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F ilte r Applications 
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Abstract -The combined effects of deviation from ideal in integrator upon the characteristics of the integrators. Inverting and noninverting 
magnitude and phase on the performance of integrator-based active filters integrators for use in active filters which are independent of first-order and 
is investigated. The limitations of using the integrator Q-factor as a second-order operational amplifier time constant effects and require no 
measure of integrator performance are discussed. Conditions for minimiz- amplifier matching are introduced. These new integrators are compared 
ing the operational amplifier gain bandwidth product effects on with existing actively compensated configurations directly and in a filter 
integrator-based active filters are established which are dependent only structure. Experimental results are presented which confirm the theoretical 

development. 
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ities, low component spread, convenient tuning, multiple 
output characteristics (e.g., low-pass, bandpass, high-pass, 
and any desired combination thereof), and simple design 
procedures by employing ideal integrators as the active 
portion of the filter. The important class of filters that 
employ integrators (possibly lossy) include the “ biquad” of 
Thomas [l], the “state variable” filter of Kerwin, 
Huelsman, and Newcomb [2], the “resonator” of Tow [3], 

the “leapfrog” of Girling and Good [4], the Akerberg- 
Mossberg configuration [5], Bruton’s multiple amplifier 
configurations [6], [7], the “two integrator loop” of Girling 
and Good [8], etc. 

The observed response of most active filters employing 
internally compensated operational amplifiers that are de- 
signed to operate at high frequencies or at a high Q 
changes significantly if the operational amplifiers used in 
the design are replaced with devices of the same type but 
with slightly different characteristics. These changes in the 
response of the active filter are a result of the dependence 
of the response on the characteristics of the operational 
amplifiers themselves, in particular, on the high-frequenj 
rolloff of the operational amplifier gain. This dependence, 
in turn, is strongly dependent upon the particular circuit 
topology used to realize a particular filter reponse. 

Filters employing integrators are.particularly affected by 
the high-frequency rolloff of the operational amplifiers [9], 
[lo] and consequently are lim ited to low-frequency applica- 
tions. This has spurred considerable interest throughout 
the past ten years in the design of integrators that perform 
well at high frequencies [ 1 l]-[ 151. Although improvements 
in integrator performance and consequently improvements 
in filter response have been made, the useful operating 
range of the integrator-based filters is still significantly 
lower than that of many other active RC filter designs 
[ 16]-[ 191. 

Probably the main reason that the high-frequency per- 
formance of integrator type filters is so poor today is 
because of the fact that the criterion which has been almost 
exclusively used for the design of integrators is the integru- 
tor Q-factor (discussed later) introduced by Girling and 
Good [20] in 1969. Although the integrator Q-factor is 
useful, its success in predicting the performance of active 
filters is lim ited for two reasons: 

1) the integrator Q-factor is based only upon the in- 
tegrator phase (i.e., it contains no integrator magni- 
tude information), and 

2) the integrator Q-factor is a characteristic of the 
integrator rather than a characteristic of the filter 
employing the integrator. 

Several integrators which offer reduced op amp depen- 
dence are discussed here that have circuit complexity com- 
parable to the state of the art designs but which offer 
significant improvements in the high-frequency perfor- 
mance of filters employing these devices. Details of the 
designs.of these integrators follow which are based directly 

upon the filter performance rather than upon integrator 
performance. 

II. INTEGRATOR DESIGN 

An integrator is characterized by a voltage transfer func- 
tion of the form 

I( jw) = Iej’ (1) 
where ideally 0 = - 7r/2 and I = + w,,/o for some con- 
stant wa. For notational convenience assume an active 
filter employs only two integrator blocks with gains given 
by I,( jw) and 12( jw). Extension to higher order structures 
is straightforward. 

A. Effects of Integrators on Filter Performance 

To study the effects of the integrators on the filter 
performance, consider the transfer function of the filter 
which may be written functionally as 

T(jw)= F(I,,I,J,J,) (2) 
where I,, 12, 8,, and 0, are, respectively, the magnitude and 
phase of the two integrators. It follows from a MacLaurin 
series expansion of F in the four variables I,, I*, 8,, and 0, 
that the relative change in T(jw) due to deviations of the 
integrators from ideal can be approximated by 
AT(b.4 
T(h) 

(3) 
where the standard sensitivity expressions are evaluated at 
the ideal values of the integrator magnitudes and phases. 

