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Modeling of MOS Transistors with
Nonrectangular-Gate Geometries

PATRICE GRIGNQUX anp RANDALL L. GEIGER, SENIOR MEMBER, IEEE

Abstract—-The dc electrical characteristics of MOS fransistors with
nonrectangulargate geometries are investigated. Closed-form analy tical
expressions refating the terminat characteristios to the geometric param-
eters are presented for several gate geometries including the trapezoid,
l@v;! uL’” md mm

Experimental results based upon a specially fabricated NMOS test bar
containing these nonrectangular devices aze presented, A comparison
of the theoretical and experimental results is made which shows close
agreement.

I. INTROBUCTION

HE SHAPE and dimensions of the gate of MOSFET tran-
sistors are generally the only device parameters con-
trollable by the integrated-circuit design engineer once the
ptocess parameters have been specified, Typically the designer
utilizes the rectangularshaped gate whenever possible. This
approach is commonplace since the rectangular geometry is
convenient for layout, component density can be high, and
good models for this device have been developed,
Nonrectangular devices are {e.g., trapezoidal, “L’-shaped,
“¥*.shaped, etc.) occasionally used, however. Those devices
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are particularly useful when it is of paramount importance to
fit a given amount of circuitry into a predetermined region on
the die or when extreme device lengths or widths are required.
Unfortunately, utilization of these nonrectangular MOSFET’s
is Hmited by the unavailability of suitable device models.
Even in the seemingly simpile case of an *L"-shaped transistor
there are differing opinions as to what the actual “equivalent
length” and “equivalent width” are, or if, indeed, such an
equivalence exists.

One industrial group with which the authors had become
familiar tecently had need of a nonrectangular device with
specific characteristics. They addressed the problem of model-
ing their devices by fabricafing on a separate test bar a family
of devices of the required shape, but with varying dimensions,
and experimentally extracting the information necessary for
characterization. The inherent time delay and fabrication
costs often make such an approach impractical,

Aside from, but directly associated with the problem of
modeling nonrectangular-gate MOSFET"s, is the question of
what effects, if any, does the designer controllable shape have
on performance and can this parameter be advantageously
utilized to optimize circuit performance.

Richman [i] considered the problem, in 1967, by posing
the question and fabricating special test devices, however, no
guantiitative resuits were presented. He was particularly
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Fig. 1. MOS transistors with arbitrarily shaped gate geometries,
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interested in the effects of device geometry on parasitic
capacitances and transconductance gain,

Rao and Carr considered trapezoidal MOSFET's in two
papers in the early 1970°s [2}, [3] and presented simple,
closed-form parametric expressions for the de relationships
between Ipy, Vpg, and ¥gg. Unfortunately, their expressions
are invalid as pointed out by Hemmert [4]. In the same paper,
Hemmert presented his own solution to the trapezoidal prob-
lem by following the basic approach Wick {5] used to investi-
gate the Hall effect in gyrators. It will be shown here that
atthough his approach is correct, Hemmert’s solution to the
trapezoidal problem & also invalid. Closed-formn explicit
parametric expressions will be presented for the de terminal
characteristics of several common nonrectangular-gate MOS
trangistors,

il. ANALYSIS OF NONRECTANGULAR TRANSISTORS

Several theorems relating to modeling arbitrarily shaped
nonrectangular MOSFETs, in the ohmic region, are presented
in this section. These results will be utilized subsequently,
For notational convenience, the development will be for
n-channel devices,

Consider the two-dimensional “top view” of an arbitrary
MOSFET shown in Fig. 1{a) where the curves 5, b,,,d,, and
b,y form a simple closed curve which is the boundary of the
gate. The gate is assumed to be perfectly conducting, The
curve segments &, and 5, serve as the drain and source con-
tacts, respectively, and are nonintersecting. The location and
orientation of the origin in the x-y plane is arbitrarily located,
as shown in Fig. 1.

