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For a scaled 2-D filter (29) and (30) can be rewritten as 

; “u;:=tr(W”)>t( g 6:)* 
i=l i=l 

(31) 

(34 

since the bound (24) for a scaled filter is given as 

Il~,llt~(nl+n2)(tr(~h)+tr(~“)). (33) 
The right-hand side of (33) is minimum iff each of the trace 

terms is minimum, which is true whenever equalities hold in (31) 
and (32). According to [ll], these equalities hold for optimal 
realization for equal wordlength. Q.E.D. 

It is easy to show that this minimum upper bound is 

with 

IV. CONCLUSION 

’ 
An upper bound on coefficient sensitivity of 2-D optimal 

filters is established. This bound is useful in the design of digital 
filters since it can be computed directly from Grammian matrices. 
Further more, we have shown that the bound for an optimal 
realization having equal wordlength registers is minimum. Hence, 
it appears that optimal realization provides both low roundoff 
noise and low coefficient sensitivity. 
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Consider initially the simple current mirror of Fig. 1 and the 
cascade of simple current mirrors of Fig. 2. Whenever a large 
current gain (k > 1) or a large current reduction (k < 1) is 
attained with the current mirror of Fig. 1, a very wide device is 
required. Because of the associated large device capacitance, the 
bandwidth of such structures is limited. Alternatively, using 
several cascaded current mirrors as shown in Fig. 2 to attain the 
same nominal gain can result in a significant reduction in total 
active area and a significantly higher 3dB bandwidth for the 
mirror gain. 

Fig. 3 shows the simulated 3-dB bandwidth and the total active 
area for a cascade of N equal gain mirrors with nominal overall 
current gains of 20 and 200 obtained from a SPICE2G.6 level 2 
simulation using typical 5~ process parameters, including K,; = 
11 PA/V* and Ki = 3 PA/V* where K’ = pC0,/2. Correspond- 
ing characteristics for reductions of 20 and 200 are depicted in 
Fig. 4. The input mirror is comprised of n-channel devices in all 
comparisons. 

The bias current (I,, of Fig. 2) for current gain cascades was 
1 PA and 200 PA for current reduction cascades. All devices are 
designed to operate in the saturation region and a minimum 
dimension of 10~ is used to provide good matching. When sizing 
the mirror’s nominal current gain (Ai) for Figs. 3 and 4, channel 
length modulation (A) effects were not included, so the gain for 
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Area/Bandwidth Tradeoffs for CMOS Current 
Mirrors 

KIRK D. PETERSON AND RANDALL L. GEIGER 

Abstracf -Conventional CMOS current mirrors with large current ratios 
require very large active areas and have limited bandwidths. It is shown 
that replacing the inefficient large ratio current mirrors with a cascade of 
smaller current mirrors can give significant increases in bandwidth and 
reductions in active area. A simple design strategy is presented which can 
be used to obtain near optimal tradeoffs between active area and band- 
width. 

One of the basic building blocks for CMOS circuit design is 
the current mirror. Depending on the application a designer may 
choose the “simple” current mirror, Wilson mirror, cascade mir- 
ror, or others. Comparisons of some of the features (output 
resistance, bandwidth, and current gain) of the common mirrors 
are readily available [l]. For a given mirror and a specified 
nominal current gain, the designer is free to size the mirror (or 
cascade of mirrors) to maximize the overall bandwidth and 
minimize the total active area (sum of mirror W. L products). 
This is analogous to the sizing of a string of inverters for driving 
large capacitive loads (e.g., pad drivers) in digital circuit design. 
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Fig. 1. “Simple” 1; k current mirror. 
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Fig. 2. Current mirror cascade. 
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Fig. 3. Bandwidth and active area for cascaded current gain mirrors 
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Fig. 4. Bandwidth and active area for cascaded current reduction mirrors 

each stage (‘ki) was chosen as N,@ (for N stages). To keep the 
output mirrors saturated for several high N cascades of the 
Ai = 200 curve, the widths of the output mirror devices were 
doubled. 

As expected, the design using a single mirror (N = 1) has a very 
large active area and a very low bandwidth. As the number of 
stages increases, the total area tends to infinity and the band- 
width tends to zero. Between these extremes there is a fairly flat 
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Fig. 5. Bandwidth of dual ratio current mirrors (A, = 20). 

minimum for the area curve and flat maximum for the bandwidth 
curve. Since the area curve does not include interconnect area, 
the actual design area rises with N more quickly than the plot 
indicates. Interconnect capacitance was neglected, indicating that 
the bandwidth of large N cascades is somewhat worse than 
shown. 

The results will now be examined analytically. Assuming a 
simple l-pole model for each mirror, the 3=dB bandwidth of the 
basic mirror of Fig. 1 can be approximated by: 

f 
1 t&l1 3 im 

3dB 
G---z- 

211 c, 277 (l+ k)C,,WL (1) 

where g,,, is the transconductance of Ml, Cg ‘- 2/3C,,WL(l+ k), 
and W,L, k are shown in Fig. 1. In the derivation of (1) it was 
assumed that g,,,i >> gdsl and that 2/3 C,, WL B Cd, + Cgs(overlapj. 
Although the second assumption introduces a modest error, it is 
used to simplify the analysis. Since the 3=dB bandwidth is pro- 
portional to &, the current reduction cascade will have a 
higher bandwidth than the current gain cascade for low N since 
there is no “dominant” pole due to a very low Zi, stage (as with 
the input mirror for the current gain cascade). 