A good integrator design should force the sum of the 
magnitudes (or magnitudes squared) of all four terms on 
the right hand side of (3) to be as small as possible. The 
four sensitivity expressions are dependent upon the filter 
topology and unaffected by the integrator gains. Good 
integrator designs thus should force the integrator depen- 
dent terms, tAI,)/I,,tA12)/12,tAe,)/~,,tAe2)/e22,to be 
small. The relative importance that should be associated 
with each of these ratios is dependent upon the magnitude 
of the respective sensitivity expressions that multiply these 
terms which are in turn dependent upon both F and the 
specific topology used to realize F. It is our contention that 
these sensitivities are often of comparable magnitude indi- 
cating it is important to consider both the integrator’s 
magnitude and phase response when designing integrators. 
We will establish this quantitatively for one specific, popu- 
lar second-order biquad. The examples that follow involv- 
ing higher order cascaded and leapfrog structures further 
emphasize the importance of considering the integrator 
magnitude response along with the phase response. 

Consider the state-variable bandpass structure of Fig. 1. 
The voltage transfer function for this structure is given by 

T(j)=FtI,,12,4,e2)= 
- I,,/31 

1 + K, l,ejel + K, I, 12ejce1 +‘d 

(4) 
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l.+y-J 
Fig. 1. Second-order integrator-based bandpass filter. 

where ideally 

K, = l/Q 
K,=l 

I, = I2 = 32 
w 

8, = d* = - n/2 (5) 
so that the ideal filter gain is given by 

w4 = 
WO0-i -0 = 

l.2 - ai- jww0 . (6) 

e 
s* + 3  + 0; 

Q s=jw 

It follows from (3), (4), and  (5) that for this filter 

.  

(7) 
For this structure it follows that the magn itude and  phase 
effects of the integrator are of comparable importance and  
that little is to be  gained by increased improvement in 
either the magn itude or phase response without simulta- 
neous improvement of the other. 

One  interesting observation is to be  made  from (7). In 
addition to m inimizing the integrator magn itude and  phase 
deviations, improvements in this filter can be  obtained if 
the signs of be, and  AI, are opposite to those of At?, and  
AI,. 

A. Limitations of Integrator Q-Factor 

The  inadequency of the integrator Q-factor itself as a  
figure of merit for evaluating integrator performance can 
be  demonstrated at this point. Since the integrator gain 
given in (1) is a  complex quantity it may be  alternately 
expressed as 

I( jw) = 
1 

R(4+ PW 

Vi - 

Fig. 

@ l-@Tvo 
R C NETWORK 

I 

2. General two op amp integrator. 

where ideally R( w = 0  and  X(w) = w/we. The  integrator 
Q-factor is defined [20] to be  

(9) 

It now follows from (1) that 
Q ,=tan(-t9). (10) 

Since the integrator Q-factor is dependent  only upon  8, it 
follows from (7) that it is of lim ited use in predicting 
integrator performance. The  state of the art integrators 
[ 12]-[15] seek to maximize this factor alone. 

B. Minimization of AI/I and Ae/8 

The  effects of the parameters of the operational amp li- 
fiers on  the performance of the integrators will now be  
investigated. Assume the op  amps are ideal except for the 
frequency dependent  gain 

where the op  amp time  constant r is the reciprocal of the 
gain-bandwidth product and  is ideally 0. 

It follows from the truncation after first-order terms of a  
MacLaur in expansion of the integrator magn itude and  
phase expressions that for an  integrator emp loying two 
operational amp lifiers 

AI= Kr, + gr 871 ar2 2  

where the partial derivatives are evaluated at the ideal 
values of the op  amp time  constants, r, = r2 = 0. It thus 
suffices to m inimize the four partial derivatives in (12). 
Emphasis here will be  placed upon  actually forcing these 
terms to vanish. 

A general  integrator emp loying two op  amps is shown in 
F ig. 2. It can be  readily shown with a  standard sensitivity 
analysis that all four partials in (12) will vanish indepen- 
dent of operational amp lifier matching provided I(s) is 
expressable in the form 

I(s) = I,(1 + 4v) 
s( i + Q ,~)+ e,2r,r2s*oR, 

(13) 

where 8, and  8,, are constants and  DRc is a  polynomial in s 
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2R= Rlld (4 2R= R,zd 

Fig. 3. High-frequency inverting and noninverting integrators. (a) Two 
op amp inverting. (b) Two op amp noninverting. (c) Three op amp 
inverting. (d) Three op amp noninverting. 

vie---ii - f 
"ITS T" 

