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Abstract- Dynamic testing of high-speed, high-performance,
analog-to-digital converters (ADCs) requires instruments that
must have better dynamic range (signal-to-noise ratio) than the
ADC under test to achicve reliable results. A major limitation
in these measurements is the distortion of the signal generator,
which is used as the input ezcitation, especially at frequencies
over 1 MHz. A novel algorithm is described o compensate
for the effect of signal source distortion in the measurement of
dynamic performance of ADCs. The algorithm uses two sets
of measurements: one set taken with the function gemerator
and another taken with an all-pass filter inserted between the
function generator and the ADC. Simulation results indicate
that ADCs with o dynamic range of 60-70 dB can be measured
with an absolute accuracy of better than 0.2 dB using a signal
generator that has -40 dB distortion components.

INTRODUCTION

The most important performance indicator of ADCs is the
signal-to-noise plus distortion ratio (SNDR) or cquivalently the
number of effective bits [1]. The measurements are typically
done either in the analog domain or in the digital domain[2]. In
the analog domain, the output of the ADC is fed to a digital-
to-analog converter (DAC) and the analog output is analyzed
using either a spectrum analyzer or a distortion analyzer to
measure the SNDR. This method is very sensitive to noise and
distortion generated by the DAC and is therefore unreliable
for testing high-performance ADCs. A typical digital domain
measurement that uses the Fast Fourier Transform (FFT) to
perform the SNDR measurement is shown in Figure 1. Here,
the ADC output data is first stored in a digital memory. The
data is then analyzed using the FFT to determine the SNDR.
In both the analog and digital domain testing methods, the
test stimulus is a full-scale sine wave. Regardless of the method
used, the SNDR of the function generator must be better than
that of the ADC in order to measure the true SNDR of the
ADC. The ideal dynamic range of an n-bit ADC is equal to
6.02n + 1.78dB, where n is equal to the number of bits [1].
Therefore, the spectral purity of the input sinewave must be
better than this value to measure the true SNDR of the ADC.
For example, if a 12-bit converter (ideal SNDR=74.02dB) has
an actual SNDR of 70dB due to a second harmonic at 72.2 dB
, the function generator must have a lincarity of better than
-100dB to be able to measure the true SNDR with an abso-
lute accuracy of better than 0.27dB (this calculation assumes
an in-phase addition at the ADC output of a second harmonic
due to the function generator and a second harmonic due to
the ADC). Table 1 lists the linearity specifications of some of
the commonly used commercially available signal generators
(the measured values are usually 5 to 10dB better than the
specified values). It is clear from this Table that the best non-
linearity specification is about -100dB for frequencies less than
200KHz and degrades for higher frequencies. However, 12-bit
ADCs operating beyond this frequency range are commercially
available [3] and therefore the absolute measurement error will

be worse than predicted above, if this function generator were
used. This situation is only worsened when we take into ac-
count ADCs that have more aggressive specifications than the
one above. For example, the ADC in [4] has 10-bits of resolu-
tion and operates at 60MHz. Ideally, this ADC could have a
dynamic range of 61.96dB. From Table 1, it is clear that therce
is no function generator that has a linearity even close to this
value, in the frequency range of interest.

It is obvious from the above discussion that the nonlinear-
ity of the signal source has a major influence on the measured
results and puts an upper bound on the measurable dynamic
range of ADCs. In a practical measurement setup this prob-
lem is usually circumvented by using a band-pass filter to filter
out the harmonics in the signal source. However, this has the
disadvantage of having to tune the filter for every frequency
the ADC is being tested at.

In this paper, an algorithm is presented that compensates
for the effect of the source spectral impurity on the measured
SNDR of the ADCs. It is assumed, for the sake of illustration of
results, that an FFT based method is being used to measure the
SNDR of the ADC. Although an ADC is taken as an example to
test the algorithm, the algorithm is very general in nature and
can be applied to any similar situation where the nonlinearity
of a mixed analog/digital circuit is being measured using a
spectrally impure signal source and the measured results are
available in the digital form.

DESCRIPTION OF THE ALGORITHM

Let the input to the device under test (DUT) be a sum of
complex exponentials given by:

Vi(t) = Ajeap’™t + Ageap’t + Agexp’>*? (1)

where terms containing 4, and 43 model the second and third
harmonic distortion components present in the signal source.
Additional harmonics should be included to this model if the
source non-linearity is not sufficiently modeled by the second
and third harmonics. In the absence of any non-linearities
in the DUT, the system response to V;(¢) would be that of
a linear system. In the presence of weak non-linearities, the
DUT can be modeled as a weakly non-linear or a quasi non-
linear system [5]. The system (modeled as a weakly non-linear
system) response due to the first term of Eq. 1 can be written
as:

ou(t) = Hyy Ay exp?™t + Hyp(Ay exp?™') 2+ Hyg( Ay exp?™ )4
(2)
Similarly, the output due to the second and third terms can be
written as:

Voa(t) = Hog Ay exp?®! + Hyy(Ag exp’®)2 + - (3)
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Vaa(t) = Haz Az exp?® + Hzg( Az exp™ ') +..-  (4)

where Hy,, Hyzetc- - - are complex gain factors of the non-linear
system.

