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Generation of Continuous-Time 
Two Integrator Loop OTA Filter Structures 

EDGAR SANCHEZ-SINENCIO, SENIOR MEMBER, IEEE, RANDALL L. GEIGER, 
SENIOR MEMBER, IEEE, AND H. NEVAREZ-LOZANO 

Abstruct -Generation of two integer loop filter structures using oper- 
ational Transconductance Amplifiers (OTA's) and Capicitors (TAC) is 
presented. A direct block diagram approach is employed to generate the 
TAC filter structures. The basic filter building blocks consist of a lossless 
integrator, lossy integrators and three types of summers. They are imple- 
mented using OTA's as the active components. The resulting TAC 
second-order filter structures, some previously reported and other new 
structures, are orderly generated. It is shown that the selection of the best 
structure depends upon the particular application or design specifications. 
The generated TAC biquadratic structures are very suitable for monolithic 
filters since typically only OTA's and two capacitors are needed. A TAC 
filter structure homologous to the conventional KHN op amp filter struc- 
ture is presented. Programmability of op,Qp and voltage gain is consid- 
ered. 

I. INTRODUCTION 
ECENTLY, several research groups have been R searching for different alternatives to design continu- 

ous-time active filters [1]-[lo] by making the time constant 
voltage- or current-dependent. In this paper, we further 
discuss filter structures using operational transconductance 
amplifiers (OTA's) as the active components in continu- 
ous-time active filters [19]-[23]. Moreover, the transcon- 
ductance gain g ,  of the OTA is used as a design parame- 
ter in the same way as the R's are used in conventional 
active-RC filters. Many existing drawbacks in commercial 
OTAs [11]-[15] are overcome by a CMOS OTA [16]-[18] 
structure capable of handling larger input voltage dif- 
ferences. Thus the main advantages in using g ,  as a design 
parameter are that: i) gm can be varied or programmed by 
an external controlling current or voltage; this flexibility 
permits the designer to meet a variety of design specifica- 
tions, and ii) a good input voltage swing is possible for 
CMOS OTA's. 

Let us introduce the basic operations of the OTA cir- 
cuits. The OTA ideally is a DVCCS with infinite output 
impedance and zero-input currents. Fig. 1 shows a summer 
operation circuit. The output voltage is given by 

n n 

V,= C roiZ,= C grni(Ka-Kb)ZL (1) 
i = 1  i = l  

Equation (1) involves three types of summers. The first 
summer occurs at the input terminals of the OTA. This 
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Fig. 1. A summer operation. 
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Fig. 2. Equivalent resistor. (a) Circuit. (b) Small signal circuit. 

summer denominated Eo is the difference between the 
input signals y ,  and vi,. The second summer occurs when 
the load is a capacitor C (i.e., Z ,  =l/sC), the summation 
of the currents Ioi is integrated and transformed into a 
voltage. This summer is denoted as 2,. The third summer 
occurs when the load is an equivalent resistor (i.e., Z,= 
l / g m r ) .  This summer is named Cr. The equivalent resistor 
[15] is shown in Fig. 2(a). Note from Fig. 2(b) that assum- 
ing an ideal OTA, analysis yields 

Bmr 

This implies that a unity weight factor' is obtained be- 

'For the injection of signal V,  it is assumed an ideal voltage source. 
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"la 
Fig. 3. Lossless integrator; block diagram representation. 

tween the input signal V, and the output V,. Furthermore, 
for the particular case when V ,  = 0, the equivalent grounded 
resistor yields 

(3) 

Another basic circuit, the lossy integrator, will be dis- 
cussed in the next section. This consists, in general, of 
either a lossless integrator with a feedback signal at the 
input of the lossless integrator, or a lossless integrator with 
an equivalent resistor load implemented with an additional 
OTA. 

It should be expected from the three types of summers 
and different lossy integrators that a variety of two in- 
tegrator loop filter structures can be generated. The same 
comment applies to the implementation of zeros since the 
number and type of summers available will determine the 
flexibility of the structure. 

11. INTEGRATOR AND SUMMER STRUCTURES 

To facilitate an orderly generation of two integrator 
loops we will introduce a block diagram representation of 
the basic operations, that is, for the three types of summers 
and the lossy integrators. 