The physical model of the device will be the same as that
used by Sah {6] to obtain the simple d¢ electrical mode} for
rectangular devices of channel length L and width W operating
in the ohmic region typically used for design purposes

L UCox W
2L

Ip QVes ~ Vr)- Vps) Vps,

for VDS < VGS - VT (I}

where Vg is the threshold voltage, u is the channel mobility,
and Coy Is the oxide capacitance per unit area. Ip, Vg, and
Vpg denote the drain current, gateo-source voltage, and
drain-to-source voltage, respectively.

In what follows, it will be assumed, without loss of general-
ity, that ¥, =0 {i.e., the source serves as the voltage réference),
The channel will be assumed to be of a constant thickness, z,.
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The z-component {the z-axis is perpendicular to the x-y
plane of Fig, 1) of the electrical field in the channel is assumed
negligible compared to the component in the x-y plane, aliow-
ing one to express the channel voltage at the point {x, y, 2} as
Vix, y) whick will be represented as ¥ for notational con-
venjence, The threshold voltage is assumed to be independent
of position. Assuming z, is arbifrarily smail, the mobile-sheet
charge density at the point (x, ¥) in the channel is given by

Pms = Cox Vo5~ V7~ V], )
The sheet conductivity of this layer is given by
Crms ™ UPmg (3)

where u is the surface mobility of the elecirons in the channel.
Let fand F represent the sheet current density and electric-
field vectors, respectively, in the channel, It thus follows from
Ohm's law and the continuity equation that .

J F O E “

V-JI=0 )
where the electric field is given by

E=~9V. {6)

Substituting (2), 3), {(4), and {6) into (5} we obiain the differ-
ential equation

Vs - Vp-VIVV-YV - J¥=0

which along with the boundary conditions

&

Vix,y)=0, along 3,
Vix,y)=Vpg, alongd,
n(x,y} E=0, along b,, and b, ,

{where n{x, ¥} is a unit vector normal to the boundary at the
point {x, ¥} on the boundary) totally governs the operation of
the device. It remains to express the drain current, Iy, in terms
of Vg and Vg, I we let +y represent any simple curve ex-
tending from b,y to b,,, the current Ip can be obtained from
the linte integral along v from the equation

In #f J-and
¥

where n is the unit vector normal to ¥ (oriented toward the
source}. If we now assume 1y is any equal potential surface ob.
tained by solving {7) {which must extend from b,, to b,,), it
follows that J is everywhere perpendicular to y so that {(8)
becomes

1t

Igﬁf Ejid!=uC0x[V(;s—VT-V]vaVidI. £
¥ Y

The solution of (7) and the subsequent solution of {9) re-
quired to obtain the device model are, in general, unwieldly.
These equations are, however, readily solvable in the case
where the gate geometry is rectanguler. The Riemann
mapping theorem [7] will now be used to transform a non-
tractable gate geometry into a rectangular geometry. Two
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theorems will then be presented that allow one to obtain the
solution of the arbitrarily shaped gate directly from the solu-
tion in the rectangular case.

Riemann Mapping Theorem

let By and D, be simply connected domains in the Z.plane
and W-plane, respectively. There then exists a univalent func-
tion T such that W= T'(z) maps D, onto D,.

The mapping can be chosen so that the boundary points z,,
Zy, Zy, and z, map {0 the points w;, w,y, wy, and w, as shown
on Fig, 1. Note that this maps the source and drain contacts
§; and dy to 5, and dy, which will be taken as the source and
drain contacts of the trangformed device in the W-plane. The
following two theorems are readily proven {8].

Theorem 1: Assume V,{x, y) is a real valued function de.
fined on a domain D, in the Z.plane and 7 is a univaient trans-
formation of I}y onto the domain D, in the W.plane, Define
the real valued function ¥, (1, v) on the domain D, by

Valu, vy = V(T (u,v)). (10)
Then if ¥, satisfies the differential equation
(a"" V;)VzVs‘(VV;'VV;}zo (11)

with boundary conditions

Vl(x&y)ao) o1l §
Vi(x,y)=Vps, ond,
negy =0, onb,, and b,,

where @ and Vpg are real constants and £, = -9V, then
V; (u, v} satisfies the differential equation

@- V)V, - (¥ VP)=0

with boundary conditions

(12)

V!(x:y)zgs 0“32
Vy(x,y)=Vpg, ond,
n-E; =0, onb,, and b,,;.

