IMPACT OF OTA NONLINEARITIES ON THE PERFORMANCE OF
CONTINUOUS-TIME OTA-C BANDPASS FILTERS

Douglas L. Hiser

International Microelectronic Products
2830 N. First St.
San Jose, CA 95134, USA

ABSTRACT

A new technique for predicting actual large-signal frequency
responses, including jump resonance, in high-Q bandpass filters
constructed from OTAs (operational transconductance amplifiers)
and Cs (linear capacitors) is presented. These predictions are a
function of the nonlinearities of the OTAs and the Q enhancement of
the filter. This approach offers significant advantages over other
published techniques: a closed-form expression is obtained which is
used to estimate the sensitivity of the nonideal filter parameters to
signal amplitude, OTA distortion and Q enhancement and which
offers valuable insight into the nonideal operation of the filter. A
representative filter structure is discussed which shows close agree-
ment between measured and predicted responses in the presence of
both Q enhancement and OTA distortion.

INTRODUCTION

Active continuous-time filters employing operational transcon-
ductance amplifiers (OTAs) are considered a viable means of filter-
ing continuous-time waveforms in a monolithic CMOS technology,
particularly in high frequency applications [1]-[4]. The filter
characteristics of such architectures are typically adjusted by
physically varying the bias current of the input stage of each of the
OTAs in a way which compensates for the statistical process
variation of the fabricated filter. Unlike filters composed of
conventional (voltage-controlled-voltage-source) operational
amplifiers which require a large amount of feedback for proper
operation, the input port of the OTA is subject to relatively large
signal amplitudes, distorting the standard differential pair [5]. In
order to reduce this distortion, complex linearization schemes are
often applied to the OTA’s input stage [6]-[7]. Unfortunately,
because of wafer-level statistical process variations and varying bias
currents, this strategy falls short of its goal allowing distortion in the
OTA to degrade the performance of the continuous-time filter.

Within the last year, two papers have addressed the problem of
predicting and simulating the distortion of frequency responses of
OTA-C filters due to large excitations [8], [9]. Of these papers [8]
is a rigorous analysis technique based on the Volterra series for
evaluating the performance of nonideal filters even under multi-tonal
excitations. This approach is fairly complex, and is better suited for
integration into an existing circuit analysis program. The second
paper (9] uses the Tarmy-Ghausi perturbation analysis technique
[10] to approximate a filter’s performance under stimulus of spec-
trally pure large signal excitations. Both of these techniques give the
designer a method of simulating a nonideal filter’s response to large
excitations. However, neither of these techniques presented sup-
plies the designer with (a) a closed-form expression summarizing
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the filter’s sensitivity to large excitations; (b) physical insight into
the cause of this distortion phenomenon; or (c) a quantitative under-
standing of the role Q enhancement plays in this issue. In this paper
this gap will be bridged, giving the designer a simple technique for
quantitatively comparing various OTA-C architectures with respect
to over-ordering-induced Q enhancement and OTA-induced nonlin-
ear distortion.

ANALYSIS

First, a basic technique for modelling the transfer function of the
nonideal over-ordered Q-enhanced filter will be presented for a spe-
cific high-Q bandpass filter architecture [5], [11]. This structure
will be considered throughout this paper. The nonlinear distortion
of the OTA will be modelled and incorporated into the nonideal filter
transfer function to produce a nonideal amplitude-dependent filter
response. From this model, distortion of the frequency response
and jump resonance will be simulated and compared to experimental
results. Finally, a sensitivity analysis will be performed to quantify
the relative impact that the OTA distortion and Q enhancement have
on the overall performance of the filter.