A basic OTA lossless integrator consists of an OTA and 
one capacitors. For instance consider Fig. 1 with only the 
OTA 1 and the load is a capacitor of value C. Observe that 
this integrator can be differential, positive, or negative by 
choosing or grounding the appropriate terminals. Note 
that the integrators discussed in this paper have a high 
output impedance. This fact is emphasized by the trun- 
cated triangle representing the integrator in Fig. 3, where 

The transfer function, in general, of a lossy integrator 
K1= gm1 / C .  

(first-order low-pass filter) is 

(4) 

where K2A1 is the 3-dB cutoff frequency, ujdB, and 1/A, 
is the low-frequency gain. Let us discuss, initially, the 
integrators from the point of view of block diagrams. The 
lossy integrator structures with high output impedance 
consist basically of a lossless equivalent integrator K 2 / s  
with a local feedback component A , K 2 / s  and present two 
summers CO and &. This is illustrated in Fig. 4(a). The 
other lossy integrator type is shown in Fig. qb). It consists 
of a global feedback component A,. Note that the feed- 
back signal and the input are algebraically added through 
a summer E,. Next, we discuss the OTA lossy integrator 
implementations. Fig. 5(a) shows the implementation of a 

(b) 

Lossy integrator block diagrams; (a) Self-loop feedback compo- 
nent, (b) Lossless integrator plus a feedback component. 

Fig. 4. 

V 1  

(b) 
Fig. 5. Lossy integrator implementations. (a) Lossless integrator with a 

self-loop feedback component (b) Lossless integrator with variable 
feedback component. 

lossy integrator that can be represented by Fig. 4(b). The 
gmj- gm4 combination for the particular case when A, = 1 
can be simply replaced by a short circuit. 

111. Two INTEGRATOR LOOP TAC STRUCTURES 
The two initiator loop structures consist of a lossless 

integrator and a lossy integrator. Using the two block 
diagram representations of the lossy integrator of Fig. 4, 
we can obtain the corresponding fundamental two integra- 
tor loops of Fig. 6(a) and 6(b). The characteristic equation 
is identical for both structures and is given by 

D ( s )  = s 2  + K2A,s + K1K2A0 ( 5 )  
where 

0 
K 2 A , = P  and K 1 K 2 A 0 = u i  

QP 

thus up and Q,, the pole frequency and the pole quality 
factor, respectively, become 

up = [ K , K 2 A 0 p 2  (6) 
1 

A.  
Q, = - [ K1A0/K2] ' /2 .  (7) 
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(C) 

Fig. 6. Two integrator loops. (a) Cascade of one lossless and one lossy 
integrators. (b) Cascade of two lossless integrators. (c) Two integrator 
loops with a single feedback summer. 

From (6) and (7) it can be observed that up and Qp can be 
independently controlled, if K,,  K , ,  A,,  and A,  can be 
adjusted independently. Another feasible two integrator 
loop can be obtained by transposing the block diagram of 
Fig. 6(b) which is shown in Fig. 6(c). The characteristic 
equation is ideally given again by (5). However, observe 
that in Fig. 6(b) the output of the second integrator is 
feedback to the input of each integrator through Eo 
summers while in Fig. 6(c) the output of each integrator is 
feedback to the input of one integrator through a Er 
summer. The main differences between these structures 
will be in the summer types and their corresponding injec- 
tion points for the implementation of transmission zeros. 
For the following analysis, only the dead network of these 
filters will be considered whereas methods of controlling 
zeros will be discussed in Section IV. 

Let us now consider the circuit implementations of 
structures of Fig. 6. The circuit derived from the block 
diagram structure of Fig. 6(a) is shown in Fig. 7. One 
particular case of this structure is when A ,  = 1, this implies 
that the combination of OTA's 4 and 5 can be replaced by 
a short circuit. The circuit implementation of the block 
diagram of Fig. 6(b), is shown in Fig. 8. There are three 
interesting cases for this structure: i) The general case 
A , # l , A , # l ;  ii) A , = l , A , # l ;  and iii) A , = A , = l .  Re- 
call' that when the scaling factors A ,  or A,  become one, 
they can simply be replaced by a short circuit. The circuit 
implementation of Fig 6(c) is shown in Fig. 9, it contains 
three available signal nodes, five OTA's and one weighted 

*Ao # 1, A, = 1 is another case, however these features are very similar 
to Topology 2 of Fig. 7 and involves more OTA's. 

