(z). Because of 
the nature of the two phase clock employed in the integra- 
tor, integrator outputs in the ideal case are discontinuous 
only at I/2+ kT, ke{O, 1, . . . } and are continuous at t = 
kT, ke{O, 1,. . . }. Thus no additional delay is expected in 
this case. 

An investigation of (4) and (6) seems to indicate that for 
practical values of GB and T, these equations differ very 
little from (5) and (7). It can be readily shown, however, 
that these small differences are comparable in magnitude 
to those which occur when the GB effects are included in 
the analysis of the parent analog integrator from which 

Fig. 3. Second-order analog bandpass filters. (a) Conventional. (b) 
Minimum resistor. 

they were derived. Furthermore, the increased order in the 
transfer functions due to the op amp’s causes additional 
phase shift which may ultimately affect stability in feed- 
back structures. 

The differences in the performance of the analog integra- 
tors from ideal are known to strongly affect the perfor- 
mance of analog filters [6], [ 181, [ 191. It is shown in the next 
section that the deviations in (4) and (6) likewise cause 
serious degradation in performance when these integrators 
are used in analog sampled-data filters. 

At this point the temptation exists to analyze filters 
employing these integrators in terms of flow-diagrams and 
the integrator gains of (4) and (6) as is done for continuous 
time filters and ideal sampled-data filters. Unfortunately 
this method of analysis cannot be used in general since the 
integrator outputs (which often are actually inputs to the 
next integrator) do not remain constant throughout the 
interval ([n - l]T, nT) which was required to obtain (4) 
and (6). A sample-and-hold could be employed to each 
integrator output to hold the voltage constant throughout 
the interval but this would cause excessive delay through 
the filter and seriously degrade performance. An analysis 
of higher order filters follows. 

B. Bundpuss Sampled-Data Filters 
A second-order integrator-based bandpass filter is shown 

in Fig. 3(a). This analog filter and the subsequently derived 
sampled-data filters were selected because they are topo- 
logically relatively simple but serve as good examples for 
developing the general method of analysis presented in the 
following section as well as serving as an excellent example 
for demonstrating the importance of considering GB prod- 
uct effects when designing analog sampled-data %filters. 
This filter, which is similar to that of Geffe [17], uses an 
inverting and noninverting integrator in a loop and only 
two op amp’s. 

The transfer function of this analog filter with ideal op 



GEIGER AND SANCHEZ-SINENCIO: PERFORMANCE OF SWITCHED-CAPACITOR NEiWORKS 

c,=cE~c,=c,=c 
C4=C/Q 

C6 = C, =Ca= T&R)= CB 12 
@I 

Fig. 4. Sampled-data bandpass filters. (a) Forward. (b) Bilinear. 

amp’s is 

T(s)= 
- so0 

s2+s~+o; 
(8) 

e  
where oO = l/RC. 

A sampled-data filter derived from this analog filter is 
shown in F ig. 4(a). This filter uses the Forward Integrator 
discussed earlier in conjunction with the invert ing-summing 
switching scheme of [ 151. 

A bilinear switching transformation of this analog filter 
is also desired due  to the attractive properties of the 
bilinear s-plane to z-plane transformation. Because of the 
large number  of resistors in this analog filter, a  consider- 
able number  of SC’s are required to convert this to a  
sampled-data filter using the bilinear switching scheme of 
Temes et al. [ 161. If a  low-pass to high-pass transformation 
followed by a  frequency dependent  scaling is made  on  the 
analog circuit, the circuit can be  transformed to the m ini- 
mum resistor configuration [8] of F ig. 3(b). The  transfer 
function of the latter circuit is also given by (8). The  
sampled-data filter derived from F ig. 3(b) obtained by 
replacing the resistors with the bilinear SC’s is shown in 
F ig. 4(b). The  circuit of F ig. 4(b) will now be  analyzed. 

For  (n - l)T < t i nT, the circuit of F ig. 4(b) is linear 
and  can be  redrawn as in F ig. 5  where the voltages ei(t), 
i=l, se., 8  are the capacitor voltages at time  t. From the 
macromodel  of the op  amp’s it follows that 

u2(t)= -GB2[TITT(ua(7)- d7)) d7  + u,(nT- T) 

(9) 

f 
Fig. 5. Circuit of Fig. 4(b) for nT- T< t< nT 

and 

u,(t)= -GB,J’ u,(T)dT+u,,(nT-T). (10) 
nT-T 

From conservation of charge it follows that 

%w= *“z(t)+ 
1 6 

-&-u,[nT-T]-e,[nT-T] 
1 6 

(11) 

%w= ~“otf)+ 
5 6 

Au,[nT-T]-e,[nT-T] 
5 I 

(12) 
and 

u,(t) 
=c2(uz(t)-u2[nT-TT])+(c4+cs)(ug(t)-u,[nT-T]) 

c,+c,+c,+c, 

+ui[nT-T]-ee,[nT-T]. 