(4 

Fig. 4. Existing integrator structures, w = l/K. (a) Popular inverting. 
(b) Modified Miller inverting. (c) HigkQ inverting. (d) Compensated 
balanced time constant noninverting [ 151. 

these integrators are given, respectively, by 

V 
-CL= - (1+ 72G”) 

vi %A1 + 72n&z>+ 7,n72nS,2(1+ 4 

dependent only upon passive parameters. V 02= 1+ 27*& 
When extended to integrators employing three op amps, y 

it can be shown that both the first and second derivatives ~(1 +272,s,)+47,,72,sXl + s,) 

in the corresponding MacLaurin expansion simultaneously v,, - (v + 73A + r2nr3nsn2) 

vanish provided I(s) is expressable in the form v,= s,(v + r32, + r2nr3nS,2)+ rd2,r3,sXl + sn) 

I,( 1 + 8,7,s + 027,s + 03r3s V 
-!?I= yIv2 + v1r32, + r2nr3nsn2 

+8,2r,r2s2 + 8,3r,r3s2 + f3,,r2r3s2) v, sn( vIy2 + vlr3nS, + r2,r3,s,2)+2rl,7,,r3.sn3(1 + %) 

I(‘)= [s(l+e,7,s+e~272s+8373s 04) (15) 

+8,2r,r2s2 + 8,3r,r3s2 + 823r2r3s2) where a0 = l/RC, s, = s/we, and v, v,, and v2 satisfy the 

+ 423~,~2~3~%c1 equations 

where the 8’s are constants and D,, is again a polynomial 
in s dependent only upon passive components. 

C. New Integrator Structures 

Four integrators,’ two inverting and two noninverting, 
are shown in Fig. 3. With all switches open the gain of 

‘The integrators of Fig. 3(a) and Fig. 3(b) were presented at the IEEE 
International Symposium on Circuits and Systems, (Houston, TX), April 
1980 and have been subsequently examined by S. Natarajan [21]. 

R& 
‘= R,,+ R,, 

R 
- /7 

8d 
-4 R 9d L /I 

v, = 

%i + R9d 

v* = (16) 



GIEGER AND BAILEY: DESIGN FOR HF ACTIVE FILTER APPLICATIONS 

,,50, PERCENT MAGNITUDE tRRORS , 

E 
5 aa ooo- 
w 
w 
2  
5 -050- Fig 4c 8 Fig 4d 

Ffg 40 a Fig.4b 

---I .oo -0eo -060 -O.&O -o.io 0.60 oio 0.40 060 o.‘so I 
NORMALIZED FREPUENCY, logbho) 

PERCENT MAGNITUDE ERRORS 
5 00 

400- 

I- 300. 

E  
z 2.00- 
E! 
z 1.00. 

8 
g ooo- 
w 
E -lOO- 
z 
ii s -2 oo- 

-3.00- 

-4.00- 

-5.00 
-1.00 -0.60 -060 -0.40 -0.20 0 co 0.20 0.40 0.60 

NORMALIZED FREQUENCY, log (w/we) 

PERCENT MAGNITUDE ERROR 

1 
Fia. 3b--L II !i 

0 100 

I- 
z 0.050 
ii 
it 
z 

s 
E 0.000 
w  

P 

! 
~-0.050 

PERCENT PHASE El RROR 

JLT--- 
/ I 

/ / 
Fig 3b, 

Fig 3c - 

-1.00 -0.60 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.60 

NORMALIZED FREOUENCY, log (w/m) 

(4 

I 00 
PERCENT PHA 

[ / 
SE ERROR 

/ /I \ 

- I.00 -0.60 -0 60 -040 -020 0.00 0.20 0.40 0.60 0.60 1.00 

w  
w 
2 
I- -5.o- 
z 
:: 
I 

-lO.O- 

Fig. 4c B Fig. 4d 

Fig. 3b - 

Fig 40 a Fig 46 

-15.0-v \ , \ 
-1.00 -0.60 -0.60 -0.40 -0.20 0.00 0.20 040 0.60 0.60 I 

NORMALIZED FREOUENCY. log kho) 

599 

(b) 

NORMALIZED FREOUENCY, IogWwo) 

PERCENT PHASE ERROR 
5.00 

4.00 Fig.4b --w 

IO 

Cc) 