SCALING (Ao) 

v03 9m4 

Fig. 7. Circuit implementation of Fig. 6(a). 

A 

1 

Fig. 8. Circuit implementation of Fig. 6@). 

- -  

Fig. 9. Circuit implementation of Fig. 6(c). 

TABLE I 
up, Qp EXPRESSIONS FOR LOOP STRUCTURES OF FIGS. 7,8 AND 9 

Topology 

1. Fig. 7 

2. Fig. 7 

3. Fig. 8 

4. Fig. 8 

5 .  Fig. 8 

6. Fig. 9 
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tion. 
Fig. 10. Filter from Fig. 7. (a) Block diagram. (b) Circuit implementa- 

summer. It will be shown later that the outputs of this 
structure have very desirable properties. Table I shows the 
mathematical expressions for up and Q p  for all the derived 
structures. Note that for these topologies, except for topol- 
ogy 5, the up and the up/Qp factor can be independently 
tuned. Observe that these six structures of Figs. 7-9 repre- 
sent general families of the two integrator loop OTA filter 
structures. They can be used as the basis to implement 
general biquadratic filter structures. 

IV. IMPLEMENTATION OF THE TRANSMISSION ZEROS 
Transmission zeros are obtained by injecting weighted 

signals into the dead networks (Figs. 7-9). There are two 
methods of feeding in a signal source without destroying 
the just established system poles of the dead network: 

1) by lifting completely (or partially) any ground con- 
nection off ground and connecting it to an input 
voltage; 

2) by feeding an additional current (in our case gener- 
ated by an OTA) into an impedance node. 

To demonstrate the implementation of transmission 
zeros we will consider in detail three general biquadratic 
filters. 

a) The first second-order filter (Filter A) uses the dead 
network of Fig. 7 (Topology 2 of Table I) with A ,  = 1 and 
has eight different input signals. The block diagram of the 
filter is shown in Fig. lO(a) and its corresponding circuit 
implementation is illustrated in Fig. 10(b). Note that the 
capacitor C, is ungrounded and split into two capacitors 
C; and C;, and two signal V4 and V8 are connected to the 

ungrounded capacitor terminals., This additional capaci- 
tor and input path allows one to obtain a low-pass notch. 
This technique is only illustrated in this structure, but it 
can be used with any of the other dead networks discussed 
before. The output4 V,, is given by 

Vo2 = - { K1K2V1 + sK,V, + BoK,V, + s2B2V4 
1 

D l ( 4  

+ sB1V5 - sK,& + sA,K,V, + s ,B3V8 } (8) 

where 

D , ( s )  = s2  + AIK,s + K1K2 (9) 

with K1 = g, l /c1 ,  Bo = gbo/Ci,  K2 = gm2/(C2 c;), 
(C; + C,), and B, = C 2 / (  C, + C;). Observe that Bo and 
B,  can change their sign by simply interchangmg the 
corresponding OTA input terminals. One particular case is 
obtained when g,, = g,, = g,, up can be adjusted linearly 
with g,, i.e., u p = g m / { m .  Although Q p  also 
changes with g,, if used in a second-order bandpass filter, 
the bandwidth BW becomes independent of g,, i.e., BW = 
gm3/(CZ + C ; ) .  The implementation of B, and B, is easily 
appreciated for the case of making all the inputs zero, 
except V, = Vl = V,,, the corresponding transfer function 
yields 

B1 = g b l / ( c 2  + c;), A1K2 = + ci), B2 = ci/ 

grnlgrn, s 2 +  7 

Equation (10) represents a low-pass notch filter. If the j w  
zeros need not be independently controlled by a transcon- 
ductance, this circuit could be chosen by the designer. 

b) Next we describe a topology (Filter B) with a re- 
duced number of OTA's based on Fig. 8 (Topology 5 of 
Table I) with A,=  A , = l .  Fig. ll(a) and (b) shows the 
block diagram and its corresponding circuit implementa- 
tion, respectively. The output V,, yields 

1 
V,, = - { K,K,V,+ s K ~ V ~  + B0K2V3 + s2V4 + sB~VS} 

D 2 ( 4  
(11) 