Define 

A= 

and 

- c6 c5 

Cl +c2 c3 + c7 

- c2 -(c,+c*) 

c,+c,+c,+c, c,+c,+c,+c, 

‘=( G? G il) 
-1 1  
0  0  

c,.= y1 ( 1  

03) 

(14) 

(15) 

(16) 

I 

(17) 

(19) 



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-29, NO. 2, FEBRUARY 1982 100 

and 

D, = 

- Cl C7 

cl+c6 

C2 

c,+c,+c,+c, 

c5 + c7 

(c,+d 

c2 + cg + Cd + cg 

Define 

I 

c,+c,+c,-cc, 
c,+c,+c,+c, 

B2 = 0  

0  

C5 - c7 

c5 + C7 

0 

0 
r- -c 

Equations (9) and  (10) may be  expressed as 
0  “1 L6 0 - 

‘I+‘6 

- 
c2@2+C3+C4-cS) -2c,(c,+c,+c,+c,)-(c,+c,)(c,+c,+c,-cc,) 

(c2+c,+c,+c,)2 (c,+c,+c,+c,)2 

’ B,= 0  ch7 +3c5) 

tc, + c5j2 

cl(cl - ‘6) 

bl + c6)2 

0 

, . 

(27) 

(28) 

y=G(Au(t)+B,e[nT-T]+C,v,[nT-T] 
B4= 

+ D,u[nT-T]). (21) (c2+c3+ccdc2 tc4+%)tc2+c,+c4--*) 

This differential equation can be  solved to yield (c2+c,+c,+c,)2 (c2+c,+c,+c,)2 

u(t)‘e  GA(f-nT+T)u[nT- T]+(eG.+nT+T) _ 1) 0 4c7 -c5) 

.A-‘[B,e[nT-T]+C,u,[nT-T]+D,u[nT-T]] (c5+c7J2 

(22) 
_ cl(cl - c6) 0 

where eCA(‘--nT+T) is the fundamental matrix of (21). Since @I + c6)2 

u(t) is continuous at t = nT, (22) can be  evaluated at 
t = nT  to obtain u(nT). Following this evaluation and  
taking the z-transform we obtain 
[zI-leGAT-( eGAT- Z)A-‘D,] V 

= te GAT-I)A-l[BIE+C,~] (23) 1  0  
where upper  case variables again denote the z-transform of It follows from (24)-(30) that 
the corresponding lower case variables and  I is the identity 
matrix. By conservation of charge during the switch transi- 

e(nT)= B,e[nT-T]+ B,u(nT)+ B,u[nT-T] 

tions at nodes labeled ua, ua, and  u, it follows that + B,u,(nT)+ B,u,[nT-T]. (31) 

e,(nT)= 
c2 + cg + Cd - cg  

e,[nT-T]+ C2(c2+c3+c.cCS) 

c,+c,+c,+c, ( c2 + cj + c4 + cs)2 
(~2bT-Tl-u21nTl) 

+ (C2+Cq+cs)ui(nT)-(C2+C4-Cs)ui(nT-T) + (C~+CS)(C~+C~+C~-G~) .u inTpT] 

c,+c,+c,+c, (c2+c,+c,+c,)2 O  

+ 
-2c,(c2+cj+c~+c8)-(c~+cg)(c2+c3+c~-cg) 

-u,tnT) / 
( c2 + c3 + Cd + c8)2 

(24) 

c,(c, - c5) 

(C7+C5)2 

u,(nT- T) Taking the z-transform of (31) it follows that 

+ 43c5 + 4 
E=(zI- B,)-‘[(B,zI+ B,)V+(B,zI+ B,)y]. (32) 

UOW) (25) 

(C5+C7)2 
Substituting (32) into (23) one  obtains 

JT= ~-1 
[ 
(eGAT- I)A-‘(B,(zI- B,)-’ 

+ ‘;~c~~c~~ [+(nT)-uu,[nT-T]]. (26) 
.(B,zI+B,)+C,)]~ (33) 

