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A Multiple-Input OTA Circuit
for Neural Networks

RUSSEL D. REED, MEMBER, IEEE, AND RANDALL L. GEIGER, SENIOR MEMBER, IEEE

Abstract —An operational transconductance amplifier (OTA) circuit
suitable for modeling neurons in VLSI implementations of artificial neural
networks (NN) is described. It generates an output voltage which is a
sigmoidal-like function of the linear sum of a number of weighted inputs.
The weight of each input is individually controlled by a bias voltage which
can be varied continuously and dynamically.

ECENTLY, there has been an increase in interest in

artificial neural networks for use in artificial intelli-
gence applications. They seem to be especially useful in
situations requiring pattern recognition or optimization
with many simultaneous constraints. The self-program-
ming properties of these networks (given appropriate
learning rules) allow them to learn from example data sets
even in the presence of noisy and conflicting data and their
massive parallelism gives them a degree of fault tolerance
[1].

Work in the area is still developing. Much is still un-
known about how biological networks work and how arti-
ficial networks can be built with similar properties. Many
different models with varying numbers of units, connec-
tion patterns and learning rules are still being explored [1],
[2}

In order to simplify the analyses, most work uses the
simplest possible model of a neuron: a node that sums a
large number of weighted inputs and generates an output
which is a function of that sum. The output function is
most often a nonlinear monotonic increasing function,
typically a binary step function or a sigmoid. Ensembles of
these simplified neurons are connected together in various
ways and trained to recognize certain patterns by adjusting
the weight of each connection.

Working models of artificial neural networks have been
demonstrated although, so far, they have been limited in
size [3]-[7]. These circuits are much faster than software
simulations running on conventional computers.

The circuit presented in the following paragraphs may
be useful for VLSI implementations of neural networks.
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Acting as the analog of a single neuron, it generates an
output voltage which is a sigmoidal-like function of the
linear sum of a number of weighted input voltages. The
weight of each input can be individually and continuously
controlled by a bias voltage which can be varied dynami-
cally. The inputs have a wide linear range and the number
of inputs for each circuit can be large.

Fig. 1 shows the basic building block which represents
one weighted input to the neuron. It sinks an output
current, I, which is a linear function of the input voltage
V. and has a transconductance which is controlled by the
bias voltage V. (The transconductance is defined as dI /dV;
and is the gain of the module.) When the outputs of a
number of these blocks are connected to a common node,
the currents sum according to Kirchoff’s current law and
an op amp can then be used to convert the current to an
output voltage which is the weighted sum of the input
voltages. The following paragraphs develop this in more
detail.

In Fig. 1, when MOSFET M1 is biased in its active
region, V,, — Vy > Vy, the current I can be written as

Vdsl

gsl
I= (Vgsl_VTl) ) (1)

where B = (uC, )W/L is determined by the fabrication
process and the size of the transistor. V7, is the threshold
voltage of M1. When W, /L, > W, /L, and M, is biased
in its saturation region, (V,, —Vpy <Vy,), then Vog =V,
—Vp,. If V, is a constant voltage, and it is assumed that
Vi =V =Vp,, then I can be written

Vdsl

1=8(-v)| V-2 + | @)

or
I=G(V;'_Vol‘fsel)' (3)

In other words, when M1 biased in its active (ohmic)
region, I is a linear function of the input voltage V, =V,
and has a transconductance, G controlled by the bias
voltage V.

Fig. 2 shows a graph of the response I versus V; as a
function of ¥, =V} for a test chip which was fabricated in
a 3-um CMOS process [5]. When V;, <V, the response is
nonlinear and [ approaches 0. For ¥, > V,, the linearity of
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Fig. 1. MOSFET structure representing one weighted input. The input
voltage ¥, is modulated by the bias voltage V3.
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Fig. 2. Output current versus input voltage for one weighted link.

the response is most strongly dependent on the ratio
(W2/L2)/(W1/L1) with larger ratios giving a more linear
response but generally requiring more circuit area. For the
circuit tested, W1/L1=3/30 pm and W2/L2=300/
10 pm giving a ratio (W2/L2)/(W1/L1) = 300. These are
much larger than the minimum size devices because the
original circuit was designed for linearity and frequency
response rather than for area efficiency. In a neural net-
work application, the optimizations would be made in
favor of area efficiency because of the large number of
synapses required. Simulations with W1/L1=5/25 pm
and W2/L2=100/5 pm and a ratio of 100 show good
linearity and might be a reasonable design starting point.
When a number of these blocks are connected to a
common node, the currents sum according to Kirchoff’s
current law. When two of these modules are combined
with a unity gain current mirror (as shown in Fig. 3 for
two inputs on each module), the output current will be

Iout = Z t Gt(Vt - V;ffset,-) (4)
with the sign of each term depending on if the block is
connected to the input or output side of the current mirror.
The circuit of Fig. 3 is thus recognized as a four-input
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Fig. 3. Four-input multiple-input OTA (MIOTA).