(12) 

where 

D 3 ( s )  = s2  + K2s + K,K,  

with K1= gm,/C1, K2 = g m 2 / c 2 ,  Bo = gb,/Ci, and B1= 

gb,/C2* 
c) The Filter C is based on Fig. 9 (Topology 6 of Table 

I) and is illustrated in Fig. 12. The block diagram shows 10 
input signals. It has 8 OTA's. The output signal V,, is 

3This case corresponds to partially lifting the capacitor C, off ground. 
4The output V& is chosen as the output of the lossy integrator. 
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7 

(a) (b) 

Fig. 11. Filter B, from Fig. 8 (with A, = A, = 1). (a) Block diagram representation. (b) Circuit implementation. 

"1 ' 
v 3 4 9  I 

Fig. 12. Filter C, from Fig. 9. (a) Block diagram representation. (b) Circuit implementation. 

given by 
1 vo2 = - { sK2V1 + s'V, + sBoV, + sK2A0V4 

D6(s) 

+ B,A,K2V5 + K,K2A,V, - sA0K2V7 

+ sA1K2V8 - sB2K2V9 - S K ~ V , ~ }  (13) 

where 

D6(s) = s2  + &,Al + A o K I K , .  (14) 

Here K, ,  K , ,  and B,, are the same as in Filter B plus, 
BO = gbO/C2, B2 = gb2/gm5, = gm4/gm5, and = 

gm 3 /gm 5' 

Observations on the Structures 
The selection of a particular filter structure depends on 

a specific application. Next we discuss several particular 
practical cases. 

i) Suppose a fixed low Q p  is required and up as well as 
the zero locations need to be variable. In the case the Filter 
B of Fig. 11 with 4 OTA's, is very adequate when V, = V, 
= 0 and V, = V4 = V, = q,,, the corresponding transfer 

function becomes 
gbl g b o g m 2  

s 2 +  -s + - 
v02 c, ClC2 

vin s2+-s+- 

c2 ClC2 

(15) H ( s )  = - = g m 2  grnlgrn2 ' 

Note that gbl can also be implemented with a negative 
sign of the allpass case. A simple design approach is the 
following: make g,, = g,, = gm, then for a given Q,, up 
and assuming C, is known we obtain C2=C,Q; and 
g ,  = CIQpup. For the particular cases of LP, BP, HP and 
(all pass); all the inputs are zero except V,, V,, V4 and (5, 
V,, and F), respectively. The design equation for the zeros 
become 

Lp gbo = HL,QpapCi (164 

BP gbl= H B P Q ~ ~ ~ C I  (W 
HP H H p = l  ( W  

AP g b l =  - gm2, gbo = g m l  (16d) 
where H,, = H(O), H,, = H( up), and HHp = H ( w ) .  Di- 
rect analysis of this filter topology shows that the output 
signals and V02, at up differ by Q p .  This is not so critical 
for low Q p  values. A serious voltage swing problem could 
be faced for high Q,  values, this is discussed in Section V. 
Furthermore, a large desired Q p  cannot be obtained due to 
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the nonideal input and output impedances of the OTA's; 
this will also be demonstrated in Section V .  

ii) Now assume the previous design specifications but 
Q p  is required to be variable. A solution can be obtained 
using the structure of Fig. 10 (Filter A), when V4 = V, = V, 
= V5 = vi, and V, = V2 = V ,  = V, = 0. The resulting transfer 
function becomes 

" "(c2+c;) ' c1(c2+c;) 
Note that C2 + C; can be substituted by a single capacitor, 
C2. Furthermore, assuming C, and C2 are known, then the 
following expressions are obtained: 

gmlgm2 = c1C2~; (17b) 

The maximum voltage swing can be adjusted, depending 
on the transfer function type. For instance, for the follow- 
ing cases we have 

LP: gm2 = gm2 = G w p / Q p  (174 

gbo = gml HLP (174 

gm1 = U p Q p G  07f )  

BP : c, = c2 = c (17g) 

gm1 = gm2 = gm = CUP (17h) 

gbl= gmH,P/Qp (17J ) 

gm3 = C w p / Q p  (17i) 

A set of simple design equations follows. Given up, Q p ,  
H3( oo), H2( up), and Hl(0) we obtain 

gb2 - = H,(oo) 
gm5 

-- gm2 - u p H 2 ( w p )  

C2 H3(m>Qp 

gm4 H,(m)  
gm5 HI(') 

gm3 H3(oo) 

gm5 H 2 ( w p ) .  