MODELLING

System Transfer Functions: An ideal second-order bandpass
circuit is characterized by a transfer function of the form

W
_ Vo(s) Q°
= =H X 1
TBP(S) Vi(s) max 24 % s+ g2 @

If parasitic linear capacitors or resistors inherent in the filter structure
and the active devices are considered, the actual transfer function
will deviate from Tgp(s) through both over-ordering and shifts in
the parameters ®o, Q and Hyax. If nonlinearities are also consid-
ered, the response of the network will deviate even further from Eq.
(1) and the transfer function concept will no longer be defined. The
resulting distorted nonlinear filter response becomes both signal and
frequency dependent. Throughout this paper, we will use the term
“distorted frequency response” or “distorted transfer function” to
denote the ratio of the fundamental of the output of a filter to a spec-
trally pure excitation. The distorted frequency response thus be-
comes both amplitude and frequency dependent and is strongly a
function of both distortion in the OTA and over-ordering of the lin-
earized transfer function. Observe that the distorted frequency
response is actually the response measured by many commercial
spectrum analyzers. In this paper, emphasis will be placed on accu-
rately modelling the distorted frequency response. Three parameters
which characterize the distorted frequency response will be para-
metrically modelled. These parameters are the distorted or perturbed
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g, Q and Hpyax filter parameters, denoted by ¥y, Q and Hinax-
Functionally, these parameters correspond to various real and
imaginary components of the model distorted transfer function,

B jo
T o Vo(O) =~ Q
TBPUU)) = Vi) = Hmax 2

o + 22 jo + @y
Q

where Tpp{j) is the ratio of the fundamental component at the out-
put to the magnitude of a spectrally pure input. In general, the
parameters a)o, Q and Hppax are dependent on both the input signal
amplitude and the frequency @. They will be defined in such a way
that they reduce to the ideal values of 0, Q and Hyax as defined in
Eq. (1) as the amplitude goes to zero and as the over-ordering par-
asitics go to zero.

Tarmy-Ghausi Technique: There are two strategies for defining
these nonideal filter parameters in terms of over-ordering. The
Tarmy-Ghausi technique models the finite bandwidth of each of the
filter components (typically using single or double pole models) and
computes an over-ordered transfer function. From this transfer
function, the higher-order poles and zeros are eliminated or ignored,
resulting in a transfer function in the form of Eq. (2). The nonideal
filter parameters are then determined by equating one-to-one each
term of the numerators and denominators of these expressions.

Phase-Error Technique: Another technique useful for analyzing
high-Q bandpass filters is the phase-error technique. This technique
models the finite bandwidth of the filter components as a fixed phase
shift over the passband. The nonideal resonant frequency () is
then defined as the theoretical frequency at which the denominator of
the nonideal transfer function becomes purely imaginary. At this
frequency (@ = (T)o), the other nonideal parameters can be deter-
mined mathematically. The nonideal filter Q is defined by equating
the two denominators and solving for Q. Similarly, the nonideal
peak gain is defined as the ratio of the numerator to the denominator.

Over-Ordered Model: Of particular concern in most high-Q
bandpass filter architectures is the tendency of the Q and peak gain
(Hpmax) of the fabricated filter to deviate drastically from the design
values. This tendency has been directly linked to the finite fre-
quency response of the fabricated OTA and has been modelled in the
past with a single- or double-pole model for each OTA. We have
developed a simple Q-enhanced model which characterizes this finite
frequency response as excess phase (8p) included in the w2 term in
the denominator for frequencies in the vicinity of w,. In general,
this excess phase nonideality shifts a portion of the real component
of the fixed ®o2 term into the purely imaginary Q-defining compo-
nent of the denominator, thus affecting the Q and Hpyax characteris-
tics of the filter. This model gives the designer insight into how
sensitive the Q enhancement is to excess phase contributed by the
OTAs through a closed-form equation predicting this nonideality,
and provides the designer with a figure of merit for evaluating OTA
designs as well as useful insight into the nature of the Q enhance-
ment characteristic. Finally, the Q enhancement of the filter will also
be directly linked to an increase in the sensitivity of the filter to OTA
distortion.

OTA Digstortion Model: A simple model for the THD character-
istics of the OTA can be developed by modelling the distortion char-
acteristic as a shift in power from the fundamental to DC and har-
monic components assumed to be outside the passband of the filter.
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Fig. 1. Circuit schematic of the example high-Q bandpass filter architecture.

This can be viewed as a loss of power in the fundamental. Mathe-
matically, this nonideal distorted transconductance (gmj) is modelled

as
Em; = gm; a(1Vi* - Vj71) = gm; V1-THD(IV;"-V;"1),  (3)

where gm; Tepresents the ideal OTA transconductance attenuated by
o as a function of the differential input signal amplitude across the
OTA inputs (Vj*, Vj7). Alternatively, the attenuation can be ex-
pressed in terms of a THD function explicitly modelling the total
harmonic distortion produced by the jth OTA as a function of its in-
put signal amplitude. This THD function depends on the specific
linearization scheme deployed and is typically derived either from
experimental measurements or SPICE distortion analysis of the
OTA.