/ PFig 3b / I- 3.00- 
c 
Fi 2.00- 
L 

5 I .oo- 

6 
E o.oo- 
w  

z-1 oo- 

z - 2.00- 
2 

-3.00- 

-5.00 I I I I I 1 
-1.00 0.60 060 040 0 ZU 0.00 020 040 0.60 0.60 I 0 

NORMALIZED FREOUENCY, log(w/wo) 

Fig. 5. Comparison of integrator performance. (a) 7n = 0.01. (b) TV = 
0.05. (c) Tn = 0.10. 
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The parameters Y, Y,, and v2 are chosen to force the 
parasitic poles introduced by the op amps to be in the left 
half-plane. Methods of determining those parameters is 
discussed elsewhere [22]. Note that the gain of the first two 
is of the functional form of (13) necessary to eliminate 
first-order effects whereas the second two are of the func- 
tional form of (14) necessary to eliminate both first-order 
and second-order terms in the MacLaurin expansions for 
the integrator magnitude and phase. It follows from (3) 
that the corresponding operational amplifier effects vanish 
in any active filter employing these integrators. A compari- 
son of the magnitude and phase of these integrators (for 
v = 0.2 in Fig. 3(c) and B, = 0.5, v2 = 0.2 in Fig. 3(d) and all 
switches open in Fig. 3 and Fig. 4) with that of the popular 
configurations of Fig. 4 is made in Fig. 5 for normalized 
time constants r, = wo/GB, of 0.01, 0.05, and 0.10. Note 
that in these comparisons the configurations of Fig. 3 
exhibit significantly superior performance in the magnitude 
response in the region of interest around w/w0 = 1 whereas 
the phase response is comparable to that attainable with 
the high-Q configurations of Fig. 4(c) and Fig. 4(d). If all 
switches in Fig. 3 are closed, the derivatives discussed 
earlier still vanish. These switches allow for additional 
excitations and/or loss to be introduced in these integra- 
tors while still retaining the desirable performance char- 
acteristics. Most practical filter applications require these 
capabilities to avoid the need for additional summing 
amplifiers. 

III. INTEGRATOR-BASEDFILTERPERFORMANCE 

The performance of three filter structures employing the 
new integrator is compared with the same structures em- 
ploying the integrators of Fig. 4 in this section. 

A. Second -Order Biquad 

If the filter structure of Fig. 1 is modified by replacing 
the dashed-portion by a single summing inverting integra- 
tor and using a noninverting structure for I2 it is a well 
known fact that a reduction in components is possible. 
With the switches closed for the inverting configurations of 
Fig. 3 and Fig. 4 one obtains the required summing action 
to obtain a second-order bandpass response where for 
convenience all capacitors are equal valued and h is chosen 
to equal the desired pole Q. 

Fig. 6 shows a comparison of the frequency response of 
the second-order bandpass filter of Fig. 1 for four different 
integrator pairs with values of 7n = o,,/GB = 0.01, 0.05, 
and 0.10 where w0 is the ideal center frequency. The op 
amps have been assumed matched for convenience. The 
pairing of the integrators is listed in Table I. The first pair 
uses the popular inverting and noninverting integrators. 
The second was chosen because the integrators have been 
reported to have high integrator Q-factors. The third in- 
volves the two integrators of Fig. 3 whiclrforce first-order 
op amp effects to vanish. The final pair uses the integrators 
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0.90 0.92 0.94 0.96 0.96 100 1.02 I 04 1.06 106 I 

NORMALIZED FREOUENCY, w/w-a 

(4 

3 I .oo 
0 
z 
z i 0.60 

L 
“, 0.60 

2 
3 r 0.40 

000 
090 092 0.94 096 0.96 I.00 1.02 I.04 1.06 I.06 I 

NORMALIZED FREQUENCY, w/w0 

(b) 

4.00]( 

! e’ 3.00. 
z 
3 
g zoo- 
9 
a 

5 
IA I M)- 

0.007 
080 0.90 I 00 I IO I 20 

NORMALIZED FREOUENCY, w/w0 

(4 

3 

1 

Fig. 6. Comparative frequency response of bandpass filters. (a)T, = 0.01. 
(b) 7” = 0.05. (c) 7n = 0.10. 

of Fig. 3 which force both first-order and second-order 
effects to vanish. The results need no interpretation. 

The improvements in filter performance are comparable 
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Fig. 7. Comparative frequency response of a sixth-order cascaded- 
biquad bandpass filter. (a) 7n = 0.001. (b) 7,, = 0.025. (c) 7,, = 0.05. 

I 

Fig. 8. Leapfrog structure for fifth-order low-pass filter. 