- 

- 

Furthermore, observe that the input is not fed through the 
ungrounded capacitor, whch is an additional positive 
property. That is, a high-pass output does not require the 
input to be fed through a capacitor. This structure is the 
homologous to the popular KHN state variable op amp 
structure. 

By selecting the proper inputs and/or outputs of the 
different structures, many options that satisfy a variety of 
requirements can be obtained. In some applications the 
design requirements need to equalize the maximum voltage 
swing at the OTA outputs to improve the dynamic range. 
Some structures such as the one shown in Fig. 12 for one 
particular input allow to adjust the maximum voltage 
swing at the output of each OTA. However, in some cases 
the equalization of voltage swings can not be accom- 
plished, this problem is addressed next. 

v. MAXIMUM VOLTAGE SWING cONSIDE~TIONS 
HP: HHp=l  

gm2 = gm3 = c ~ p / Q p  Let us consider for illustration purposes the structure of 
Fig. 1O(a) with only one nonzero input yi, = V,. The corre- 
sponding transfer functions become 

(17m) 
where HLP, Hsp,  and H H p  are defined as before. 

iii) A filter with three simultaneous outputs is required; 
these outputs must be high-pass, bandpass, and low-pass 
types. The structure of Fig. 12 (Filter C) can implement 
the desired outputs. This is satisfied when all inputs except 

gm1 = G w p Q p  

(20) 
Vol KlK2 

H l ( S )  = - = 
V ,  S' + sA1K2 + K1K2 

and 
- sK2 

. (21) 
V9 are zero. Then the transfer function yields V02 H 2 ( s ) = - =  - gb2 S 2  V ,  s + s A ~ K ~  + K1K2 

' 0  3 g m s  
(18a) Furthermore for Qp >1, the maximum magnitudes of the 

transfer functions occur at w = up, gm2gm3 gm4gmlgm2 

c2gm5 grn5'lc2 

H , ( S )  = - = 
V9 s2+- S +  

(22) 
KlK2 

IH1(jwp)I= - - 

I H 2 b P ) l  = = - Q P .  

_- gbsgm2 apAlK2 - Q p  

voz gmSC2 
H 2 ( s )  = - = gm2gm2 gm4gmlgm2 and 

V9 s2+- + 
(23) 

K2 K2 

gb2 gmlgm2 1 2 u p  

G g m ~  gm5'1'2 

Vol gm5 '1'2 These maximum magnitudes are equated to Q p  if K ,  = K 2  
(18') = up., Equations (22) and (23) for V,  = 1 V show that for 

practical cases Vol( up) = Q p  volts, and Vo2( up) Q Qp volts, 
gm2gm3 

c2gmS grn5'lc2 

grn4gmlgm2 
H,(s )  = -= 

V9 s2+- S +  
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(b) 
Fig. 13. Signal nodes voltage equalization. (a) Block diagram representation, (b) A circuit implementation. 

this is not a desirable feature for the dynamic range of the 
filter, especially for high Qp's. This problem can be com- 
pensated by the inclusion input signal attenuation, as done 
by the additional integrating path in Fig. 13(a). The signal 
injection becomes proportional to M = ( K ,  - K 4 ) / K 2 .  The 
modified transfer functions and maximum magnitudes can 
be obtained by multiplying (20) through (23) by the factor 
M. In particular, we obtain 

KlK2 = M  
s2 + sA1K2 + K,K2 

- sK2 
(25) = M  

s2 + sA,K2 + K I K ,  

and 

K2 

% 
Hi(&)I=MQp,  IH2(&)I=M-Qp. (26) 

Observe that for the original filter the maximum gain of 
H 2 ( s )  was fixed and equal to Q p .  However, the modified 
filter can be designed for any Q p  and still have IHl(jwp)I 
= IH2(jo,)l = G < Q,, where G is an arbitrary practical 
value. Let K ,  = mK,, and M = 1 - m. Then, given G, up, 
and Q p ,  the design equations using (7) and (26) yield 

K , =  K ,  

Ai = l / Q p  

G 
m = l - -  

QP 

G m = 1 - -  
QP 

K ,  = mK2.  