1 6 where 
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-(D, + B,(zI-B~)-‘(B,zI+ BJ). (34) 
Thetransfer function, H(z), is thus the second entry in 

the coefficient vector of (33). A closed-form symbolic 
expression of H(z) as a  ratio of polynomials appears quite 
unwieldly. However, for a  given capacitor ratio and  sam- 
pling interval the transfer function can be  obtained. W ith 
the aid of a  digital computer, plots of 1  H(z)!, L H( z) and  
the pole and  zero locations can be  readily obtained. Root 
locus and  transfer function magn itude plots for both cir- 
cuits of F ig. 4  are discussed later. A time-domain response 
can also be  obtained for this filter if desired by investigat- 
ing (22). 

The  transfer function for the circuit of F ig. 4(a) is given 
by the first entry in the vector M ;‘M ,, where M l and  M2  
are defined in (35) and  (36). The  derivation is similar to 
that just presented with the mod ifications outlined in a  
following section. 

M l(1,1)=~(eY~~T,2-eT,2(“z+~o~); 

M ,( 1,~) = z - eT/2(az+aoz) 

M ,( 1,3) = eT/2(~z+~oz) - 1  

M1(1,4)=~(l-e”~~T~2)(l-ea~r~2) 

M ,(2,1)= z - eaolT12 
[ 

c3 + c4 -e a,T/2 - 2  
c3 c3 I 

~,(2,2) i 2  (eQT/2)( ea,T/2 - 1) 

M ,(2,3)= z(e ~oITP - I)( eao2T/2 - 1) 

~4,(2,4)= FealT/2(eao1T/2 - 1) 

+C4(1-eeool”2)+(eOiT/2-1) 
c3 

M ,(3,1)= *ebolT12 
1 2 

M ,(3,2)= - -&z 
1 2 

M ,(3,3)=z-* 
1 2 

M ,(3,4)=-*(e’O~T~2-l) 
1 2 

z(c4 + c5) 

M ’t4J)= (c,+c,+c,) - c3+::+c5eYo1T’2 

M ,(4,2)= c5 c3 + c4 + c5 
eaozT/2 

I 
M ,(4,3) = c5 c3 + c4 + c5 

(I- eOozT/2) 

M ,(4,4)=-z+ 
c3 + c4( eaolT12 - 1) 

c3 + c4 +c, - 

+ 30 -. j .95 

+ 20 

s-plane 
j .90 

-.08 -06 -04 -.02 0.0 

(4 

660 

5zo 

3+00 
2iO 

i 

j 1000 

j 100 

*o’ jl0 
I 
-I 

Fig. 6. Poles of analog filter of Fig. 3(b) Gpn values indicated on plot. 
(a) Desired poles. (b) Parasltlc poles. 

where 

0 

U o1 = -GB, 
U 02=-G% 

- c3@B, 1 

(35) 
a, = 

c3 + c4 + c5 

u2 = 
- o-4 

c,+c, * 

(36) 

(37) 

III. OPERATIONAL AMPLIFIER EFFECTS ON 
PERFORMANCE OF ANALOG SAMPLED DATA FILTERS 

In this section a  comparison of the performance of the 
analog bandpass filter of F ig. 3  is made  with that of the 
two derived SC filters of F ig. 4. A design pole Q  of 10  is 
assumed throughout. The  symbol w. (rad/s) denotes the 
design center f requency of the bandpass filters and  T  the 
time  between sampled-data points. The  normalized GB 
product is defined by GB,, =GB/o,. A comparison of the 
pole locus as a  function of GB is made  for these three 
circuits. The  pole locus plots are in the s-plane for the 
analog filter and  in the z-plane for the sampled-data filters. 
These are followed by plots of the transfer function magn i- 
tudes for several values of GB,. F ig. 6  shows a  plot of the 
upper  half-plane desired and  parasitic poles for the analog 
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,990 995 I 00 

(4 

T CIRCLE 

Fig. 7. Poles of sampled-data filters 0 = 0.01 X 27r, GB, = GB/w, values 
indicated on olot. @-circuit of Fig. 4(a). X-circuit of Fig. 4(b). (a) 
Desired poles.‘(b) Parasitic poles. 

filter of Fig. 3. Figs. 7 and 8 are plots of the upper half 
plane desired and parasitic poles for values of 19 =(O.Ol) 27r 
rad/s and (0.05) 271 rad/s where B = Tw,. Note that the 
clock frequency for the switch control is related to 0 by 
f, = w,,/8 for the circuit of Fig. 4(a) and f, = 0,/20 for the 
circuit of Fig. 4(b). It should be noted that the GB, = 00 
pole locations differ for the two filters of Fig. 4. This is due 
to the well-known fact that the pole locations are transfor- 
mation dependent. The absence of pole locus plots for the 
circuit of Fig. 4(a) when 0 =(O.O5)X2m is due to the fact 
that this circuit is unstable with this slow switching rate 
even if the op amp’s are ideal. 