Theorem 2: Let T, Dy, Dy, Vy, and ¥, be as defined in
theorem 1 and let 7, be the “equal potential” curve in D,
defined by ¥V, {x, y) =k where X is a real constant that satisfies

0k < Vpg

and <y, is the image under T of 7y,. Then, the drain currents of
the two devices, Iny and gy, which are expressible by

Ipzwkf o~ V119V, idl {13}
T

Ipw=h f e~ V,}19%1 diy (14)
Ta

where  is a real constant, satisfy the eguation Iy =Tpy.
If we define g and 2 by
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(15)

then, from (7}, (9), and theorems 1 and 2 we can cbtain the
expression for the drain current of the device in the Z-plane in
terms of Vg and Vpg by solving for ¥ in (12), solving for
Ipw in (14), and then equating Iz and Ipyy. Alternately, we
can solve for the current Ipy and equate Iy and Jpy to ob-
tain Jnw. As stated earlier, the direct solution of the pairs of
equations which characterizes an arbitrazily shaped transistor
is generally unwieldly. We will intentionally choose the
mapping T so that the solution of {12} and (14) or the solu-
tion of {11) and (13) is tractable or already known.

A solution of (11) and (13) for the case that the device isa
rectangle (with vertexes in the Z-plane defined by 2, = (0, 0},
2, =0, W), z3 = (L, W), and z, = (L, ()} with length L and
width W is given by

Vﬁ
V,=a- ‘/gz +42£~E (“;?.ﬂ__aym), for{x,yye b,

(16)

and

_hW Vis
In 7 [aVDS 2 ] 1t

Although the details of the solution aré rot presented, the
solutions are readily derivable from (11) and (i3}, It can be
observed from {16} that V,{x, y) is not dependent upon the
y variable, an gssumption that is often made when analyzing
rectangular-gate MOS transistors. Substituting into (17) the
constants g and /4 given in (15) yields Sah’s equation (1).

Two interesting observations can be made at this point.

Observation 1; The functional form of the relationship be-
tween Vg, ¥, and Veg is not affected by gate geometry, For
an arbitrarily shaped device an equivalent rectanguiar-gate
transistor exists and the device geometry only affects the
“oquivalent” W/L ratio. As a consequence, all devices are
electrically symmetric with respect to the drain and source,
even though they may not be geometrically symmetric.

Observation 2: M the boundaries b,, and by, in Fig. I,
serve as the source and drain (or drain and source) contacts,
respectively, then the equivalent W/L for this device is the
reciprocal of the equivalent W/L for the device initially con-
sidered,

Since Riemann’s mapping theorem guarantees the existence
of a univalent mapping of any devite with a gate bonded by a
simple closed curve to a rectangular device, Observation 1
follows from (17} and the fact that the rectangular-gate tran-
sistors are electrically symmetric with respect to drain and
source. If we select a rectangular.gate device in the W-plane
of Fig. 1, observation 2 follows from the facts that the
mapping T which maps 5, to s, also maps ,, and b, to b,
and &,,,, and that the reciprocal relationship for interchanging
contact sides is valid for rectangular devices.

H should be emphasized that the preceeding analysis and
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Fig. 3. Mapping of sccentric-ring onto concentric annulus.

conclusions are valid only for the d¢ physical mode] presented.,
Device geometry does affect parasitic capacitances, channel
modulation, electrical symmetry in the saturated region, and
short-channel device performance.

III. APPLICATIONS

Several devices with nonrectangular gates are analyzed in this
section. These analyses all utilize the univalent transforma-
tion approach of theorem 1.

A. Ring-Gate Devices

Consider the ring.gate transistor shown in Fig. 2. A uni.
valent mapping of this rectangle in the W-plane to the ring-gate
device in the Z-plane is given by

z=¢g" (18)

where the segments [wy, wa}, {wa, wil, [wy, wal, and {w,,
wy] get mapped to {24, 23], [25. 23], {22, 24]), and {24, 2,], re-
spectively. It thus follows that the device characterization
parameters ¢ and b for the rectangular-gate device are related
-io the characterization parameters 8, R4, and R, for the ring-
gate device by

2= (R/R,)
and

h=@ .