One possible implementation of Fig. 13(a) is shown in Fig. 
13(b). 

Remarks on Nonidealities of OTA Filters 
The nonideal characteristics of the OTA will limit the 

performance of the filter structures discussed before. Some 
of the factors limiting the performance of the OTA filters 
are the finite input and output impedances and the excess 
phase of the CMOS OTA. The finite output resistance will 
affect mainly the lossless integrators at low frequency, the 
input and output capacitances will affect especially the 
performance of the summer C, at high frequency. The 
summer CO will cause several distortion for large input 
voltage differences at the input of the OTA. In general, a 
Cc summer has better dynamic range than a C, summer. 
The excess phase becomes more critical when the number 
of OTA's increase in the two-integrator loop. 

To illustrate the effects of the OTA non-idealities on the 
filter's frequency performance, assume that each OTA5 has 
a differential input impedance 2, = l/sCdi, and differen- 
tial output impedances modeled as the parallel combina- 
tion of Roi and Coi. Let us consider the structure of Fig. 8 
with A, = A, = 1, and the input signal fed at the + termi- 
nal of OTA 1. If the output is taken as VO2, the ideal 
transfer function is 

grnlgrn, 

- - 
s 2  + -s wP + U; 

QP 
After the input and output impedance of the two OTA's 
are considered, (28) yields 

'The characterization of the in ut and output impedances of the OTA 
is based on an OTA of the type {escribed in [17], [23]. 
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where 

ANALYTICAL SPICE 

% Qpr % fpr % Qr % fpr 

-47.6 0.455 -47.4 0.242 
-47.6 0.433 -47.4 0.220 
-47.7 0.211 -47.4 -0.00 

-75.5 -61.6 -57.9 -61.2 

-48.7 -1.94 -47.3 -2.00 
-56.0 -18.0 -47.2 -18.1 

H ,  = 

f p  (E.) 

102 
los 
lo' 
lo6 
IO6 
107 

c o l  + c d 2  c02 + 
1+ - + 

Cl c2 

ANALYTICAL SPICE 

Qz fz (MHz) Qz fz ( m z )  

152. 0.153 704 0.155 
48.0 0.485 196 0.493 
15.2 1.53 59.4 1.56 

20.2 4.82 4.91 4.74 
1.84 12.6 6.67 12.9 
1.15 20.2 3.49 21.2 

I 1 1 
1+- 1+- 

A,, i A,,, 1 .~ .- 

col + cd2 c02 + cdl + cd2 

c2 
+ 

col + cd2 c02 + cdl + 'd2 

(32) 

1+- + 
Cl c2 

Col c02 + cdl 
Q p r  = Q p  

1+- 1+- +- 1+- + Q  
C, ( A t 2 )  A t 2 (  ;( ?('+&)+&('+T)} 

1 I 1  

l+- 
1 1 

Q =- 

4 1  CO, V c2 

and 
Avj=gmiRoi, i=1,2.  

Note that for an ideal filter all the capacitor ratios in (30) 
to (34) become zero. It can also be observed that the real 
transfer function H r ( s )  differs from the ideal in several 
aspects. The actual low-frequency gain 

can be about - 0.09 dB, for typical values of A,, = A,, = 
100, instead of the ideal 0 dB. Furthermore the high- 
frequency response is not zero, the minimum gain is given 
by (30) which can be roughly approximated to C d l / c 2 .  We 
have simulated this structure with SPICE6 for an ideal 
Q p  = 10 and different fp by fixing the transconductance 
values and selecting C, and C2 accordingly. Table I1 shows 
the Qp and fp deviations and Table I11 shows the parasitic 
zero characteristics. The analytical expressions (29)-(34) 
compare well with the SPICE  result^.^ These results are 
also included in Tables I1 and 111. Major discrepancies on 

6The OTA used is described in [23]. 
'We used g,, = 56.1 pmhos, g, = 5.61 pmhos, C 1 = cd, = 38 fF, 

R =1.9 MQ, R, ,  =19 MQ, Col = 325 fF and CO, = 36.4 fF to model the 
OqA. 