Several observations about the performance and stability 
of these filters can be made from the pole locus plots. 

1) The value of GB, required for stability of the analog 
filter is different than that for either of the sampled-data 
filters. 

2) The pole locus and stability criterion for the SC filter 
appears to be strongly dependent upon the particular 
switching arrangement employed. 

3) Larger values of B (slower switch clock rates) signifi- 
cantly reduce op amp requirements as can be seen from a 
comparison of Figs. 7 and 8. This, however, is done the 
expense of increased warping in the s-plane to z-plane 
transformation. It is interesting to note that for 8 =(O.Ol) 
27r and 8 =(0.05) 27~ the sampled-data filter of Fig. 4(b) is 
unstable for certain values of GB, whereas the analog filter 
from which it was derived remains stable. 

4) The spiraling nature of the pole locus for the circuit of 
Fig. 4(b) is most interesting. It demonstrates that improv- 
ing GB locally may well result in a deterioration in filter 
performance or actually cause instability. This phenome- 
non resembles the degradation of a digital filter’s perfor- 
mance arising from a local increase in wordlength and 
roundoff errors. The cause of this spiraling locus can be 
traced to the time-domain equation (22) where the eigen- 
values of the state transition matrix can be shown to have a 
relatively large imaginary component indicating a strongly 
underdamped system. This underdamping causes ringing 
transients in the time domain after switch transitions and 
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(b) 
Fig. 8. Poles of sampled-data filters 19 =0.05X2?, GB,, =GB/wO values 

indicated on plot. X-circuit of Fig. 4(b). (a) Desired poles. (b) Parasitic 
poles. 

these transients do  not completely die out before the next 
switch transition which, in turn, makes the pole positions 
in the z-domain dependent  upon the size of the ripple at 
the next transition. The  eigenvalues for the circuit of F ig. 
4(b) are real since during the linear operation intervals the 
filter is comprised of two disconnected first-order networks 
due  to the switching arrangement emp loyed. 

5) The  parasitic pole plots indicate no  stability problems 
with either of these circuits. The  inclusion of these plots is 
justified, however, since some analog filters which have 
desired poles in the left half-plane are actually unstable 
due  to right half-plane [21] parasitic poles. A similar phe-  
nomenon m ight be  expected in the sampled-data filters. 

6) The  spiraling nature of the desired poles can not be  
obtained by emp loying the finite gain mode l of the op  
amp. 

The  combined effects of the parasitic poles and  desired 
poles as well as the zero locations which have not been 
discussed can be  seen in the transfer function magn itude 
plots of F ig. 9. The  plots show the gains IT( and 

25 

0 I I I I I I 
.85 .90 .95 1.0 1.05 1.10 

w  /lo, 
1.15. 

Fig. 9. Magnitude responses for sampled-data filters. 0 =O.Ol X2s, GB, 
=lOOandca. 
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IH(ei”)l for the analog and sampled-data circuits, respec- 
tively, on the same set of axes. The frequency axis has been 
chosen to cover the range of interest. The bilinear z- 
transformation mapping obtained from the circuit of Fig. 
4(b) shows much less frequency warping than is obtained 
by the circuit of Fig. 4(a) as expected.’ One is cautioned 
that the pole plots should be considered in conjunction 
with the magnitude plots since the apparently good perfor- 
mance for some values of GB, in Fig. 4 (e.g., 8 =O.Ol X2vr, 
GB, = 100) are only obtained because the pole locations on 
the spiral are locally close to the desired pole locations but 
this performance deteriorates rapidly for small changes of 
GB in either direction. 

A comment about the assymtotic performance as GB + cc 
of the sampled-data filters is in order. The circuit of Fig. 
4(a) actually has two parasitic poles and two parasitic zeros 
which all converge to z =O. Thus the transfer function 
converges to that obtained by initially assuming the op 
amp’s to be ideal as was the case for the integrator of Fig. 
2(b) from which this circuit was derived. The circuit of Fig. 
4(b) has a single parasitic zero and two parasitic poles all 
of which converge to zero indicating a single extra z 
remains in the denominator of the limit of the transfer 
function (when compared to that obtained by initially 
assuming the op amp’s to be ideal) as was the case for the 
integrator of Fig. 2(c) from which this circuit was derived. 