(19)

where @ is in radians and satisfies the equation

02

It also follows that if the source is connected to {24, 24}, and
the drain to [z, 2,], then from (19)

Lieq W{R/Ry}
and from observation 2 of the previous section, that if the
source and drain are connected to [z, 23] and [z, z4] that

(jg) _In (R, /Ry)
Ll e

(20}

(2

The mode} for an annular-gate device follows immediately
from (20) with 8 =2,

B. Eccentric Ring-Gate MOSFET
Consider now the eccentric ring-gate device in Fig. 3 along

with the annular-gate device that has been previously analyzed.
Kober {9] shows that the linear fractional transformation,

(22)

where 5 and 7 satisfy the equations

Wert-rd e VORI oAy S A
r= (23
2xp
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conformelly maps the eccentric ring-gate device onto the con-
centric-circle device where the device characterization param.
eters are as indicated on Fig. 3. Routine manipulations now
yield the equivalent W/L for the eccentric device

O
L i ln rl(f"‘xo) i
st

Several equal-potential lines are also shown in Fig. 3.

(25)

C. Trapezoidal Devices

A trapezoidal-gate MOSFET is shown in Fig. 4 along with its
rectanguiar image under a univalent transformation. For con-
venience, the source and drain are associated with the opposite
paraliel sides of the trapezoidal device and are mapped 1o the
hotizontal sides of the rectangle which have length W.
Although the Riemann mapping theorem guarantees the exis
tance of this transformation, unfortunately it does not give a
closed form expression for the mapping, In this case, we have
not been able to find a simple, explicit mapping in terms of
elementary functions or rational fractions, The Schwariz-
Christoffel transformation [7] can, however, be used in a two-
step manner to obtain the required mapyping.

Consider now the W,-, ;- and Z-plane shown in Fig. 5.
The Schwartz-Christoffel transformation will be first used to
map the upper-half of the Z-plane onto the rectangle in the
W, plane by the mapping W, = ¢,(z}. The Schwartz-Chris.
toffel transformation will again be used to map the upper-haif
of the Z-plane onto the trapezoid in the W,.plane by the
mapping W, = ¢,(z). The images of the sides and vertices of
the two mappings are as depicted in Fig. 5. The parameter &
is not a free parameter but can be obtained once g, b, ¢, and @
have been specified where ¢ is the angle indicated in degrees.
Likewise, k is a function of the parameters W and L. The
parameter £ will be used later to obtain the relationship be-
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- \ i i
. . 1
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-t -5 ] 1 3 :
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Fig. 5. Mapping of a rectangle to a trapezoid with the Schwariz-
Christoffel transformation.

tween the parameters that characterize the trapezoids and
those that characterize the rectangle.
The mapping of the trapezoid to the rectangle is given by

wi = ¢ (85" (W) (26)

If we assume that ¢,(0) = 0 and define the normalized angle
&, by &, = af360°, one mapping ¢, (z) that maps the upper
half-plane to the trapezoid, as depicted in Fig. 5 is given by

Wy =6y (2) = f (-0 - 2y e 7)
R |

where the integral is actually 2 line integral and the path of
integration is any contour in the closed upper half plane. By
letting o, = 0 in (27), a mapping to the rectangle as depicted
on Fig. 5 is given by

wee@= [ a-pra-Rera @)
¢

The relationship between a, b, a,, W, and L remains to be
determined. From Fig, § we observe that

$.(1)=a 29)

S (1/k) = ¢+ b, {30)

it follows from (27), {29), and (30) after some routine manip-
ulations that

i
f {1 . xn)ﬂtﬂ“'o.s (1 n kgx;}-o:,,~0.s dx
2a 2 o

b cos (ne,) J‘ Wk
1

(x? - )0 (1 - k208 gy

&)

By replacing o,, by © in (31), the equivalent W/L for the rect.
angular device, in terms of the parameter &, becomes