HIGH-O BANDPASS FILTER EXAMPLE

Consider the high-Q bandpass filter depicted in Fig. 1 and the
associated nonideal distorted transfer functions in Eq. (4) which
were derived by formally substituting the distorted transconductance
of Eq. (3) for each transconductance element of the system’s ideal
transfer function and including 8p which accounts for over-ordering
assuming the OTAs are distortion-less.
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The parameters contained in the model bandpass transfer function
(the right-most expression of Eq. (4a)) can be approximated from
the real and imaginary components of the nonideal distorted transfer
function (the center expression) via the phase-error analysis tech-
nique described earlier. This results in the following closed-form
expressions for these nonideal filter parameters, defined in terms of
the excess phase (6;), the various OTA distortion/attenuation factors
(o) and the ideal non-over-ordered small-signal filter parameters
(0%, Q and Hinax)-

Bo= 0o cos(—?%) Yo(Vah) o (Va) (52)
2

Qg=Q 2 sb

Q=0 (5b)
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where p¢ (the cross-coupling coefficient) and 7p (the internal peaking
factor) are defined as follows:

Ima g{gm2 8m3)
Ce C7

Himax = Hiax (50)
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Basic Algorithm: The magnitude of each of these nonideal
parameters can now be computed as a function of the amplitude of
the fundamental at each of the filter nodes based on the filter’s prior
state. From these parameters, a new distorted transfer function and
filter response to a given excitation can be determined. By repeating
this process and slowly sweeping the excitation frequency, the dis-
torted frequency response of the nonideal system can be accurately
modelled. Similarly, by sweeping the amplitude of the excitation at
a given frequency up and down during this process, the hysteresis
effect which is characteristic of jump resonance can also be pre-
dicted. In general, this algorithm takes a series of input si gnals with
varying frequencies and amplitudes, and computes each correspond-
ing output signal amplitude (IVq,/) as a function of the current state
of the filter via the following equation:

{

where oy is the frequency of the kth input signal with amplitude
IVl Ttis important that IV;l and o be changed gradually, since Eq.
(7) assumes that Vg, 1! = Vo, Vi 1= IVl and IV, 1= [Vl

Sensitivity Analysis: Another advantage of this analysis tech-

nique is that from Eq. (5) the sensitivity of each of these nonideal
filter parameters to variation in the distortion contributed by each of
the OTAs can be computed in terms of the amount of Q-enhance-
ment present—giving the designer a closed-form expression for
evaluating the relative sensitivity this architecture has to amplitude
dependencies. To illustrate this point, these distortion-related sensi-
tivities have been computed in terms of the Q-enhancement factor
(1Q) and are contained in Table 1. This 1qQ factor quantifies the
amount of small-signal Q-enhancement that is present in the filter
and is defined by Eq. (8).
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Table 1. Approximate sensitivities of the various nonideal filter parameters con-
tained in Eq. (5) to the distortion measures THD(IV;l), THD(IVpy,l) and
THD(IV,l) in terms of 1Q.

Nonideal || Sensitivity | Sensitivity Sensitivity
Filter to to to
Parameter | THD(IV;}) THD(IVml) | THD(V,)
S I
Q 0 —;—‘CQ + 4l Q
Himax —%-TQ -iL(tQ—I) +i(TQ+1)
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EXPERIMENTAL RESULTS
Distorted Frequency Response: The nonideal “large-signal” fre-

quency response of the high-Q bandpass filter of Fig. 1 was simu-
lated using the “simple” THD model,
THD(IV* - V1) = 0,658 IV* - VI &