IV. GENERAL SWITCHED-CAPACITOR FILTER 
ANALYSIS 

A general SC filter employing any number of op amp’s 
modeled by the single-pole model in which all nodes con- 
tain an op amp input or output (not necessarily matched) 
and no nonlinear operation for nT - T< t < nT can be 
analyzed by the procedure previously followed where only 

the dimensions and entries in the A, B, C, and G matrices 
and o and e vectors differ. The procedure is outlined 
below. 

1) Write the differential equations governing the opera- 
tion of each op amp using the macromodel of Fig. 1. The 
differential equation can always be written in the form 
shown in (21) where the dimension of u corresponds to the 
number of op amp%. 

2) Obtain the solution of the differential equation and 
evaluation at t = nT since the op amp output voltages are 
continuous functions of time. 

3) Use conservation of charge principles at switching 
intervals to write the e(t) vector in (31) in terms of u(t) 
vi(t), and e(nT- T). 

4) Take the z-transform of the equations obtained in 2) 
and 3) and solve simultaneously to obtain the solution 
presented in (33). 

In the case that the filter operation is not linear for 
nT - T < t < nT, the above analysis must be modified. 
Assume that the clocks are phased so that switching occurs 
k times in the interval (nT - T, nT). There are now k + 1 
subintervals over which circuit -operation is linear. The 

analysis of sampled-data filters having multiphase clocking 
of the switches is outlined below. 

1) Write a set of k + 1 differential equations governing 
the operation of the op amp’s in each of the k + 1 subinter- 
vals. 

2) Solve the k + 1 differential equations and evaluate at 
the right-hand endpoint of the corresponding subinterval. 
The op amp output voltages are all continuous functions of 
time. 

3) Use conservation of charge at the switching transi- 
tions to obtain the e(t) vectors. 

4) Take the z-transform of the equations obtained in 2) 
and 3) and solve simultaneously to obtain V,(z) in terms of 
F(z). 

The economic advantages of conducting a closed form 
analysis of sampled-data filters should be obvious by in- 
vestigating the computation required to solve equations 
such as (33). The total CPU time required to generate the 
data for all root locus and transfer function magnitude 
plots presented in this paper is well under 1 min on a 
Amdahl 460 V and no attempt was made to optimize the 
algorithms employed. Aside from the economic advantages 
when compared to existing time-domain approaches, a 
time-domain analysis, which may even be based upon a single 
value of GB, may miss the spiraling motion such as was 
obtained for the circuit of Fig. 4(b) giving false encourage- 
ment for acceptable filter per-ormance. 

V. EXPERIMENTAL RESULTS 

A comparison of the theoretical performance predicted 
in the previous section is made with the experimental 
performance in this section. 

The SC filter of Fig. 4(b) was designed for a center 
frequency of 200 Hz, Q = 10, and 8 =(O.Ol) (2~). The low 
center frequency was picked so that the op amp’s could be 
replaced by the macromodel of Fig. l(b) which provides a 
convenient means of experimental GB adjustment with the 
resistors, R, in the macromodel. This macromodel provides 
the additional advantage of forcing additional amplifier 
poles far away from the effective value of GB thus making 
the single-pole gain approximation of (1) which was used 
for the theoretical analysis very good. 

All op amp’s were 741 type and the analog switches were 
HI201. Capacitors c,, c2, cs, and cg were all matched to 
within 0.5 percent of 5.10 nF. Capacitors cg, c,, and cs 
were within 0.5 percent of 158 pF and the capacitors in the 
op amp macromodel were within 0.5 percent of 1.10 nF. 
The remaining experimental parameters were cq =515 pF 
and f, = 10.14 kHz. The resistors, R, in the op amp macro- 
model were matched to within 1 percent and satisfied the 
expression 

R = 7.22X 10’ 
GBrl 

where GB,, is the normalized GB product. No sample-and- 
hold was used at the input because of the relatively high 
sampling rate employed. 
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TABLE1 
EXPERIMENTAL PERFORMANCE OF SWITCHED- CAPACITOR CIRCUIT 
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The measured value of the center frequency, fo, and Q  
are listed in Table I for various values of GB,. The  value of 
Q  was obtained by dividing f, by the measured 3-dB 
bandwidth. The  circuit went into low-frequency oscillation 
(approx. 200  Hz) for 145<GB, < 166. The  circuit went into 
high-frequency oscillation (approx. 100  kHz) for GB, ~226. 