OTA. Note that the voltages ¥, and V,; have been referred
to the lower supply voltage. With the typical analog CMOS
supply voltages of +5 V and V,;=—3.5 V, for example,
the input voltage has a linear range between —3.5 and +5
V, a span of 8.5 V.

The circuit in Fig. 3 was originally designed for use in
conventional adaptive signal processing applications with
special emphasis placed on obtaining a wide linear range
and multiple inputs. The transconductance is controlled by
the bias voltage in a continuous fashion and is used to tune
the circuit. In order to remove the offset voltage which is
undesirable in most applications, the groups of modules on
either side of the current mirror are made symetrical in
size and bias voltage.

Certain optimizations of this circuit can be made for use
in neural networks. First, the number of inputs can be
greatly increased. Second, symetrical excitory and in-
hibitory inputs are not required. This will give the circuit
an overall offset but, typically, one or more inputs would
be dedicated to setting the node threshold and these would
be adjusted to account for the offset. Finally, since neural
networks do not require a very linear response, the relative
sizes of the input transistors can be reduced to save circuit
area. If the linearity requirement is removed altogether and
M1 is operated in the subthreshold region (Vj,, <V7) then
¥, will still control the transconductance and the structure
becomes similar to the links used in [4]. This will minimize
current consumption but places a restriction on the allow-
able input voltages.

The analysis above ignores a number of second order
error sources such as device size mismatches and differ-
ences in V. due to process variation and source—substrate
bias. These effects are not thought to be critical in these
applications; none of them cause the response to become
nonmonotonic, for instance, and, because neural network
training is an error tolerant process, it can compensate for
certain circuit variations and nonlinearities.

Fig. 4 shows how the circuit can be used to implement
an artificial neuron. The operational amplifier and resistor
convert the output current to a voltage which, for equally
sized devices, is given by

)

Iout = Z iB(Vbi_ VT)(Vi_ V:)[fset,.)



REED AND GEIGER: AN OTA CIRCUIT

Vo
mirror

n  out
R

< Iy
Loy |elot
> v,
Mot Ms —{*
wd[ R

vN_{

= NODE

+ NODE

Ve
A v o

Yoo
vad

V.

v

ss

Fig. 4. MIOTA circuit modeling one neuron.

and
V,= RF(I,y) (6)

where F(I,,,) is a nonlinear function describing the satura-
tion behavior. (6) holds when each input V;>V,;. When
V.<V,;, the response becomes nonlinear and dI /dV,
approaches 0. When the magnitude of I, is greater than
some value, the output voltage V¥, will saturate at the
supply voltage. These natural limiting effects give the
circuit response a sigmoidal shape. (“Sigmoidal” is used
here in the sense of any smooth “S” shaped curve; it does
not refer to a specific function.)

When R is large, F(I,) will saturate at smaller cur-
rents and the response will approach a binary step func-
tion. External constant inputs can bias the circuit to effec-
tively shift the threshold as needed. When R is small,
F(I,,) will be a more smoothly varying sigmoidal func-
tion.

The sign in (6) is determined by whether the input is
excitory or inhibitory. Excitory signals such as ¥; and V,
draw current from the positive node; inhibitory signals
such as V; draw current from the negative node. The
weight of each input, (i), is controlled by its bias voltage
Vi

This circuit appears to be useful for VLSI implementa-
tions of neural nets because each weighted link can be
realized with just two MOSFET transistors and all inputs
are high impedances which respond to voltages rather than
currents. It has advantages over typical op amp voltage
summing circuits because the weight of each input is
continuously controllable with a bias voltage rather than
being determined by a fixed resistor or being switched in
discrete steps. Also, the limited input impedance of each
resistor in the typical op amp summing circuit means that
a node driving a large number of these inputs would be
required to source a relatively large current.

Regular arrays of these circuits can be laid out in a
crossbar arrangement to create large VLSI networks. The
crossbar arrangement is a common one and has been used
by Hopfield and Tank [9], among others, to connect every
input to every summing node. This paper does not address
the problem of how the N X M bias voltages needed to
control the weights of a circuit with N inputs and M
outputs would be generated and stored. One method would
be to store the voltage on a capacitor which is periodically
refreshed by another system addressing the capacitors in a
row/column fashion. The external system would be
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responsible for setting and adjusting the weights of
the network. Another method would use EPROM or
EEPROM cells optimized to store analog voltages.

This synaptic circuit might also be used if, as in biologi-
cal networks, pulses with a firing rate proportional to the
signal are used rather than dc voltages. The circuit pro-
duces a current proportional to the weighted sum of the
input signals which could be integrated on a capacitance.
The output pulses could then be generated by a simple op
amp circuit or by neuristor circuits of the type described in
[10]. M2 of Fig. 1 would still act to control the relative
strength of each input pulse.

SUMMARY

A multiple-input OTA circuit has been presented which
may be useful in VLSI implementations of neural net-
works. It generates an output voltage which is a sigmoidal
function of the linear sum of a large number of input
voltages, each input having a weight which is set by an
externally controllable bias voltage. Large numbers of these
cells can be fashioned in regular arrays. It appears to be
efficient because each weighted connection is implemented
with only two MOSFET transistors.
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