When all three terms in Eq. 1 are considered as input to
the DUT, in addition to the responses given above, there will
be additional terms as a result of the inter-modulation among
the three input components. If the nonlinearity of the source
and the DUT are small, these inter-modulation products can
be neglected [5]. Under this assumption, the system response
equals the summation of Eq. 2, Eq. 3 and Eq. 4, and the
sum can be written as:(neglecting terms higher than the third
harmonic):

Vos(t) = 0S5, exp’™t +08; exp’?t +0S3 exp™*  (5)

where
OS] = HuA] (6)
0S8, = Hy3 A2 + Hp A, (7
OS3 = H13A:{ + H33.43 (8)

Fundamental to the above equations is the assumption that the
system response is a result of the superposition of the response
of the different input signal components. As long as the sys-
tem remains weakly non-linear and the distortion of the signal
source is small, this assumption is valid.

From Egs. 7 and 8 we see that a knowledge of the complex
gain terms is necessary to separate the measured harmonic
energy into the contribution from the ADC (the quantity of
interest) and the contribution from the signal source. However,
this will require another set of independent equations similar
to Egs. 7 and 8, so that the resulting sets of equations can be
solved for the complex gain factors.

The second set of independent equations can be obtained
by placing an all-pass filter in front of the DUT as shown in
Figure 2. This process will change the phase of all harmonic
components of the function generator and result in a new set
of inputs being applied to the ADC, without changing the dis-
tortion generated by the ADC. Theoretically, any linear circuit
that gives a non-linear phase response can be used in place of
the all-pass filter as long as three requirements are satisfied.
First, the impedance seen by the signal source must be the
same when it drives either the ADC or the filter. This will
guarantee that the distortion of the signal source (which de-
pends on loading conditions) remains unchanged. Second, the
magnitude of the signal to the ADC must be the same, whether
it has the filter or the signal source in front of it. This assures
that the distortion generated by the ADC is the same for both
cases. Finally, the linearity of the filter must be much better
than that of the DUT. A family of passive constant-impedance
all-pass ladder filters that fulfill these requirements is presented
in [6].

In Fig. 2, the signal at the output of the all-pass filter is
given by (assuming that the filter has negligible nonlinearity):

Vif(t) = AIT(jw)ezp"“'+AzT(ﬂw)ezpf2”‘+A3T(j3w)expfz‘“;
9

where T(jw) is the filter transfer function. The response at the
output of the DUT to this input is given by:
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Vo(jwt) = OT; exp?™* +OT; exp?®* + 0Ty exp?®*  (10)

where:
OTy = HuAlT(jw) (11)
OT; = Hy2(A1T(jw))* + Haz A2 T(j2w) (12)
OTs = Hy3(A T(jw))® + H3z AT (j3w) (13)

The above equations together with equations (7) and (8)
can be used to find the desired complex gains Hy; and His.
The resulting expressions are given below:

T(j2w) - T(jw)

Hias” =09 ) ~ T
___TGw) o 0L 05
TGaa) —TGar 0o, ~os,) Y
T(33w) - T(jw
Hads? =05 TSI
T(u) oz, _0s,
—T(j3w)—T(jw)3osl(OT1 osl) (19)

Knowing what the corrected 2"¢ and 37¢ harmonic out-
puts are, the signal-to-noise plus distortion ratio can be easily
calculated.

RESULTS

Nonlinearity in high-speed ADCs can be classified into
two categories: static nonlinearity and dynamic nonlinearity.
Static or DC nonlinearity in ADCs is due to deviations in the
threshold voltages that define the trip points of the ADC. The
deviation in the threshold voltages itself is a result of compo-
nent mismatches and other process parameter variations. This
type of nonlinearity can be measured using DC signals and
expressed as both differential nonlinearity (DNL) and integral
nonlinearity (INL). However, high-speed ADCs are notorious
for dynamic errors, and static DNL and INL curves do not
reveal this kind of errors. For this reason, it is becoming al-
most a standard practice to specify the dynamic performance
degradation of these ADCs by means of SNDR measurements.