TABLE I 
INTEGRATORSELECTIONFORFILTERANALYSIS 

I1 12 

IKilter 1 Fig. 4(a) Fig. 4(b) 

Filter 2 Fig. 4(c) Fig. 4(d) 

Filter 3 
I 

Fig. 3(a) 
I 

Fig. 3(b) 
I 

Filter 4 Fig. 3(c), u = .2 Fig. 3(d), v,=.5. v2=.2 

to those previously reported by Ge iger and  Bydak [ 161, [ 171  
with the direct zero active sensitivity designs. This is not 
surprising since it can be  shown that any filter emp loying 
the new integrators is actually in the large class of zero 
active sensitivity active filters. 

B. Sixth-Order Bandpass Filter Using Cascaded Biquads 

A more demanding application involving cascaded bi- 
quads is considered here. To  obtain quantitative compari- 
sons, a  sixth-order bandpass Chebyschev filter realized by 
cascading three of the biquads previously discussed that 
has 0.5-dB passband ripple and  a  0.5-dB bandwidth of 20  
percent of the center frequency was designed. Using the 
same pairing of integrators as listed in Table I, the filter 
response shown in F ig. 7  was obtained where the frequency 
axis has been  normalized by the center frequency wO. The  
advantages offered by the integrators of F ig. 3  are quite 
obvious. It should be  noted that even in the low frequency 
case, rn = 0.001 (corresponding to a  center frequency of 1  
kHz with l-MHz op  amps), there is more than 0.2-dB 
passband error for both filter 1  and  filter 2. F ilter 4  is not 
included in this comparison since the deviation from ideal 
in these comparisons is negligable as can be  concluded 
from the previous example. 

C. Fifth -Order Low - Pass Leapfrog Filter 

A fifth-order leapfrog low-pass structure emp loying five 
integrators is shown in F ig. 8  where I, and  I5 are lossy 
inverting summing integrators, I3 is a  lossless summing 
inverting integrator, and  1, and  I4 are noninverting sum- 
m ing integrators. All inputs for all integrators are equally 
weighted. Additional details about leapfrog designs are 
readily available [23]. 

For comparison purposes a  low-pass Chebyschev filter 
with 0.5-dB passband filter and  a  0.5-dB cutoff f requency 
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In Fig. 9 the ideal response of this filter is again com- 

pared with that of using the integrators of Fig. 3 and Fig. 
4. The same pairings as denoted in Table I for r,, = 0.01, 
0.025, and 0.05 were used. Again, the performance im- 
provements are significant. 

D. Experimental Results 

The second-order bandpass circuits discussed previously 
using filters 3 and 4 of Table I designed for Q = 10 and 

NORMALIZED FREOUENCY,w/wo 

Cc) 

Fig. 9. Comparative frequency response of a fifth-order leapfrog struc- 
ture. (a) 7” = 0.01. (b) 7n = 0.025. (c) 7n = 0.05. 
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f. = 25 kHz were constructed using 741  type op  amps with 
gain bandwidth products that were measured to be  be- 
tween 710K rad/s and  840K rad/s. The  ideal op  amp 
theoretical and  experimental center frequency and  3-dB 
bandwidth are compared in Table II. Even closer agree- 
ment follows if these experimental results are compared 
with those predicted in F ig. 6  when extrapolated to the 
r,, = 0.03 curves. Component  values which were measured 
to within 0.1 percent are also listed. 

These filters were observed to have an  unstable mode  of 
operation instigated by power-supply start up  similar to 
that often reported in the literature. Since the nature of this 
instability, which may not even exist with some other types 
of op  amps, is strongly dependent  upon  the particular op  
amp used and  since it can be  readily and  economically 
detected and  removed, details will not be  presented here. 

IV. CONCLUSIONS 

It has been  shown that the integrator Q-factor alone is of 
lim ited use for predicting integrator performance. Four  
integrators which were designed to directly improve filter 
performance have been  discussed. The  magn itude and  phase 
of the integrators are simultaneously optimized. Two of 
these are comparable in circuit complexity to the high-Q 
configurations but offer advantages in filter performance. 
The  other two offer even further performance improve- 
ments at the expense of increased circuit complexity. 

The  new integrators have been  compared in a  second- 
order bandpass filter structure, in a  cascaded biquad cir- 
cuit, and  in a  leapfrog design with the popular and  high-Q 
configurations. The  improvements in performance are sig- 
nificant as verified by both a  theoretical and  experimental 
evaluation. 
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