The sawtooth effect in the current reduction bandwidth curves 
is due to the difference in mobility (and K’) between the 
p-channel devices and the n-channel devices. The output mirror 
is alternately n channel/p channel for odd/even N. Since the 
output mirror has the lowest Ii, it provides the “dominant” pole. 
Fluctuation of the “dominant” pole value with K’ (for odd/even 
N) results in the sawtooth effect on the bandwidth curves. 

BANDWIDTH OPTIMIZATION 

For current gain cascades, one may attempt to maximize the 
overall mirror bandwidth and simultaneously achieve a fairly low 
total area because the area curve is quite flat near the bandwidth 
maximum. The gains of the n- and p-channel mirrors were all 
assumed equal in the comparisons shown in Figs. 3 and 4. The 
question about whether the assumption of equal mirror gains 
actually results in maximum bandwidth naturally arises. Due to 
mobility differences for n- and p-channel devices, it can be 
shown that further modest improvements in bandwidth can be 
attained by making the gain of the p-type mirrors different than 
that of the n-type structures. 

The overall 3=dB bandwidth for Ai = 20 is shown in Fig. 5 as a 
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function of the n-channel mirror gain, k,, using the l-pole model 
of (1). (The plotted bandwidths are slightly higher than shown in 
Fig. 3 because the simpler l-pole model does not include all of 
the gate capacitances.) The curves show that the dual gain sizing 
scheme results in 3=dB bandwidths up to 8 percent above the best 

Comments on “Highly Selective Three-Dimensional 
Recursive Beam Filters Using Intersection 

Resonant Planes”’ 

SOO-CHANG PEI AND SY-BEEN JAW 

equal gain 3=dB bandwidths. 
The task of determining the optimum value of k, is not trivial. 

A reasonably simple design method of determining k, that 
achieves close to the optimum bandwidths (for N > 2) is obtained 
by requiring equal factor separation of all mirror poles. Using the 
single-pole model for the mirror 3=dB frequency, it follows that 
the ratio of bandwidths of successive stages “(for even n) are 
given by: 

fn -= -- 
f,-1 (24 

In the above paper,’ Bruton and Bartley have proposed a novel 
method to realize highly selective 3-D recursive digital filters, 
these special filters have the property that their passbands sur- 
round a straight line along a particular direction of propagation. 
By cascading two 3-D recursive plane filters,’ we can obtain the 
required 3-D beam filters in any direction using these two inter- 
secting resonant planes. Bruton and Bartley have designed these 
two 3-D recursive plane filters by subjecting two 1-D analog 
low-pass filters to triple bilinear transformation: 

z, -1 
s, = - 

z,+1’ 
i =l, 2,3. 

+fis (2b) The orientation of the passband of 3-D recursive beam filter 

n 1 will be “bent” due to this triple bilinear transformation, this 
bending effect is rather difficult to illustrate and explain in 3-D 

where k, is the n mirror gain, k, is the p mirror gain, and 
case, we will show this below by “a 2-D example”, assume a 

r = Ki/K’ K, can be expressed in terms of the overall current 
fifth-order analog Butterworth filter: 

gain Ai al’ 1 

H1(s) = (l+ s)(l+O.6180340~ + s2)(1+1.6180340s + s’) 

1 /np 

(3) 
then define the corresponding 2-D analog filter as follows: 

W%YS2) =4(s) s=1~s,+2~s2=ol,s,+a2s, 

where nn is the number of n mirrors and np is the number of p where oi, o2 are related to the direction cosines of our selective 
mirrors. Upon equating the ratios of (2a) and (2b), it follows that Propagation. 
for given nn and np, k, and k, are related by the expression: Apply double bilinear transform to get the 2-D recursive 

digital filter: 

&(I+ k,)’ = r-,/i& + k,)2. ffi(Z,,Z,) =W( ~l~~2~l,,=(z,-l),(z,+l~, i=1,2. 

Equations (3) and (4) can be solved simultaneously to obtain k, The frequency response of this 2-D recursive digital filter is 
and k,. The results of using the equal pole spacing are shown in shown in Fig. 1, there is severe bending in t he high frequency 
Fig. 5: The bandwidth for-a single stage mirror would be 1.89 range. 
MHz, so the significant improvement by using a cascade of Set 
mirrors is obvious. It is apparent that the approximation is quite 
good. 

A practical design strategy would involve determining n (where 
n = nn - np) and hence nn and np from Fig. 2 or Fig. 3 to 
optimize bandwidth assuming equal mirror gains. Modest im- we get 
provements in bandwidth can then be obtained by solving (3) 
and (4) for k, and k,. 

z,-1 
sI,=,w= al= 

1 

z,-1 

z, = p1 +(Izz2+1 

w2 = 2tan’ 
i 

$2) = 2tan-‘( &n$). 

CONCLUSION The curve for several values of c is plotted in Fig. 2, from this 
It has been shown that significant bandwidth improvement curve we can see bilinear transform causes severe distortion in the 

and active area reduction can be simultaneously achieved by high frequency range except for the case c =l; the designed 
using cascades of current mirrors rather than single mirrors. A example chosen by Bruton and Bartley (see (11) in 1) is just 
practical design strategy for obtaining near-optimal bandwidth happened to be c = 1 without any distortion. 
was presented. 
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