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It is interesting to note that, unlike in the scalar cases, in the 
multivariable systems we can dimctly utilize a, only in (20) for 
the left matrix fraction decomposition of a strictly positive real 
function, that u(z), x(z), and u(z) that in (17)-(19) are func- 
tions of f, and tij and that f, st ai. It indicates that to construct a 
strictly positive real function we have to solve for T-‘, the 
solution of the Lyapunov equation (3). The applications of con- 
struction of T(Z), for given A and B in (2) are in the model 
reference adaptive system, when A is known from the autoregres- 
sive method. The strict positive realness of r(z) of the model 
adaptive reference adaptive system implies the asymptotic hyper- 
stability, and, hence, the convergence of the scheme [3]. 

NUMERICAL EXAMPLE 

Consider (l)-(4) with m = 2 and n = 3 

0.3 a(J = 
0 -;:;;] ‘I= [ 1;:;; -&] 

0.15 -0.3 
a2 = 0.3 1 0.18 ’ 

The eigenvalues of the matrix A in (2) are -0.9012+ j0.1697. 
0.3951+ j0.4869, and 0.3411-c j0.3184. We compute T and T-’ 
using Cyber 170 under NOS BEl. We applied the algorithms in 
[13], [14]. Then 
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2.15849 .47335 - 1.21488 - .40700 1.27230 

T= 

Symmetric 

.88980 .03694 
.95977 

f2= [ 
0.14441 - 0.30689 
0.28790 I 0.18558 ’ 

Note that f, # ui. 
The strictly positive real function r(z) follows immediately 

from (16)-(20),. 
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Tradeoffs Between Passive Sensitivity, Output 
Voltage Swing, and Total Capacitance in 

Biquadratic SC Filters 
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CONCLUSION Abstract -Design guidelines for biquadratic SC filters taking into con- 

We have shown the inverse of the solution of the Lyapunov 
sideration passive sensitivity, output voltage swing, and total capacitance 
area are described. In this paper, we discuss the tradeoffs between these 

eCWtiOn in equations (l)-(2) tranSfOrmS A into F in (4) by a three parameters. A p~pdt~ SC topology with additional positive feedback 
similarity transformation. We also have shown that the first (last) is used to illustrate the tradeoffs involved in the design of SC filters. 
m columns of T- 1 in (3) yield the left (right) matrix fraction 
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Fig. 1. A popular switched-capacitor filter. 

I. INTRODUCTION 

+ 
“02 

i 

A number of SC filters have been published which realize 
general biquadratic transfer functions [l]-[4]. In particular, SC 
topologies that have partial positive feedback are capable of 
significantly reducing the total capacitance [5], [6]. However, 
attempts to minimize total capacitance in a filter structures are 
often accompanied by an increase in Q sensitivity and/or a 
reduction in the corresponding output voltage swing of the op 
amps. Conversely, when the designer only concentrates on mini- 
mizing the sensitivities large capacitor areas typically result. 

In this paper, we show the tradeoffs between total capacitance 
and Q sensitivities for a certain output voltage swing of the op 
amps. Using information presented here the designer can specify 
the maximum Q sensitivity value permitted and obtain the 
minimum total capacitance, C,, under certain op amp output 
voltage swing conditions, or vice versa, namely, the designer can 
specify the op amp output voltage swing, C,, and determine the 
resultant Q sensitivity. 

II. SECOND-ORDER FILTER WITH POSITIVE FEEDBACK 

Assuming r, and 0 are given, the following algorithmic design 
strategy can be used to obtain a,, u2, b,, and b,. 

Solving (2) for b, we obtain the expression 

b, = (1+ b, - rZ)/rZ (4) 

and 

ala2 - -yq1+ r2-2rcosB). (5) 

It can be seen that b, is a design parameter that can be used to 
judiciously tailor either sensitivity or total capacitance. Since only 
the u1u2 product is fixed, the designer also has flexibility in 
specifying one of these parameters. Next, in order to relate s- and 
z-plane, we arbitrarily use for purpose of reference the impulse 
invariant response [l] to derive the sensitivity expressions. It can 
be shown [l] that 

jo=&[e+(lnr)Z]1’2 (6) 

and 

2740 
’ = - f, In r2 (7) ’ 

where f, is the sampling (clock) frequency and f. is the center 
(cutoff) frequency. 

If p is any capacitor ratio in the circuit of Fig. 1, it follows 
from (2), (6) and (7) that 

spr2 - ( e/tme) sprcose I (8) 

and 

s,e, & 
2 

i i[ 
- e2 + e(h r)/tdl 

21nr 
~;~-(e/t~e)s;~=~~~ . 