J.I 1 dx
Em 1 \/(i - x!)(} - kzxz} (32)

L ik 1
d
fl Vix? - (1~ k*x%) *
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Fig. 6. Relationship between o, 2a/b, and (W/lL)py for trapezeidal
devices,

(31) and (32) can row be solved simultaneously by eliminating
k to obtain the desired relationship {since a = a,, - 360%)
WL =f(a, 3;) (33)
To the authors knowledge, no closed-form analytic expres-
sion for the elliptic integrals in (31) and (32) exists, The
parameter k will now be eliminated numerically. Even numer-
ically the elliptic integrals are ili-conditioned due the singular.
ities at x = 1 and x = 1/k. Standard integration technigues
such as ustng Simpson’s rule are impractical. A Gauss-Jacobi
algorithm [10]) based upon 50 points proved sufficient for ob-
taining these integrals. The relationship indicated in {33} is
shown on Fig. & for 15.degree increments in &, It can be seen
that these curves are very linear provided 2e/b > 0.25. An
analytical approximation of the relationship indicated in {33)

(W/L)eq =’:’-§i, 7X 105 a* 4+157X 102 a- 2X 1073

(34)

where a is in degrees and which is accurate to within 1 percent
provided 24/b > 1 4 was obtained from a second-order least-
mean-sguare curve fit based upon the calculated data.

¥ shouid be noted that the results presented on Fig. 6 are
not consistent with those of Hemmert [4]. Although Hemmert
was using the same basic approach as employed in the previous
section of this paper, his mapping T" from the Z-plane to the
W-plane did not satisfy the conformality requirement. Al
though the & = 90° curve was not included on Fig. 6 due to
convergence problems in the pumerical integration, the curve
for & = 89.9°, which is thought to be a very good approxima-
tion for the & = 90° case, was computed and satisfied (34) to
within 2 percent. These resuits differ from the conjecture of
Rao and Carr [3] that the equivalent W/L tends to infinity
as o approaches 90° . -

From observation 2 of the previous section, it follows that
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Fig. 7. Composition of bagic devices, (a) *Haived” uapezoid. (b) "V
shaped gate. Source and drain indicated by double lines,

(W/L)eq, for the trapezoidal device of Fig. 4 in the case that
the drain and source are located on the nonparalle] sides, is
the reciprocal of that just derived.

D. Composition of Elementary Devices

The model of numerous additional devices can be obtained
directly from that of the trapezoid and other devices analyzed
by using symmetrical properties to disect and reconnect the
known devices, provided that the disection is along curves
where it - J = ( for the disection and the reconnection is along
boundaries of gqual length which have identical potentials at
each point on the boundary. Analysis of two such devices
obtained from the trapezoidal structure follow. (For models
of several additional devices see Fig. 8.)

Denote (W/L),, for the parallel drain-source trapezoidal
device of Fig. 4 as (W/L)ppy which is approximated in {34},
By disecting this trapezoid along the vertical line x = 0, it
follows that the current is halved, so that by observation 2
of the previous section, the equivalent W/L for the device
shown in Fig. 7(a) is given by

.
(W/L)rgr

¥ two of these devices are now reconnected along the original
drain connection to obtain the symmetric V-shaped device as
indicated in Fig. 7(b), it follows that

_ i
Wi ea = {(W/L)xpy

(W/L)eq = (35}

(36}

When « = 45°, it follows from {34) and (36) that the device of
Fig. 7(b) becomes the symmetric L-shaped transistor which has

)

Wi)eg = o 5595

37

This can be compared to a “rule of the thumb” commonly
used in industry to model this device of
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Fig. 9. Microphotograph of test bar containing nomrecianguiar evalua-
tion devices,

b

(W/L)eq = YIS (38)

Results for these and additional devices are summarized in
Fig. 8 where the source and drain contacts are indjcated by
a double line,

IV. ExpERIMENTAL RESULTS

Several of the devices previously modeled were fabricated
using a double polysilicon NMOS process with 0.05-mil design
rule resofution. These included 13 trapezoidal-gate, 6 concen-
tric-ring-gate, and 4 eccentric.ring.gate enhancement devices.