A comparison of the data in Table I with the pole locus 
of F ig. 7  shows the predicted increase in both center 
f requency and  Q  as GB,, increases from 20  to 120. The  
predicted unstable mode  of operation (130~ GB, < 152)  
was observed though shifted slightly (145 <GB, < 166). 
The  subsequent  large drop in center f requency once stabil- 
ity is ma intained by increasing GB, followed by a  decrease 
in Q  and increase in f. was also observed. 

The  analog circuit of F ig. 3(b) from which the SC 
configuration was derived was also experimentally 
evaluated. The  circuit was identical to that used in the SC 
evaluation with the exception that the switched-capacitor 
portions (c,, c7, and  cs) were replaced with matched 
resistors that were all within 0.5 percent of 157.5 kLL The  
experimental results closely paralelled the theoretical for 
GB, < 158. For  GB, greater than 158  the circuit also went 
into high frequency oscillation (approx. 100  kHz). As pre- 
dicted, the absence of the serious Q-enhancement  and  
low-frequency oscillation that was present in the SC case 
was observed as well as the significantly reduced shift in 
center frequency. 

.The--high-frequency-oscil lation- obtained-in both config- 
urations is not predictable by the theoretical analysis but is 
due  to the presence of additional poles not accounted for 
in the single-pole mode l of the op  amp used in the analysis. 

Using a  more accurate ‘two-pole mode l for the op  amp’s 
the parasitic poles were obtained for the analog configura- 
tion using the methods of [22]. One  pair of these parasitic 

poles appeared in the right half-plane. This instability was 
also observed experimentally using actual op  amp’s rather 
than the macromodel.  This problem would not persist with 
most configurations and  the single-pole mode l would be  
generally more than adequate.  

VI. CONCLUSIONS 

A method of incorporating the frequency dependent  
gain of an  op  amp into the analysis of SC filters has been 
presented. The  method allows a  closed form analytical 
method for the determination of the m inimum GB values 
required for a  predetermined amount  of Q  enhancement.  
This may permit designers to reduce the op  amp require- 
ments and  possibly reduce the chip area. 

A second-order bandpass analog filter was transformed 
to a  SC configuration by emp loying two popular but 
different switching arrangements. It was shown in this 
example that the effects of switching rates, switching 
arrangements, and  gain-bandwidth products of the op  
amp’s interactively and  significantly affect the performance 
of SC filters in f requency ranges -where these filters are 
currently applied. Experimental results were presented 
which agreed closely with the theoretical results. It is 
shown in this example that the op  amp effects can be  more 
significant in SC filters than they are in the analog counter- 
part. 

Although it is not our intention to imply other SC filters 
are as susceptable to op  amp effects as are the ones 
presented here or that the bilinear-z transform switching 
arrangements is particularly affected by these parasitic 
effects it seems likely that a  useful algorithm for analyzing 
SC filters must include a  good frequency dependent  mode l 
of the op  amp’s [22] since the spiraling pole locus which 
surfaced in the bilinear state variable filter is not obtaina- 
ble with the more popular finite-gain mode l. The  failure to 
appropriately consider GB product effects or underesti- 
mate their relative significance when compared to other 
nonideal characteristics may lead to either a  serious 
degradat ion in filter performance or instability as evi- 
denced both theoretically and  experimentally by one  of the 
examples presented. 
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Topo logical Fo rmulations for the Coefficient 
Ma trices o f State Equations for 
Switched-Capacito r Networks 
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Abstrtzct -This paper describes new topological formulas for the coeffi- for the exact analysis of large scale SC networks, because the use of 
cient matrices of the state equation for a switched-capacitor (SC) network. inverse matrices is not required and each network-construction-change in 
The topological formulas are derived from a differential state equation each switching time interval is disposed by a switching diagonal matrix with 
describing an RC network with resistances ( R , r) of OFF-  and ON-switches, diagonal binary elements “1” and “0” for ON- and OFF-switches, respec- 
respectively. Differing from historical nodal analyses, this method is useful tively. New characteristic matrices will be applied in order to obtain the 

coefficient matrices efficiently by using recursive equations, which are 
suitable for computer-aided analysis. 
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