ms

®

where IV+ — V- is the rms differential input signal amplitude applied
to the various OTAs. This linear model for the OTA distortion was
interpolated through a single experimental data point. In Fig. 2, the
results of this simulation are contrasted with the experimental results
collected on an HP3585a Spectrum Analyzer from the fabricated fil-
ter [11]. These results illustrate the ability of this analysis technique
to accurately predict distorted frequency responses in the presence of
both Q enhancement and OTA distortions. Furthermore, this tech-
nique gives the designer useful insight into the performance of the
filter, illustrated in Fig. 3 by the dynamic variation of @, as a func-
tion of the input signal frequency used in simulating the nonideal
frequency response of Fig. 2. Note in Fig. 3 that the peak o varia-
tion of —0.4% could just as easily have been predicted from the
sensitivity results of Table 1, assuming THD(IV,l) = THD(IV ) =
+0.8%.
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Fig. 2. A comparison of experimental and simulated distorted “large signal” fre-
quency responses for the high Q bandpass filter structure (Fig. 1) with
Q=150 and 1Q~2.35. The results shown here were collected and simu-
lated by sweeping the input frequency from left to right while maintain-
ing a fixed amplitude of 0.28Vyys. The ideal response shown here was
simulated by eliminating the OTA distortion effects of the nonideal

model.
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Fig. 3. Simulated @, and THD(V,) variation associated with the distorted

large-signal frequency response contained in Fig. 2.



Jump Resonance: This theory also predicts jump resonance as
shown in Fig. 4. In this simulation, a single monotone input signal
of frequency slightly lower than the center frequency and of varying
amplitude was supplied to the filter characterized in Figs. 2 and 3.
In order to encourage jump resonance at this frequency, it is neces-
sary that the sensitivity of Q to distortion-related perturbations be
predominantly positive, indicating that the THD(IV,) is much larger
than the THD(IVp!). In this situation an increase in input signal
amplitude increases 6 and decreases (T)o An increase in 6 decreases
the filter’s gain at this frequency, while a decrease in o, has the
opposite effect and increases the gain. The @ variation dominates
slightly, producing a gradual increase in gain. As the effective cen-
ter frequency moves towards the input frequency, the impact that the
5 variation has on the gain is reduced. This increases the pace at
which the gain increases, and eventually results in an abrupt transi-
tion as the effective center frequency snaps to the input signal fre-
quency.

With the signal amplitude at its maximum, the amplitude is
decreased causing @ to increase and Q to decrease (increasing the
effective bandwidth of the filter). Essentially, the lower pass band-
edge is to the left of the signal frequency and as the signal amplitude
is decreased this bandedge moves slowly towards the signal fre-
quency. Eventually, the signal frequency goes over this bandedge,
greatly reducing the output signal level and its associated distortion,
and snapping back to the original low distortion curve.
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Fig. 4. Typical jump resonance hysteresis effects simulated by the basic theory
described in this paper for the kigh Q bandpass filter of Fig. 1 under
stimulus of large signal amplitudes of frequency 0.62MHz. This simu-
lation was performed by first increasing and then decreasing the ampli-
tude of the input signal.

ANALYSIS

The analysis scheme presented here has two limitations that
should be noted:

(1) Ttis assumed the harmonics generated by the filter are so
small that their contribution to the overall distortion of the
filter can in general be neglected.

(2) The current analysis produces a large-signal amplitude-
dependent transfer function, thereby limiting the scope of
the analysis to the frequency domain and monotone input
signals.
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Furthermore, the analysis presented here could be expanded to
include the following aspects:

(1) The distortion of the OTA could be described as a complex
function involving the voltage amplitudes of both the input
signal and the output node.

(2) Other filter transfer functions (e.g., lowpass, highpass,

etc.) including higher-order structures with a wide range of

Qs could be investigated with this technique. This would

require the designer to develop an accurate nonideal model

of the architecture, including such nonidealities as over-
ordering, non-zero output conductance, etc.

CONCLUSIONS

A new technique for predicting distorted frequency responses,
including jump resonance, in high-Q bandpass filter structures is
presented as a function of the nonlinearities of operational transcon-
ductance amplifiers (OTAs) and the Q enhancement of the filter.
The analysis and simulation methodology presented in this paper
agrees closely with experimental results, confirming the validity of
the basic theory. This analysis offers significant advantages over
other published techniques by offering practical insight into the
nonideal performance of the filter, in terms of parameters which
directly characterize both the frequency response and distortion of
the OTA.
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