One of the trapezoidal devices was rectangular and serves as a
reference. A microphotograph of the test bar is shown in
Fig. 9. The measured (W/L)y, is compared with the theoret-
ical in Table I for all these devices. Characterization param.
eters listed are the same as those used in the text. Dimen-
sions are in mils, Comparisons are all made with respeet to
the measured value of W/L of the rectangular device to mini-
mize the effects of the process-dependent term uC,,. The
values of (W/L),, were determined by a least-squares fit
based upon messurements of f; in the saturation region for
values of Vg = 1.5,2,3,4,5,6,and 7V, Vgg = 0, and
Ve = 7 V including compensation for the channellength
modulation parameter A. This compensation was made under
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TABLE 1
EXPERIMENTAL PERFORMANCE EVALUATION OF NONRECTANGULAR-GATE
MOSFETs
MOSFEY Design Parameters (/L leli? {WL)th % Errar
Trapezofdal - Gate
2a B {5 -3
TH 3,20 Z2.00 3.20 f4.0* 1.840 1,600 -
12 2.80 2.0 3.70 5.7° 1,488 1.4%4 4.5
T3 2,40 2.8 3.20 11.3° 1.37% 1.378 4.2
TA 2.00 2.0 3.2 16.7° 1.236 1.2%1 1.2
75 1.50 2.0 3.20 21.8° 3,114 1112 4.2
16 1.20 2.00 3.2 ?6,8° 0.%63 £.961 T2
kL) $.80 2.00 3.2 3t.0° 3.796 0,795 2.3
18 &40 2,00 3.20 35.0° #8601 0.599 0.3
4 1.20 1.50 2.B0 26.6° 1,108 1.116 8.7
g 1.20 1.20 240 - 6.6 1.358 1.3 1.2
" 1.28 0.80 2.00 76.6° 1,818 1.872 2.9
TiZ 1.2 .43 1.6¢ 26.6° 3.448 3,373 2.0
Ti3 .80 1.8 1.60 2i.e" 1.141 1.1z 1.9
Concentric - Ring Gate
£1 RZ
ERE) 2.00 .68 %, 248 5.219 .5
ns 2.00 0.80 6.914 £.857 1.1
Ti6 2.08 .00 §.352 9.065 1.0
17 2.00 1.2 12.24% 12,300 &.5
T8 2. 00 1.40 17.263 17.6%8 2.0
19 2.00 1.80 2730 28.158 2.8
fecentric - Ring Gate '
3(0 l'-l \"2
T 4.2 2.00 0.8¢ 6.844 6.%48 1.5
T2 .40 2.00 G.80 7.318 7.287 1.0
T2 0.60 2.0 0.80 7.4929 F.E83 1.6
123 Q.80 2.0 ¢.82 9.014 9.065 1

the assumption that the X effects of rectangulargate and
nonrectangular gate MOSFET s are identical, This last assump.
tion introduces a small error in the experimental results. For
the process, the threshold voltage was approximately 0.5 V
and uC,, approximately 21.5 » 10 A - V™2 Aj can be seen
from Table ], the models derived are quite good. In addition to
instrumentation, the errors can be attributed to the 0.05-mil
digitization resolution and the A parameter mentioned
previously.

From the experimental evaluations it appears that the shape
of the gate can be used to reduce A effects. From a theoretical

point of view, the shape of the gate affects the value of the .

parasitic capacitances and may be useful for reducing these
effects in some applications.

V. CONCLUSIONS

The electrical characteristics of several nonrectangular-gate
MOSFET’s have been analytically determined. In this deriva-
tion it was shown that based upon the same physical model
used fo derive Sah’s equation for the dc operation of rect-
angular-gate MOSFET’s, any device with an arbitrarily shaped
gate is electrically equivalent to a rectangular transistor. Ex.
perimental results based upon 3 large number of specially
fabricated devices confirmed these conclusions.

The effects of the gate geometry on the channellength
modulation parameter A and parasitic capacitances warrant
further investigations. The effects of gate geometry on the
electrical characteristics of short-channel devices may also be
of interest.
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