I 
(9) 

The sensitivities of 2rcos B and r* that appear in these expres- 
sions can be obtained from (2) and (3). For high Q circuits the 
reader is cautioned to avoid selecting values of b, and b, that 
will result in very high Q sensitivities and the associated stability . _ 

Fig. 1 shows a popular biquadratic SC filter structure which prob1ems. 
includes a local positive feedback loop [5], [6]. This filter, without IV. PRACTICAL DESIGN CONSIDERATIONS 
the positive feedback capacitor b,C, reduces to the popular 
F-circuit reported by Fleisher and Laker [3]. We focus attention There is a tradeoff, in designing SC filters, between the total 

here on the positive feedback and the effects of b,C on the pole capacitance C,, Q sensitivity’ and the op amp output voltage 

frequency and pole-quality factor, Q, sensitivities. swings. It is particularly important to consider these tradeoffs in 
SC filter topologies which involve both positive- and negative 

III. DESIGN AND POLE EOUATIONS feedback. The tradeoffs for the circuit of Fig. 1 are illustrated in 

The loop equation defining the pole locations for the circuit of Table I in terms of the sensitivity measure 

Fig. 1 is given by S average =lAIS,e+ IS,e,II (10) 
D(z) =1-z-‘(2-e b,+ b2-ulu2)/i(l+ b,) 

for a particular set of design specifications, i.e., fo/f, = l/50 and 
+ Z-*( 1 + b,)/( 1 + b,) (1) Q = 10. Two cases are simultaneously considered for comparison 

From this equation we can identify purposes. In one case the op amp outputs are unbalanced, that is, 
V, is fixed to 0 dB and V, is variable. In the other case both 

and 

l+b r2 =2 
l+ b, 

2rcosB = 
2 + b, + b, - ala2 

l+ b, 

outputs are scaled (by the choice of the parameter a,) to 0 dB. 
(2) C, and C TB are the total capacitances for the unbalanced and 

balanced outputs, respectively. 
The tradeoff between the C, and Q sensitivities for balanced 

(3) op amp outputs will now be considered. The total capacitance C, 

where r and 8 correspond to the pole radius and angle, respec- 
tively. ‘We do not present results on S’ since they are around 0.5, therefore, not 

critical. 
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TABLE I 
BALANCEDANDUNBALANCEDOUTPUTSVERSUSQ SENSITIVITY 

AND C,, WITH V, = 0 dB 

I I I I 

.2 .81907 13.618 49.252 46.369 

I ’ c /’ \ I /’ 
75 ‘\I 

/ 
/ 

/ 
/ ~ 12.5 

Fig. 2. Total capacitance versus the capacitor ratio b for a fixed Q = 10, and 
different fo,/f, values. 

can be expressed as [3]: 

C, = [(a& + b,C + b,C + kC + C)/C,,,] 

+(41+ cI)/Glin*lcu (11) 

where Cminl and CminZ are the smallest capacitors in the sets 
{C, kc, b,C, b,C, a&} and {C,, a,C,}, respectively. Since the 
variable ai has been used to obtain balanced outputs, it follows 
from (4) and (5) ‘that C, is actually only a function of the single 
variable b2. The nonlinear nature of C, in terms of b, is 
illustrated in Fig. 2 for a family of different f,/fc and a fixed 
Q =lO. 

Two practical situations are now considered. 
i) Fig. 3 illustrates the compromise between the total capaci- 

tance CT, ad Saverage for a family of fa/f, values.2 Note that 
for this plot Q is fixed, in this case Q =lO. Another set of curves 
can be easily generated for any desired Q value. These curves can 
be used to obtain the tradeoffs between C, and SaVeEase for a 
given fc/f, value. These cures can be used to obtain the 
minimum C, for a given maximum permissible sensitivity value 
or a minimum sensitivity for a given total capacitance. 

ii) For a given value of Q, we can determine the compromise 
between Saverage and Cr. This is shown in Fig. 4 for a family of Q 
values and a fixed ratio of f0 /f, = l/10. 

‘Figs. 3, 4, and 5 already include the scaling of both op amp outputs, for 
V,, = Vo2 = 1 V. (0 dB). 

Fig. 3. Average Q sensitivity versus total capacitance for a fixed Q = 10, and 
different fo/f, values. 

40 60 80 100 I20 CT 

Fig. ‘4. Average Q sensitivity versus total capacitance for a fixed fo/f, =,l/lO, 
and different Q values. 