As an example of dynamic nonlinearity in high-speed ADCs,
let us consider a flash converter. In this type of high-speed
ADC, the exact sampling instant of the input signal is unde-
fined due to the finite delay associated with the transmission
of the clock and the input signal. This lack of synchronization
between the input and the clock signal (due to mismatches in
the transmission lines carrying these signals) gives rise to what
is commonly known as timing uncertainty and leads to an in-
stantaneous error in the sampled voltage. If the voltage error
is systematic (signal dependent), it will cause distortion in the
ADC, and if it is random (for example, due to clock jitter) it
increases the random noise generated by the ADC. This mech-
anism is one of the major sources of SNDR degradation in flash
ADCs [7]. Timing uncertainty in an ADC can be modeled by a
timing error associated with the ideal sampling time nT. Ac-
cording to this model, for example, if the input to the ADC is
a sine wave (Asinwt) then the response of the ADC is given
by:

Y Vo(t) = Asin(w(nT + terror)) (16)

where terror is the timing error at nT. The instantaneous er-




ror in the sampled voltage is a function of both t.rror and w.
Making t.,ror a function of the input level distorts the output
signal. Also, note that this distortion will increase if w is in-
creased because now for the same instantaneous timing error,
the instantaneous voltage error will be larger due to the in-
creased slew rate of the signal. Hence, according to this model,
the distortion of the ADC goes up if either the amplitude or
the frequency of the input signal (slew rate of the signal) goes

up.

Figure 3 shows a possible timing error function terror.
This curve may be thought of as a timing delay mismatch be-
tween the clock and signal lines of a hypothetical 12-bit flash
converter with four rows of comparators. The exactness of this
curve is not critically important to us; this curve is used only
as a model to introduce distortion in the ADC (the exact curve
would have a quadratic response rather than a linear response).
It has also been observed that this kind of timing error gives
rise to strong odd harmonics in the output frequency spectrum

of the ADC.

Figure 4 shows the SNDR curve (for the simulated 12-bit
converter) that was obtained using the behavioral model repre-
sented in equation (16) and the t.,.o function shown in Figure
3, assuming a spectrally-pure signal source (V;(¢) = Asinwt in
Eq. 1). In this Figure, SNDR is plotted as a function of the in-
put amplitude for a frequency of 1.56 MHz; this curve was gen-
erated by taking samples of Eq. 16, applying the Fast Fourier
Transform (FFT) on the resulting sequence, and estimating
the harmonics. Mathematically, SNDR can be expressed as:

‘H11A12|
A3+ [Hp AN + |y AL

SNDR = \/
|Hiz +oot e
(17

where €? is the background noise. In Figure 4, observe that
random noise dominates SNDR when the signal level is low,
and distortion dominates the SNDR at full scale input.

For simulation purpose, the ratio between the input fre-
quency and the clock frequency was so chosen that the spectral
leakage due to windowing was negligible. In this way, the com-
putational errors caused by using the FFT in estimating the
harmonics are kept to a minimum, and therefore the errors in
the compensated harmonics are purely errors resulting from
the algorithm itself.

Now, if we assume that the signal source has 2"¢ and 37
harmonics at 40dB below the fundamental, the resulting SNDR
curve is as shown in Figure § (solid curve). It is evident from
this Figure that the measurable dynamic range is always lim-
ited to less than 37dB due to the nonlinearity of the source.
The dotted curve is the SNDR curve after applying the cor-
rection algorithm: To see the exact difference between this
recovered SNDR curve and the ideal SNDR curve (Figure 4),
the difference is plotted in Figure 6. As can be seen the al-
gorithm performs extremely well with the indicated distortion
process.

The transfer function used in the simulation for the all-
pass filter is:
_ 1-jwRC

= (18)
1+ jwRC

T(jw)
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This is an ideal first order transfer function and in a prac-
tical realization of this transfer function, component nonide-
alities such as parasitics associated with passive elements will
result in a nonideal transfer function. In addition, the mea-
surement of the resulting transfer function itself is going to
These effects must be taken into ac-
count in a practical realization of the all-pass filter.

introduce some errors.

Table 2 lists the simulation results for several combina-
Note that the errors due to
compensation get larger as the source distortion goes up. To
investigate the effect of measurement error that may result in
measuring the all-pass filter transfer function, a 1% error was
deliberately introduced to the T'(w)terms in equations (14) and
(15). The resulting performance of the algorithm (assuming a
signal source with a 2"¢ and 3" harmonic 60dB below the
fundamental) is also listed in Table 2.

tions of source distortion levels.

CONCLUSIONS

An algorithm to measure the true dynamic performance of
high-speed ADCs using a spectrally impure signal source has
been described. Basically, the algorithm separates the observed
nonlinearity into contributions from the signal source and the
ADC. Hence, it is also possible to characterize the signal source
itself. The limitation to the algorithm comes from the assump-
tions made about the nonlinearity of the ADC. With present
day converters where gross nonlinearities(such as nonmono-
tonicity) are rare phenomena, this algorithm is expected to
perform as described. Finally, the algorithm provides a very
economical solution to testing high-performance ADCs using
low-cost function generators.
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