(33) 

(34) 

TABLE I11 
COMPAIUSON BETWEEN SPICE AND THE ANALYTIC EQUATIONS 

(33)-(34) FOR THE PARASITIC ZERO CHARACTEIUSTIC 
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Fig. 16. Low pass, bandpass, and high- ass outputs of a KHN OTA 

the SPICE results and the analytical results occurred at 
frequencies higher than 1 MHz where the g,'s become 
frequency-dependent. This dependence could be modeled, 
but the resulting analytical expressions might be very 
awkward. The parasitic zero characteristics are well predic- 
ted by the hand calculations. These hand calculations 
could be improved, at the expense of obtaining large 
complex expressions, by involving more nonidealities of 
the OTA, i.e., frequency dependent common mode rejec- 
tion ratio. Thus the minimal values of C, and C, in 
comparison with the parasitic capacitances must be de- 
termined to minimize the frequency response deviations. 
In a similar way, whenever it was possible, the A,, and A, ,  
must be determined to reduce deviations. For example, if 
A,, = 1000 and Q,, = 10, then '7% Qpr becomes about 9 per- 
cent instead of nearly 48 percent, as shown in Table 11. 
For this filter it should be concluded that small WQ, can 
only be obtained for small Qp's and/or very large A,,. 

VI. EXPERIMENTAL RESULTS 
Three breadboard filter examples are provided in this 

section to show the programmability features of these 
filters. Commercial OTA LM 3080 type and polyester 
capacitors C, = C, = 31.8 nF are used for the three exam- 
ples. 

i) Notch Filter: This filter was implemented using the 
structure of Fig. 10. The experimental results for variable 
Q p  and fixed f,, are shown in Fig. 14. The pole frequency 

fp = 12.7 kHz was determined with the bias currents of the 
OTA's 1 and 2, i.e., IBIASl=IBIASz=lOO pA. The Qp 
values were varied via the OTA 3, for Q p  = (4,8,16,32} 
which correspond to I,,As3 = {25,12.5,6.25,3.12} pA and 
the notch attenuation = (19.11,14.11,9.55,5.9} dB. The 
noise flow was below 58 dB (100-Hz bandwidth). Fig. 
14(b) shows the experimental results for constant Q,, = 4 
and variable f,. The summarized results follow: 

f, = f, (Hz) 120 1.22 K 12.52 K 
Attenuation dB 29.6 24.5 21.4 

For f, = 136 kHz the corresponding pole frequency, f,,, 
and attenuation were 95.8 kHz and 22.2 dB, respectively. 

ii) Bandpass Filter: The structure of Fig. 13 was used to 
implement a bandpass filter. Fig. 15 shows the experimen- 
tal results for variable U,, and fixed Q,, = 8. The two OTA 
outputs (bandpass and low pass) were scaled to have the 
same peak value, this is also shown in Fig. 15 with the 
solid and broken lines. The noise level was below 45 dB for 
a 100-Hz bandwidth. The fp's obtained were {117,1.21 
K,12.7 K,142 K} Hz and the corresponding peak values 
were ( - 0.05, - 0.4, - 1.8) dB. The small deviations of f,, 
and the peak values are due to the nonidealities of the 
integrators. 

iii) KHN OTA Structure: The structure of Fig. 12 was 
breadboarded with all the input zero except V, = Vi,. Using 
the design equations (19) for an equal maximum voltage 
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gain of 0 dB the experimental results of Fig. 16 were 
obtained. The up and Q p  are 25.5 kHz and 8, respectively. 
Fig. 16 also shows simultaneously the three available out- 
puts of the filter. The noise floor was below 58 dB for 
100-Hz bandwidth. 

VII. CONCLUSIONS 
A generation of two integrator loop OTA filters has 

been presented. The advantages and some practical limita- 
tions of these filters have been discussed. Further research 
on practical frequency limitations on the OTA-C struc- 
tures here generated is needed. It was indicated that the 
selection of a particular filter structure of a function of the 
design specifications. The TAC structures containing only 
C’s and OTA’s are very appropriate for IC implementa- 
tions. Furthermore, fully differential OTA filter structures 
can be relatively easy to obtain from many of the single 
ended structures here generated. The generated structures 
like any other continuous time, require an automatic tun- 
ing system to control the voltage dependent time constant. 
The OTA-C filter structures here discussed, together with 
flexible and practical CMOS OTA can be a good combina- 
tion for the realization of practical monolithic continuous- 
time filters, particularly at high frequencies [21]-[23]. 
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