In either case considered, once the desired operating point is 
determined the required value of b, can be obtained from Fig. 2. 
It is important to emphasize that in Figs. 2, 3, and 4, C, is 
bivalued and the value of Saverage is not unique, b2 should be 
chosen to hihe Saverage. 

v. EXAMPLES 

The following examples illustrates the use of Figs. 2, 3, and 4. 
First, assume the design specifications are f0 /f, = l/50, Q = 10, 
and a center frequency gain of 0 dB and that the maximum 
S averase is 11. The problem is to determine C, and the value of b, 
to satisfy the above conditions. By using Fig. 3, we find that 
C, = 40 Cu. The value of b, can be determined by means of Fig. 
2. Two values of b, are obtained for C, = 40 Cu, b, E 
{0.12,0.15}. 

Additional flexibility is available through the parameter a, if 
the requirement of unbalanced op amp outputs is relaxed. This is 
illustrated in Table II, where the case of no positive feedback 
b, = 0, is included for comparison. In particular, note that b, = 
0.12 yields a smaller Saverage than the case of b, = 0.15. For a very 
small S average, i.e., when b, = 0, the total capacitance increases by 
nearly a factor of 3. 

Consider for the second example the design specifications 
fo/fs = l/25, Q = 10 and a center frequency peak gain of 0 dB. 
Assume that the maximum permitted value of Cr is 40 Cu. The 
problem is to determine Saverage and b2 for the above data. By 
using Fig. 4, the corresponding value of Saverage becomes 2.9. 
Then b, E {0.07,0.90} form Fig. 2. The smallest b, gives the 
smdest Saverage of the two choices. Table III describes all the 
component values for the balanced and unbalanced output cases. 
The particular case of b, = 0 is included in the table. It is 
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TABLE II 
CT AND Q SENSITIVITIESFOREXAMPLE~ - 

TABLE III 

987 

observed in the latter case that Saverage is reduced by a factor of 
about 6, however the total capacitance is increased by nearly a 
factor of 2. 

VI. CONCLUSIONS 

We have presented design guidelines that consider the trade- 
offs between the op amp voltage swings, Q sensitivity, and total 
capacitance for a biquadratic SC filter. We illustrated the ap- 
proach using plots for certain particular design specifications. It 
can be seen that the advantage of using positive feedback is the 
reduced capacitance area at the expense of increased Q sensitiv- 
ity. Equations were given which are suitable for any desired 
design specification. 
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A Canonical Form for Lossless Multiport 
Transmission Lines 

J. M. POTTER 

Absfruct -The propagation of TJZM waves on a reciprocal n-port 
lossless nonuniform transmission line, with absolutely continuous char- 
acteristic impedance and locally equal wavefront velocities in each port, is 
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described in this note by a canonical system of wave equations. The 
essential feature of this canonical system is an n X n local reflection 
coefficient which generalizes the notion of a reflection coefficient for a 
single-port line. The reflection coefficient characterizes the local scattering 
behavior at any point on the tine, and is unique up to a constant orthogonal 
transformation. 

I. ImR00UCn0~ 

There is a long historical interest in nonuniform, or tapered, 
lines-see the early bibliography of Kaufman [l]. The purpose of 
this note is to specify a canonical system of equations for 
reciprocal n-port lossless nonuniform transmission lines and to 
derive these equations from the usual transmission line equations. 
This derivation involves a nontrivial extension of the well-known 
procedure for single-port lines reviewed in Section II below. 

The derivation of canonical forms for hyperbolic systems of 
equations is a standard mathematical technique (Courant and 
Hilbert [2]); however the particular form of the transmission-line 
equations considered here allow a modification of the standard 
technique entailing a particularly useful canonical form. The 
usefulness of this form centres around an n x n reflection coeffi- 
cient l?(x) which characterizes the local scattering behaviour 
along the line. In fact, our motivation for this work arose from 
our investigation (in [3]) of the multivariable generalization of 
Krein’s work on inverse scattering (see, e.g., Faddeyev [4] or 
Chadan and Sabatier [5]) and its application, inter din, to 
transmission line synthesis. Krein’s basic system of equations (as 
recorded in [4] e.g.) correspond to a wave variable formulation of 
the transmission-line equations, reviewed in Section II. We expe- 
rienced difficulty in relating these equations to the transmission- 
line equations in the multivariable case; this note reports the 
resolution of this difficulty. 

II. GROUNDWORK 

Here we introduce our notation, list our assumptions for the 
types of transmission line under consideration, and briefly review 
the well-known derivation of the canonical form for the single-port 
transmission line. 

We restrict attention to the propagation of TEM waves in 
reciprocal, n-port, lossless, nonuniform transmission lines, with 
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